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Abstract

We de�ne the cohomology of a tiling as cocycle cohomology of

its associated groupoid and consider this cohomology for the class of

tilings which are obtained from a higher dimensional lattice by the

canonical projection method in Schlottmann's formulation. We relate

it to the cohomology of this lattice and discuss one of its qualitative

features: it provides a topological obstruction for a generic tiling to

be substitutional. For tilings of codimension smaller or equal to 2 we

present explicit formulae.
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Introduction

Quasiperiodic tilings have become an active area of research in solid state

physics due to their rôle in modeling quasicrystals [1, 2, 3, 4], and the projec-

tion method in its various formulations [5, 6, 7, 8] is one of the most common

techniques to construct candidates for such tilings. This raises the question

how can we charactarize tilings and possibly classify them? For that to be

investigated one must �rst decide which properties of a tiling are essential

for the physical properties of the solid. We take the point of view here that it

is only the local structure of the tiling that matters, and even more, only its

topological content. According to this point of view the tight binding model

for particle motion in the tiling is not uniquely determined by the tiling but

its form is constrained by the topology of the tiling, i.e. the Hamiltonian

re
ects the long range order of the tiling (but additional information is re-

quired to specify the interaction strengths etc.). Therefore we are looking for

topological invariants of tilings, one of them being its cohomology which we

de�ne to be the cohomology of the tiling groupoid.

Without additional mathematical structure of the tiling it is not clear

how to obtain explicit results for cohomology groups. Substitution tilings

provide a class of tilings where such results can be obtained [9, 10], because

they possess a symmetry which relates di�erent scales. The present article

is part of a programme to compute the tiling cohomology of another class,

those which may be obtained by projection from higher dimensional lattices.

We present quantitative results, but only for small codimension (i.e. small

di�erence between the rank of the lattice and the dimension of the tiling),

and discuss qualitative, namely suÆcient conditions under which the coho-

mology is in�nitely generated. As a matter of fact, these conditions are quite

often met and since the cohomology of substitution tilings is �nitely gen-

erated (when tensored with the rationals) we can conclude that projection

method tilings are rarely substitutional. Unfortunately, we cannot o�er yet

an interpretation of the fact that some tilings produce only �nitely many

generators for their cohomology whereas others do not. But if understood, it

could well lead to a criterion to single out a subset of tilings relevant for qua-

sicrystal physics from the vast set of tilings which may be obtained from the

canonical projection method. In this context we point out that no projection

method tiling is known to us which has in�nitely generated cohomology but

allows for local matching rules, c.f. [11].

Apart from the classi�cation problem there is another strong motivation

to study tiling cohomology. Tilings obtained by the projection method belong

to a large class of tilings for which it can be shown that their cohomology is

isomorphic to (unordered) K-theory of the associated groupoid-C�-algebra
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[12]. This (non-commutative) aspect of the topology of tilings has a direct

interpretation in physics. The above mentionned C�-algebra is the algebra of

observables for particles moving in the tiling and its ordered K0-group (or its

image on a tracial state) may serve to "count" (or label) the possible gaps in

the spectrum of the Hamilton operator which describes its motion [13, 14, 15].

In this context it is even more challanging to �nd an interpretation of the

generators of the K0-group, in the case where there are in�nitely many. At

�rst sight, all but �nitely many of them appear to be in�nitesimal.

With the important exception of Section 6 most of this article parallels

the �rst two articles of a little series [16, 17, 18] of which the last one will

contain quantitative results for tilings of higher codimension. But the main

di�erence is that we use here a description of the tilings (by Laguerre com-

plexes, due to Schlottmann [19]) which, at the cost of generality (when it

comes to acceptance domains of quite arbitrary shape), is a lot simpler when

it comes to some of the technicalities. The article is organized as follows.

We �rst describe the continuous dynamical system which can be assigned to

any reasonable tiling (Section 1). Its associated transformation groupoid has

orbits homeomorphic to the space in which the tiling is embedded. We derive

here the tiling groupoid as a reduction of this groupoid (Section 2). It is an

r-discrete groupoid and we de�ne tiling cohomology to be the cohomology

of this groupoid. Again, this can be done for arbitrary tilings but one of

the main features of projection method tilings which make a computation

of the cohomology feasable is that one can �nd a Zd Cantor dynamical sys-

tem whose associated transformation groupoid is continuously similar to the

tiling groupoid (Section 3). This has as a consequence that the tiling coho-

mology may be formulated as group cohomology of the group Zd. It parallels

work of Bellissard etal. [20] on the K-theoretic level. After two illustrating

examples we review the qualitative results on tiling cohomology that were

obtained in [17] (Section 5). In Section 6 we present the calculation of the

cohomology for tilings of small codimension. Finally we add a section on the

non-commutative topological approach.

1 Continuous tiling dynamical systems

A tiling is a covering of Rd by closed subsets, called its tiles, which overlap at

most at their boundaries and usually are subject to various other constraints,

as e.g. being connected, bounded in size and closures of their interiors. They

may even be decorated. For the purpose of this work, however, in which we

focus attention on canonical projection tilings, it is suÆcient to consider tiles

which are (possibly decorated) polytopes (with non-empty interior) which
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touch face to face. Moreover, we require that the tilings are of �nite (pattern)

type, a notion which we explain below.

Given a tiling T , Rd acts naturally on it by translation, we denote the

tiling translated by x as T � x, and the closure of the orbit T � Rd of T
with respect to an appropriate metric gives rise to a dynamical system [21].

There are several proposals for such a metric on spaces of tilings which all

are based on comparing patches around the origin of Rd . This may be done

as follows: represent a tiling T as a closed subset of Rd by the boundaries of

its tiles and its decorations by small compact sets, let Br be the open ball

of radius r around 0 2 Rd and Br(T ) := (Br \ T ) [ @Br, a closed set. Two

tilings, T and T 0 should be close to each other if Br(T ) and Br(T
0) coincide

possibly up to a small discrepancy for large r. The di�erent ways to quantify

the allowed discrepancy lead to the di�erent spaces which may be found in

the literature. One option is to not allow any discrepancy,

D0(T ; T
0) := inff

1

r + 1
jBr(T ) = Br(T

0)g:

The closure of the orbit of T under Rd would then always be a non compact

space. If one looks instead at

D(T ; T 0) = inff
1

r + 1
jdr(Br(T ); Br(T

0)) <
1

r
g;

where dr is the Hausdor� metric de�ned among closed subsets of the closed r-

ball, then completion of the orbit with respect to this metric yields a compact

space under very general conditions [21, 22]. Note that D is not invariant

under the action of Rd by translation, but the action is continuous and can

thus be extended to the completion.

De�nition 1 The continuous dynamical system associated to T is (MT ;Rd),
the closureMT of the orbit of T with respect to the metric D, with the action

of Rd induced by translation. We call MT the continuous hull of T .

Let Mr(T ) be the subset of tiles of T which are contained in the closure of

Br. Like for T we may think of Mr(T ) as the closed subset de�ned by the

boundaries and decorations of its tiles. A tiling T is called of �nite type (or

of �nite pattern type, or of �nite local complexity) if for any r the set of

translational congruence classes of sets Mr(T � x), x 2 Rd , is �nite.
The elements of the space MT may again be interpreted as tilings. If T

is of �nite type these elements are those tilings in which each �nite part can

be identi�ed with a �nite part of a translate of T . In other words: for all

T 2 MT and all r exists an x 2 Rd such that Br(T ) = Br(T � x). If, given
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T 2 MT , for all r exists an x 2 Rd such that Br(T ) = Br(T � x) then T is

called locally isomorphic to T . If any element ofMT is locally isomorphic to

T then T is called minimal. This is the case for the tilings we are interested

in here. It directly implies that each orbit of the dynamical system is dense.

We say that a �nite subset P of tiles of a tiling T is a patch (or pattern,

or cluster) of it and write P � T . Then we de�ne

UP := fT 2MT jP � Tg;

subsets of the continuous hull which will play a major role in what follows.

We mention a third option for a metric on the orbit of T . The metric

given in [9] de�nes the same topology as

Dt(T ; T
0) := inff

1

r + 1
j9x; x0 2 B 1

2r
: Br(T � x) = Br(T

0 � x0)g;

i.e. discrepancy is allowed only for small translations. As soon as here two

tilings di�er by a rotation however small it is they will have a certain minimal

non zero distance. Because of this, closure w.r.t. Dt leads, for instance, for

the Pinwheel tilings to a non-compact space whereas closure w.r.t. D would

still lead to a compact space. Which kind of metric is to be used has, of

course, to be adapted to the problem, but for our purposes the distinction

between the latter two metrics is inessential:

Theorem 1 Let T be a �nite type tiling. Then MT is compact and equal

to the completion of T � Rd w.r.t. Dt. Furthermore, the collection of sets

fB� + x + UPg, � > 0, x 2 Rd , P a patch of T , is a base for the topology of

MT .

Proof: We start by showing that the two metrics D and Dt yield the same

completion for �nite type tilings. Clearly D(T; T 0) � Dt(T; T
0) so we have to

show that any D-Cauchy sequence is also a Dt-Cauchy sequence. In fact, if

D(T ; T 0) < 1
R+1

then dr(Br(T ); Br(T
0)) < 1

R
for all r � R, and since there

are only �nitely many translational congruence classes of the formMr(T �x)
we �nd for each r an � such that dr(Br(T ); Br(T

0)) < � implies 9x; x0 2 B�:

Br(T � x) = Br(T
0 � x0). This implies that D-Cauchy-sequences are also

Dt-Cauchy-sequences. In particularMT is equal to the completion of T �Rd

w.r.t. Dt. Its compactness for �nite type tilings is well known, see e.g. [22].

Let r(�) := 1��
�

and Vr(T ) = fT 0 2 MT jBr(T ) = Br(T
0)g. Then we can

describe the �-neighbourhoods of T w.r.t. Dt as follows

Dt(T; T
0) < � i� 9r > r(�)9x; x0 2 B 1

2r
: Br(T � x) = Br(T

0 � x0)

i� T 0 2
[

r>r(�)

[
x2B( 1

2r
)

�
B(

1

2r
) + Vr(T � x)

�
: (1)
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The tiling being of �nite type implies that, for every r > 0, T 2 MT exists

a �nite set of pairs (xi; Pi), xi 2 Rd , Pi a pattern of T , such that Br(T
0) =

Br(T ) whenever 9i : Pi + xi is a pattern of T 0. In other words, Vr(T ) =S
i UPi+xi. This shows that (1) is a union of sets of the above collection.

To show that B�+UP is open in the metric topology (which by continuity

of the action implies that also B� + x + UP is open for x 2 Rd) we take a

point T in it and show that a whole neighbourhood (w.r.t. Dt) of it lies in

B�+UP . Let R be large enough so that 1
R
< � and P is a patch of BR� 1

2R
(T )

(we view here P as a closed subset much like a tiling). Then, for all x 2 B 1
2R
,

P � BR(T � x) + x and hence VR(T � x) � UP � x. This implies that the
1

R+1
-neighbourhood of T lies in B� + UP . q.e.d.

Lemma 1 Let T be a �nite type tiling. Then UP is compact.

Proof: If D(T; T 0) is small enough, and T; T 0 2 UP then it is equal to

D0(T; T
0). That UP is complete and precompact w.r.t. the D0-metric is

proven in [15]. q.e.d.

2 The groupoid approach to tilings

To a given tiling one may associate an r-discrete groupoid, the tiling groupoid.

This groupoid is special among other groupoids which may be assigned to

the tiling in that its C�-algebra plays the role of the algebra of observables

for particles moving in the tiling [15, 10]. It determines the tiling up to topo-

logical equivalence [23]. Before we describe it we brie
y recall some facts

about groupoids.

2.1 Generalities

For a traditional de�nition of a topological groupoid and as a general refer-

ence for most of the concepts introduced below like that of reduction, con-

tinuous similarity and continuous cocycle cohomology we refer the reader to

[24].

In a slightly di�erent but equivalent way one may say that a groupoid

G is a set with partial, associative, cancellative multiplication and unique

inverses. Multiplication being partial refers to the fact that it is not for all

elements de�ned, but only for a subset of G � G (the composable elements).

An inverse of x is a solution y of the equations xyx = x and yxy = y, and for

a groupoid this solution is required to be unique. Hence we may denote the
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inverse of x by x�1. The inverse map x 7! x�1 turns out to be an involution.

Multiplication is cancellative if, provided it is de�ned, xy = xz implies y = z,

and this is the case whenever the composable elements are the pairs (x; y)

for which x�1x = yy�1. The set G0 = fxx�1jx 2 Gg is called the set of units,

it is the image of the map r : G ! G0, r(x) = xx�1, which is called the

range map. The map s : G ! G0, s(x) = x�1x = r(x�1) is called the source

map. On the set of units, u � v whenever r�1(u) \ s�1(v) 6= ; de�nes an

equivalence relation. Its equivalence classes are called the orbits of G.
A topological groupoid is a groupoid with a topology with respect to

which multiplication and inversion are continuous maps. Such a groupoid is

called r-discrete if G0 is an open subset, this implies that r�1(u) is a discrete

set for any unit u.

A groupoid is called principal, if its elements are uniquely determined by

their range and source, i.e. if the map G ! G0 � G0 : x 7! (r(x); s(x)) is

injective.

2.1.1 Transformation groupoids

Let M be a topological space with a right action of a topological group G by

homeomorphisms, denoted here (x; g) 7! x �g. The transformation groupoid1

G(M;G) is the topological spaceM�G with product topology, two elements

(x; g) and (x0; g0) are composable provided that x0 = x�g, and their product is
then (x; g)(x0; g0) = (x; gg0). Inversion is then given by (x; g)�1 = (x � g; g�1).
Hence, r(x; g) = (x; 0) and we see that G(M;G) is r-discrete if G is discrete.

Furthermore, G(M;G) is principal whenever G acts �xpoint freely. One of

the examples we have in mind here is G(MT ;Rd) which, however, is not

r-discrete.

2.1.2 Reductions

Let G be a groupoid, G0 its unit space and L be a closed subset of G0. Then

LGL := s�1(L) \ r�1(L) is a closed subgroupoid of G called the reduction of

G to L. Two further conditions on L will play a major role here. First, that

every orbit of G has a non-emtpy intersection with L { such a reduction is

called regular { and second, a topological condition, that L is range-open

[16]. L is range-open if for all open U � G the set r(s�1(L) \ U) is open.
A regular reduction of a groupoid G to a range-open subset L is for many

purposes as good as the groupoid itself. Muhly etal. have established a

notion of equivalence between groupoids which captures this phenomenon in

greater generality [25]. We will not discuss this notion of equivalence here

1or transformation group as in [24]
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but point out its consequences, namely that the main topological invariants

of the corresponding groupoid-C�-algebras are isomorphic.

2.1.3 Continuous similarity

As we have mentioned above, the concept of reduction is particularly well

adapted to yield an equivalence relation on groupoids which carries over to

an equivalence relation on the C�-algebras they de�ne. It turns out that

for projection method tilings the K-groups of the C�-algebras are related

to the cohomology of the groupoids, see Sect. 7, but this relation is not

clear on the level of arbitrary tiling-groupoids. On the other hand there is

a natural equivalence relation on groupoids (coming from viewing these as

functorial objects) which immediately gives rise to an equality on cohomology

groups as well as implies equivalence in the sense of Muhly etal. [26]: that of

continuously similar groupoids.

De�nition 2 Two homomorphisms �;  : G ! R between (topological)

groupoids are (continuously) similar if there exists a function � : G0 ! R
such that

�(r(x))�(x) =  (x)�(s(x)): (2)

Two (topological) groupoids, G and R, are called (continuously) similar if

there exist homomorphisms � : G ! R, �0 : R ! G such that �G = �0 Æ �
is (continuously) similar to idG and �R = � Æ �0 is (continuously) similar to

idR.

We are mainly interested in establishing continuous similarity of certain

principal transformation groupoids. A useful lemma to test this is proved in

[17](3.3,3.4):

Proposition 1 Let G = G(X;G) be a principal transformation groupoid (i.e.

G acts freely on X). Suppose L is a closed subset of G0 �= X and 
 : X ! G

a continuous function such that x�
(x) 2 L for all x 2 X. Then the reduction

of G to L is continuously similar to G.

2.1.4 Continuous cocycle cohomology

Given a dynamical system (M;G) one standard topological invariant associ-

ated with it is the cohomology ofG with coeÆcients in theG-moduleC(M;Z)

of integer-valued continuous functions on whichG acts as (g�f)(m) = f(m�g).
This cohomology may be interpreted as a groupoid cohomology, namely of

the groupoid G(M;G). It is continuous cocycle cohomology of r-discrete
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groupoids and we will recall its de�nition here for constant coeÆcients fol-

lowing [24].

Let A be an abelian group and G be a groupoid. G acts on the trivial

A-bundle G0 �A
�
! G0 (with product topology) partially, namely x 2 G can

act only on elements of the form (s(x); a) mapping them to (r(x); a). We

denote this action by �, i.e. the partial map given by x 2 G is �(x). The

action is continuous in the sense that when f 2 C(G0; A) is a continuous

section of the bundle then the function x 7! (r(x); f(s(x))) is continuous

too.

Let G(0) = G0, and, for n > 0, G(n) be the subset of the n-fold Carte-

sian product of G (with relative topology) consisting of composable ele-

ments (x1; : : : ; xn), i.e. r(xi) = s(xi�1). n-cochains are continuous functions

f : G(n) ! G0 � A such that �(f(x1; : : : ; xn)) = r(x1) and, for n > 0,

f(x1; : : : ; xn) = (r(x1); 0) provided one of the xi is a unit (0 is the neutral

element of A which we denote additively). The n-cochains form an abelian

group under pointwise addition. The coboundary operator Æn is de�ned as

Æ0(f)(x) = �(x)f(s(x))� f(r(x));

and, for n > 0,

Æn(f)(x0; : : : ; xn) = �(x0)(f(x1; : : : ; xn))

+

nX
i=1

(�1)if(x0; : : : ; xi�1xi; � � � ; xn)

+(�1)n+1f(x0; : : : ; xn�1):

Hn(G; A) := ker Æn=imÆn�1 is the n's degree continuous cocycle cohomology

group with (constant) coeÆcients in A.

Theorem 2 Continuously similar groupoids have isomorphic cohomology with

constant coeÆcients.

The proof is given in [24], the maps � and �0 which establish the similarity

inducing the cochain-homotopies.

Let us consider a transformation groupoid G(M;G) as an example. In

that case, n-cochains are maps f :M �Gn !M � A which are of the form

f(m; g1; : : : ; gn) = (m; ~f(g1; : : : ; gn)(m))

where ~f : Gn ! C(M;A) is a continuous map which, for n > 0, is the zero

map when applied to (g1; : : : ; gn) with one gi = e. These are precisely n-

cochains of the group G with coeÆcients in C(M;A), a module of G w.r.t.
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the action (g � f)(m) = f(m � g) [27]. Hence every n-cochain of the groupoid

with coeÆcients in A determines an n-cochain of the groupG with coeÆcients

in C(M;A) and vice versa. Moreover, under this identi�cation Æn becomes

the usual coboundary operator of group cohomology, because the groupoid

action is nothing else than the shift of base point given by the action of G.

Thus

Hn(G(M;G); A) �= Hn(G;C(M;A));

the cohomology of the group G with coeÆcients in C(M;A). In the following

we shall be interested in the cases A = Z and A = Q .

2.2 The tiling groupoid

The tiling groupoid may be de�ned without refering to continuous tiling

dynamical systems, as e.g. in [15, 10], but for the purpose of the present

work it is important to draw the connection which has �rst been realized by

[9]. Starting with the groupoid of the continuous tiling dynamical system

G(MT ;Rd) we construct the tiling groupoid as a reduction of it.

Construct a closed range-open subset 
T of MT as follows: Choose a

point in the interior of each tile of T { called its puncture { in such a way

that translationally congruent tiles have their puncture at the same position.

Let 
T be the subset of tilings ofMT for which a puncture of one of its tiles

coincides with the origin 0 2 Rd .

De�nition 3 The tiling groupoid of T , denoted by GT is the reduction of

G(MT ;Rd) to 
T .

Note that 
T intersects each orbit of Rd . Let us sketch why 
T is closed

and range-open and why GT coincides with the groupoid R de�ned in [15]

provided 
T contains only non-periodic �nite type tilings2. Under the lat-

ter condition Rd acts �xed point freely on MT and hence GT is principal.

Therefore the map between GT and R is given by (T; x) 7! (T; T �x), which
certainly preserves multiplication and inversion, is an isomorphism provided

it preserves the topology. The tiling being of �nite type implies that punc-

tures of two di�erent tiles have a minimal distance, let's say Æ. Thus there

exists an � (which is roughly as large as Æ) such that if D(T � x; T � x0) < �

and T � x; T � x0 2 
T then D(T � x; T � x0) = D0(T � x; T � x0). It

follows that 
T is the metric completion w.r.t. D0 of the set of all T
0 2 
T

which are translates of T . In particular, it is closed and the existence of

2GT coincides for mainly the same reason with R(MII ) of [10], even for arbitrary
�nite-type tilings.
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a minimal distance Æ between punctures directly implies range-openess, c.f.

[16]. Furthermore, the metric D0 and the metric used in [15] to de�ne the

hull lead obviously to the same completions. This shows that the above map

(T; x) 7! (T; T � x) restricts to a homeomorphism of the spaces of units of

GT and of R. By construction GT is r-discrete and its topology is generated

by the sets U � fxg, U open in 
T . Images of those sets under the above

map generate the topology of R.

De�nition 4 The cohomology of T , denoted by H(T ), is the continuous

cocycle cohomology H(GT ;Z) of GT .

We will see later on that for canonical projection tilings, H(GT ;Z) is

isomorphic to the Czech cohomology of MT . It seems to be an interesting

question whether this is true in general.

3 Quasiperiodic tilings obtained by cut and

projection

The (cut and) projection method is a well known method to produce quasiperi-

odic point sets or tilings by projection of a certain subset of a periodic set in

a higher dimensional space.

In earlier versions, e.g. [5], the favorite set was the integer lattice ZN but

a price for the simplicity of this choice has to be paid later if the kernel of

the projection contains non-zero lattice points. An elegant way around this

diÆculty, which is applicable to almost all interesting examples, is to use

root lattices instead of ZN [28] and the construction we use here is related

to that.

Rather than looking at arbitrary point sets obtained by the projection

method (e.g. with fractal acceptance domain) we want to focus in this article

on tilings where the acceptance domain is canonical { after all these include

the main candidates for the description of quasicrystals { and for these tilings

there is another apporach which is a bit more elaborated to start with but

easier to handle when it comes to the later steps in the construction of the

cohomology groups. Still we keep strong contact with the old fashioned

projection method which we used in [16, 17]. The approach we are about

to describe is based on polyhedral complexes and their dualization, it is

therefore called dualization method. But in the present context where we

start with a higher-dimensional periodic set it can be simply considered as a

variant of the projection method. We follow in its description the article by

Schlottmann [19] and refer the reader also to the examples discussed in [29].
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Consider a point set W of a euclidian space E together with a weight

function w :W ! R on it. For q 2 W , the set

LW;w(q) := fx 2 Ej8q0 2 W : jx� qj2 � w(q) � jx� q0j2 � w(q0)g (3)

is compact and convex and called the Laguerre-domain of q. Under rather

weak conditions on (W;w) all Laguerre-domains are actually polytopes (of

dimension smaller or equal to that of E or even empty sets) and the set of

all Laguerre-domains with non-empty interior provide the tiles of a tiling

T (W;w) which is of �nite type and face to face. Laguerre-domains are a

generalization of Voronoi domains which one obtains if the weight function is

constant. The construction of Voronoi domains is a familiar one in solid state

physics where they arise (though under the name Brouillon-zone or Wigner-

Seitz cell) if one takes as W the dual of the crystal lattice. A non-constant

weight function gives the means to enlarge certain Laguerre-domains (larger

w(q)) at the cost of others or even to surpress some.

The faces of the Laguerre-domains de�ne a cell complex structure: this is

the so-called Laguerre complex. We denote it by LW;w and the (closed) cells of

dimension k by L
(
W;wk). As a cell complex it has a dual, namely the dual �� of

a k-cell � is the convex hull of the set of q 2 W whose corresponding Laguerre-

domains contain � as a face (�� has codimension k). It is a nice exercise to

see that this dual cell complex is again a Laguerre complex, namely LW �;w�

where W � is the set of vertices (0-cells) of LW;w and w� : W � ! R is given

by w�(q�) = jq� � qj2 � w(q) for some q such that q� is a vertex of LW;w(q).

In particular, also (W �; w�) de�nes a tiling with the above properties.

To come to the projection method we let � 2 E be a lattice whose genera-

tors form a base for E , W be a �nite union of �-orbits, and w be a �-periodic

function. Now let E � E be a linear subspace and � : E ! E be the

orthogonal projection. We write d for the dimension of E, d? for that of

its orthocomplement E?, and �? for 1 � �. We also write shorter x? for

�?(x). An element u 2 E is called singular if there is a � 2 L
(d?�1)
W;w such that

�?(u) 2 �?(�). Hence the set of singular points is S = S? + E where

S? :=
[

�2L
(d?�1)
W;w

�?(�):

The set of non-singular points is denoted by NS. We more conveniently

now collect � = (W;w) and de�ne �u = (Wu; wu) as follows Wu = W + u,

wu(q + u) = w(q).

De�nition 5 The projection tiling de�ned by the data (W;w;E; u) (u 2 NS)
is the tiling Tu whose tiles are the elements of the set

f�(��)j� 2 L
(d?)
�u

; � \ E 6= ;g:
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(We surpressed the dependence onW;w;E because that on u is the important

one in what follows.) That this is actually a tiling by Laguerre-domains

has been shown by Schlottmann [19]. In fact, Tu is the tiling T ( ~W �
u ; ~w

�
u)

de�ned by the Laguerre-complex dual to L( ~Wu; ~wu)
where ~Wu = �(Wu) and

~wu(�(q+ u)) = maxfw(q0)� j�?(q0+ u)j2j�(q0) = �(q)g (assuming it exists).

Using this description one can see that one loses no generality in restricting

to the cases in which �?(�) lies dense in E?, and we will do so here. This

will save us a lot of extra work later on. For simplicity we will also require

E \ � = 0, which means that the tilings are (completely) non-periodic, and

the following conditions:

H1 Up to translation, any �� 2 L
(d)
�� is uniquely determined by its projection

�(��).

H2 The maximal periodicity lattice of L� is �.

We will simply call a projection tiling constructed as in the de�nition satisfy-

ing these conditions (with dense �?(�)) a canonical projection tiling (tacitly

assuming non-periodicity).

Before we pass on let us quickly look at the exampleW = ZN, the integer

lattice in RN , and vanishing weight function w. In this highly symmetric case,

the dual complex to LZN;w di�ers only by a shift about Æ = 1
2

P
i ei from the

original one. Writing 
 = f
PN

i=1 cieij0 � ci � 1g for the unit cube, its

translates by Æ + z, z 2 ZN , are its Laguerre-domains and it is not diÆcult

to see that the above construction yields as a result that the vertices of Tu
are the points

f�(z)j z 2 (ZN + u+ Æ) \ (E + 
)g:

This set we refered to in [16] as the canonical projection pattern de�ned by

the data (ZN; E; u0) with u0 = u+ Æ.

If E?\ZN were trivial then we had no reason to consider the apparently

more elaborated construction with Laguerre-complexes. But the case of non-

trivial E? \ ZN occurs in interesting examples such as the Penrose tilings.

Let D be the real span of E? \ ZN assuming it is not trivial and V be

the orthocomplement of D in E?. Then we may compose the projection

� : RN ! E out of two, � = �2 Æ�1, where �1 : E ! E�V is the orthogonal

projection with kernel D and �2 : E � V ! E with kernel V . Then we

perform the construction of the projection method in two steps. In the �rst

we produce the (periodic) tiling de�ned by the data (ZN ; 0; E � V; u) using

projection �1. As already mentioned, this tiling can be understood as a

Laguerre complex, namely the one de�ned by (�1(Z
N); w) where w(�1(z)) =

maxfw(z0) � j�?1 (z
0 + u)j2j�1(z

0) = �1(z)g. In the second step we now use

13



this new Laguerre complex and the projection �2. More precisely, we use the

data (�1(Z
N); w; E; �1(u)). Note that w remains zero after the �rst step in

case �?1 (u) 2 Z
N . In contrast, if �?1 (u) =2 Z

N then we have to expect that the

maximal periodicity lattice of the Laguerre complex de�ned by (�1(Z
N); w)

is a sublattice of �1(Z
N) containing the lattice ZN \ (E � V ).

The most famous class of tilings which may be constructed by the above

method are the Penrose tilings. Here N = 5, E a two dimensional invariant

subspace of the symmetry ei 7! ei+1 (i mod 5) and D is the span of Æ. If

�?1 (u) = �Æ then the new Laguerre complex L�1(Z5);w becomes the dual of

the Voronoi complex (i.e. the Delaunay complex) of the root lattice A4 [28].

The resulting tilings are the usual Penrose tilings. Other choices for �?1 (u)

lead to the so-called generalized Penrose tilings.

Let us describe some important properties of canonical projection tilings.

First, for nonsingular u; v, Tu is locally isomorphic to Tv and to any other

element of its hull [19] which implies thatMTu =MTv and that the dynami-

cal system (MTu; E) is minimal (i.e. any orbit lies dense). We may therefore

drop the index u to write MT for the continuous hull. Given u 2 E (not

necessarily non-singular) we de�ne

~Pu := f� 2 L
(d?)
�u

j0 2 �?(�)g

and call a subset ~P of some ~Pu a lift of a tiling T if T = f�(��)j� 2 ~Pg.
We call ~P regular if, for all � 2 ~P , 0 belongs to the interior Int �? of �?.

A regular lift is always of the form ~Pu for some regular u and vice versa, a

regular u yields a regular lift.

Lemma 2 Let E \ � = 0 and u; v 2 NS. Then Tu has a unique lift and

Tu = Tv whenever u� v 2 �.

Proof: Let ~P be some lift of Tu and de�ne

A( ~P ) =
\
�2 ~P

��?:

We claim that A( ~P ) = f0g. Hypothesis H1 implies that Tu determines its

lift up to translation in E?, in fact, the relative position between the lifts of

two neighbouring tiles is �xed since their intersection must be a face which

projects onto the intersection of the tiles. Our claim therefore implies that

the lift must be unique. Irrationality of E in � implies that it intersects

of each �-orbit of d?-cells at least one representative. Hence ~P contains

such a representative for any �-orbit and therefore determines uniquely the

Laguerre-complex it lies in. From maximality of � (H2) follows therefore

that ~P = ~Pv with u� v 2 �. The converse is clear.
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So it remains to proof the claim. Clearly A( ~P ) is convex and closed. If

it is not just the 0 point then it must therefore contain a closed intervall

[0; s]. Suppose that this is the case. From the de�nition of singular points

and denseness of �? follows immediately that, �rst u + [0; s] must contain

another regular point which we may assume to be u+s, and second, u+[0; s]

must contain a singular point in its interior. But, by convexity of the �,

u+ [0; s] 2 Int�? for all � 2 ~P which shows that all points in u+ [0; s] must

be regular. This is a contradiction. q.e.d.

For regular u we can also de�ne a lift of a patch P of Tu, namely we let

lu(P ) be the collection of all � 2 ~Pu for which �(�) is a tile of P . For a patch

P of Tu, u 2 NS, we let

Au(P ) =
\

�2lu(P )

��?:

Au(P ) is called the acceptance domain for P , for the following reason:

Lemma 3 Let P be a patch of Tu, u 2 NS. Then P 2 Tu+s, for s 2 E + �

whenever s 2 Au(P ) + �.

Let s 2 E+� which we split s = s0+ s00 with s0 2 E, s00 2 �. Then P � Tu+s
whenever P � s0 2 Tu and this is the case whenever exists a v 2 E? such

that lu(P ) � s0 + v 2 ~Pu and 8� 2 lu(P ) : 0 2 �?(� � s0 + v). The second

condition implies that v 2 Au(P ). Now by maximality of � we deduce from

the �rst condition that s � v 2 �. Hence P 2 Tu+s implies s 2 � + Au(P )

and the converse is anyway clear. q.e.d.

3.1 The topology of MT

For canonical projection tilings we have a much better description of the

topology of the continuous hull which is one of the crucial reasons why we

can compute their cohomology.

We use the tiling metric to de�ne a metric on the space NS,

�D(v; w) := D(Tu; Tv) + jv � wj;

and let � be the �D-completion of NS.

Lemma 4 The action of E + � on NS (by addition), the map �0 : NS !
MT : x 7! Tx, and the inclusion �0 : NS ,! E extend to continuous maps

to the completion �. Furthermore, the extension of �0, � : � ! MT is

open and the extension of �0 a surjection � : �! E which is one to one on

non-singular points.
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Proof: �D is invariant under the � action and for small s 2 E we have that
�D(u+ s; v+ s) di�ers very little from D(u; v); this implies that the action of

E + � extends to one by homeomorphisms on �. Uniform continuity of �0
and �0 is clear, as one can bound the D-metric and the euclidian metric by

the �D-metric. Hence both maps extend continuously.

We claim that for v 2 NS, we can �nd for all � > 0 a Æ > 0 such

that jv � wj < Æ (w 2 NS) implies D(Tv; Tw) < �. This then shows that

the preimages of non-singular points under � are singletons. To assert the

claim let, for R > 0, AR(Tv) = A(lv(MR(Tv)), a �nite intersection of convex

compact polytopes. Since v is regular, 0 is an interior point of these polytopes

and hence AR(Tv) contains an open Æ-neighbourhood of 0 2 E
?. By Lemma 3

jv? � w?j < Æ implies that BR(Tv?) = BR(Tw?), i.e. their D-distance is

smaller than 1
R+1

. Taking jv � wj < minfÆ; �g then implies �D(Tv; Tw) < 2�.

To show that � is open recall that ��10 (Tu) = u+�. In particular, di�erent

preimages of one single point have a minimal distance. The strategy is to look

at restrictions of �u to small open balls (w.r.t. �D in the relative topology),

smaller than the above distance, and show that their inverses map Cauchy

sequences onto Cauchy sequences. Let Tu� be a D-Cauchy sequence with

(u�)� belonging to such a ball (u� 2 NS). We claim that (u�)� converges

in the euclidian metric and therefore also in the �D-metric. To assert our

claim observe that we can choose the ball small enough so that convergence

of Tu� implies that of j�(u�)j and hence also Tu?� is a Cauchy sequence.

But the latter is even a Cauchy sequence with respect to the metric D0.

Now D0(Tu?� ; Tu?�+�)! 0 implies that supfRjBR(Tu� ) = BR(Tu�+�)g diverges

and hence diameter of AR� (Tu�) shrinks to zero (according to the proof of

Lemma 2) which implies, by Lemma 3, ju?�+� � u?� j ! 0. q.e.d.

Corollary 1 The map � induces an E-equivariant homeomorphism between

MT and �=�, the orbit space.

Proof: From continuity and Lemma 2 follows immediately that all points

in a single �-orbit are mapped onto the same tiling. So let us show that

�(x) = �(y) implies y 2 x+�. Let �(x) = �(y) but x 6= y. By the Hausdor�

property we may �nd �D-open U and V , with x 2 U and y 2 V , which

do not intersect. We may also assume that �(U) = �(V ) (otherwise take

U 0 = U \ ��1(�(V )) and V 0 = V \ ��1(�(U))). Now let x be the limit of a

Cauchy-sequence (x�)� in U \ NS. Since di�erent preimages of one single

point under � have a minimal distance we can make U so small in diameter

that there is a unique 
 2 � such that all x�+
 2 V . Continuity now implies

that (x� + 
)� converges to y and yields the desired result. E-equivariance

is clear. q.e.d.
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We have thus another dynamical system (�; E + �) which plays the role

of a "universal covering" (not in its strict sense) of the continuous tiling

dynamical system.

Before we proceed and as an aside let us compare this with the so-called

torus parametrisation of projection tilings [30]. At the same time we sketch

a discussion which was carried out for tilings related to ZN (not necessarily

canonical) in [16]. There is a surjection �0 : MT ! E=� which makes the

following diagram commutative:

�
�
! E

� # #

MT
�0

! E=�

: (4)

All maps are E-eqivariant and � is E+� equivariant. �0 is as well one to one

on (classes of) non-singular points. The dense set NS=� of the torus E=�
therefore yields a parametrization of a dense set (in fact a GÆ-dense set) of

tilings. In fact it can be shown that E=� parametrizes the remaining set of

tilings up to changes on sets of tiles having zero density in the tiling. This

torus parametrization is very useful for analyzing symmetry properties of the

tilings [30].

Next we want to describe the topology of �. For that recall that a base

of the topology of MT is generated by sets B� + x + UP , � > 0, x 2 E, P a

patch in T . Now recall Lemma 3 which for u 2 E?\NS can be reformulated

by saying that for x 2 u+E +�: P � Tx whenever x 2 Au(P ) + u+�. For

u 2 E? \NS we let

Au = f(Au(P ) \ �?) + u+ yjP � Tu; y 2 �?g:

Then, by the interpretation of Au(P ) we see that Au is closed under in-

tersection. In fact, Au(P ) \ (Au(P
0) + y) = Au(P [ (P 0 + �(y))) provided

P [(P 0+�(y)) � Tu and ; otherwise. It is useful, to have another description
of Au which at the same time shows that the following collection of closed

subsets in �,

B := fAjA 2 Aug;

(closure in �) does not depend on u. Let, for X � L
(d?)
� , A(X) :=

T
�2X ��

?

and

A0
u := fA(X) \ (�? + u)jX � L

(d?)
� �niteg:

Then Au(P ) + u = A(lu(P ) + u) which shows that Au � A0
u. On the other

hand let v 2 A(X)\ (�?+ u). Then 8� 2 X: �(��) 2 Tv and v� u = 
? for

some 
 2 �. It follows that f�(��)j� 2 Xg + �(
) is a patch in Tu. Hence

Au = A0
u. But from the form of A0

u it is clear that B does not depend on u.
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Theorem 3 The collection fB� + x + U jU 2 B; � > 0; x 2 Eg is a base

of the topology of �. In particular, � �= E?
c � E (product topology) where

E?
c = E? \NS ( �D-closure in �).

Proof: Let P be a patch of Tu, u 2 E? \ NS. From Lemma 3 follows that

for x 2 u + E + �, P 2 Tx whenever x 2 Au(P ) + u + �. Since Au(P ) is

compact inE? it follows from closedness of UP that ��1(UP ) = Au(P ) + u+�.

Furthermore, if 
 2 � is not trivial then �D(Au(P )+u; 
+Au(P )+u) > Æ, for

some Æ > 0 (here we mean the obvious extension of �D to subsets). Hence, for

all x 2 E+�, B�+x+Au(P ) + u is an open set. We conclude that the above

collection consists indeed of open sets and its image under � is the collection

of sets of which has been said that they form a base of the topology of MT .

Now let V 2 � open and of diameter smaller than Æ
2
. Then �(V ) is a union of

open sets Ui and we may assume that Ui = B�+ x+UP , P � Tu, x 2 E +�,

� > 0, is such that, for non-trivial 
 2 �, the component B�+ x+Au(P ) + u

has distance at least Æ
2
to B�+x+ 
+Au(P ) + u (otherwise we take a union

over larger patches and decrease �). Then V is a union of these components of

which we have already shown that they belong to the collection in question.

That � has the above form of a product space is now clear. q.e.d.

Corollary 2 The collection B is a base of compact open neighbourhoods for

E?
c . In particular, E?

c is a totally disconnected set without isolated points.

Proof: That B is a base of the topology follows directly from the last theorem.

That its sets are compact follows from compactness of the sets UP , P � Tu.

q.e.d.

Remark. We saw that the sets of B have the interpretation of acceptance

domains: if a nonsingular point u belongs to such a set then this can be

interpreted by saying that a certain patch occurs at Tu. If we arti�cially

introduce additional faces in the projected (on E?) Laguerre-complex we

started with, making out of one d?-cell �? �nitely many, we can encode

this in the tiling by means of decorations. Each component of �? arising in

that way may serve as acceptance domain for the tile �(��) together with a

label for that component (understood as a small compact set like an arrow).

This is a decorated tile. To insure minimality of the decorated tiling we may

require this additional cutting to be �-invariant. If we now take the new faces

into account by taking as a base for the topology the sets corresponding to

the components then we end up with a similar description of the continuous

hull in the decorated case. Such a description is important if one wants to

describe tilings like the decorated version of the octagonal and decagonal

tiling which only after decoration have matching rules.
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3.2 A description of the topology by cut-planes

Under the following hypothesis we get another description of the topology of

E?
c which will turn out to be crucial.

H3 For all � 2 L
(d?�1)
� , the (aÆne) hyperplane H� which is tangent to �?

is a subset of S?.

We call the hyperplanes H� cut-planes. We do not have a general criterion

under which this is true, but H3 is satis�ed in many interesting cases, in-

cluding those in which W = ZN , w = 0. Note that H3 allows us to write the

singular points in E? as S? =
S
�2L

(d?�1)

�

H� which is clearly invariant under

the action of � given by � 7! �+ 
?. The set C of all cut-planes is invariant

under � as well and since L
(d?�1)
� contains only a �nitely many �-orbits C

consists of a �nite number of �-orbits, too.

A compact polytope in E? is called a C-tope if it is the closure of its

interior and if all its boundary faces are subsets of cut-planes. A subset of

E?
c is called a C-tope if it is the �D-closure of the set of non-singular points

of a C-tope in E?.

Theorem 4 The characteristic functions on C-topes generate Cc(E
?
c ;Z).

Proof: C-topes form the set of �nite unions of sets of B. The latter being

clopen and forming a base of the topology their corresponding characteristic

functions generate Cc(E
?
c ;Z). Since 1U[V + 1U\V = 1U + 1V the statement

follows. q.e.d.

For � = Zd+d
?

Le gave a description of the topology of E?
c which we want

to relate to the above [11]. For x 2 E? let cx be a connected component of

E?n
S
x2H2CH, an open subset of E? called a corner. Note that cx = E? if

x 2 NS. Let E?
L = f(x; cx)jx 2 E

?g with topology generated by the sets

U(x;cx) = f(y; cy)jy 2 cx; cx \ cy 6= ;g:

Clearly, the projection onto the �rst factor is a continuous surjective map

E?
L ! E?. This is Le's description of the cut up space. Let U be a C-tope

in E?. Then

UL := f(x; cx)jx 2 U; cx \ IntU 6= ;g

is a preimage of U in E?
L which is a �nite union of UL's and hence open. Let

BL be the collection of all sets obtained in this way. Then the topology of E?
L

is generated by BL since we can realize the sets U(x;cx) as (in�nite) unions.
We leave it to the reader to verify that the map B ! BL: U 7! �(U)L
is a bijection preserving the operations intersection, union, and symmetric

di�erence. Therefore C0(E
?
c ) is isomorphic to C0(E

?
L ) and E

?
c homeomorphic

to E?
L .
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3.3 A variant of the tiling groupoid for canonical pro-

jection tilings

For canonical projection tilings it is convenient to use a slightly di�erent

groupoid which is isomorphic to a reduction of the tiling groupoid. It is also

continuously similar to it. In [17] it is called the pattern groupoid.

Let � be a small vector in E which is not parallel to any of the faces of

tiles. De�ne the following injection between the vertices of a projection tiling

and its tiles: to a vertex v we associate the tile which contains in its interior

v + �. We assume that � is small enough so that the associated tile contains

this vertex. Let 
T be the subset ofMT given by those tilings which have a

vertex on 0 2 E. As for 
T one shows that 
T is a closed range-open subset

which intersects each orbit of G(MT ; E)). Thus we de�ne

GT := 
T G(MT ; E))
T

a reduction of G(MT ; E)). Now consider a new set of punctures for T , a
subset of the old one, namely give only those tiles a puncture which are

associated to vertices as described above. This choice can be made locally

since we only have to test the vertices of the tile itself to decide whether

we select its puncture to become a new one. Call 
0T the subset of tilings

of MT for which a new puncture lies on 0. By letting the new punctures

tend to the corresponding vertices one immediately these that the reduction


0
T
G(MT ; E))
0

T
is isomorphic to GT . Furthermore, 
0

T
G(MT ; E))
0

T
is the

reduction to 
0T of GT which by a remark in [10] is continuously similar to

it. A similar argument can also be found in [17].

Proposition 2 Let u 2 NS such that 0 2 E is a vertex of Tu. Let L =

Au(f0g) + u?. Then GT is isomorphic to the reduction LG(�; E+�)L which

is equal to LG(E
?
c ;�)L.

Proof: We may assume that u 2 E? otherwise replacing 
T by the set of

tilings which have a puncture on ��(u) which obviously leads to an isomor-

phic groupoid. Then Lemma 2 implies that ��1(
T ) = L + �. It follows

that the map LG(�; E + �)L ! 
T G(MT ; E)
T : (x; s+ 
) 7! (�(x); s) is an

isomorphism. The other statement is clear. q.e.d.

3.4 Discrete tiling dynamical systems for canonical pro-

jection tilings

The projection method provides us with various other dynamical systems

related to the tiling among them being also some given by a minimal action

of Zd on a Cantor-set, most useful in computing tiling cohomology.
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Let F be a subspace which is complimentary to E, i.e. F \ E = 0 and

F + E = E . We denote by �0 the projection onto F which has kernel E,

hence it is not orthogonal except if F = E?. The restriction of �0 to u+ �?

(u 2 E?\NS) extends to a homeomorphism between E?
c and Fc = F \NS

(closure in �) and may as well write � = Fc�E with product topology. Since

E \ � = f0g, �0(�) is isomorphic to � so that we have a natural minimal

action of � on F , x � 
 = x� 
?, without �xed points. The extension of this

action to Fc de�nes a minimal dynamical system (Fc;�) also without �xed

points.

Proposition 3 G(Fc;�) is continuously similar to G(�; E + �).

Proof: We apply Proposition 1 taking L = Fc (which is closed) and 
 : �!
E + � to be the extension of � : E ! E. q.e.d.

Now we decompose � �= Zd+d
?

into complementary subgroups, � = G0�
G1, where we may assume that G0

�= Zd
?

and G0
0 := �0(G0) spans F . De�ne

X := Fc=G0

so that we obtain (X;G1), a minimal dynamical system without �xed points.

Proposition 4 G(Fc;�) is continuously similar to G(X;G1).

Proof: We claim that Fc has a clopen fundamental domain Y for G0. The

lemma follows then from Proposition 1 upon using L = Y and 
 : Fc ! �,


(x) being the unique element of G0 such that x � 
(x) 2 Y . The latter is

indeed continuous since the preimage of a lattice point is a translate of the

fundamental domain and therefore open.

To assert the claim pick any � 2 L
(d?)
� such that A(�) has interior. Since

G0
0 spans F it has a compact fundamental domain Y 0. By density of �?

there is a �nite subset 0 2 J � � such that Y 1 =
S

2J(A(�) + 
?) covers

Y 0. It follows that

Y 1
c :=

[

2J

(A(�) + 
?)

is a compact open subset of Fc and Y
1
c +G0

0 = Fc. Now let G+
0 be a positive

cone of G0
0 which satis�es G0

0 = G+
0 [ (�G

+
0 ) thus implying a total order. We

claim that Y := Y 1
c n(Y

1
c + G+

0 nf0g) \ Y
1
c is a clopen fundamental domain.

Clopeness is easy to see. So let x 2 Fc. Clearly, the set of all and g 2 G0
0

such that x + g 2 Y 1
c is non-empty and �nite. The unique minimal element

g0 of this set is the only one satisfying x + g0 2 Y . q.e.d.
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Proposition 5 GT is continuously similar to G(E?
c ;�).

Proof: From Proposition 2 we know that GT is isomorphic to the reduction

of G(E?
c ;�) to a closed subset L of E?

c . We claim that there exists a choice of

decomposition � = G0+G1 with the properties as above such that L contains

a clopen fundamental domain Y for G0. The proposition then follows from

Proposition 1 upon using the same map 
 as in Proposition 4 which works

since Y is a subset of L.

It remains to prove the claim. Since �? is dense in E? we can choose d?

elements of � which generate a group H isomorphic to Zd
?

, such that H?

spans E?, and has a fundamental domain Y 0 in E? contained in �(L). Let

G0 be the group generated by H and representatives for the torsion elements

of �=H. It is a free abelian group of rank d? which contains H and G?
0

cannot be dense in E?. By the same construction as in the proof of the last

proposition we obtain from Y 0 a fundamental domain Y for G0 in E
?
c which

is contained in L since �(Y ) � Y 0. q.e.d.

Corollary 3 H(T ) �= H(�; C(Fc;Z)) �= H(G1; C(X;Z)).

A direct consequence of the above corollary is that Hk(T ) is trivial, if k

exceeds the rank of G1 which is d, the dimension of the tiling. Furthermore,

using that H0(G1; C(X;Z)) = ff 2 C(X;Z)j8g 2 G1 : g � f = fg [27],

minimality of the G1 action implies that H0(T ) = Z. Finally, if M is a

G1-module then Hd(G1;M) = Coinv(G1;M) is the group of coinvariants

[27]:

Coinv(G1;M) :=M=hfm� g �mjm 2M; g 2 G1gi:

By the corollary Hd(T ) is thus equal to C(X;Z)=E(G1) where E(G1) is

subgroup of C(X;Z) generated by the elements f � g � f , g 2 G1 (g � f(x) =
f(x � g)).

3.5 The dynamical systems (X;Zd)

We pause here to comment on the dynamical systems of the form (X;G1)

which have been de�ned in the last section. A priori they depend on the

position of F and on the choice of G0. We have seen, however, that they are

in a certain sense all equivalent, namely their groupoids are all continuously

similar and they are all reductions of one big groupoid. They are not all

isomorphic, as an investigation of the order unit of the K0-group of the C�-

algebra they de�ne shows.
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The dependence on F is inessential. �0 induces a homeomorphism be-

tween E?
u and Fc which intertwines the � action. Therefore, di�erent F 's

lead to isomorphic dynamical systems (Fc;�) and, if we keep the decomposi-

tion � = G0�G1 �xed, (X;G1). But taking F as the span of G0 one veri�es

directly that MT is the mapping torus of (X;G1) [16]. We point out one

consequence of this (which we will, however, not make use of below).

Corollary 4 The tiling cohomology of non-periodic canonical projection tilings

is isomorphic to the Czech cohomology of their continuous hull.

We do not know whether this result is true for general tilings.

If, on the other hand, � = Zd+d
?

, F = E? and G0 generated by, let's say

the �rst d? base elements ei then the dynamical system is the rope dynamical

system of [10].

Finally, we summarize the structure of (X;G1) in a commutative dia-

gram which is the discrete analogue of (4), refering the reader to [16] for the

neccessary proofs:

Fc
�
! F

� # #

X
�0

! F=G0

The maps are � (resp. G1) equivariant where the G1-action on the d?-torus

F=G0 is by rotations (constant shifts). X is a Cantor set and the surjection

�0 : X ! F=G0 is one to one for nonsingular points of X which form a dense

GÆ subset. Thus (X;G1) is an almost one to one extension of a relatively

simple system: that of rotations on a torus. But the crucial topological

information is encoded in the set on which �0 is not injective.

4 Examples

Before we proceed to give a qualitative picture of tiling cohomology we discuss

the two simplest examples which we believe show typical features. Both

are one-dimensional tilings obtained from an integer lattice. So apart from

H0(T ) which is Z we have to compute the coinvariants only.

In our �rst example we take W = Z2, w = 0 and d = 1. Here E is

speci�ed by a vector (1; �) and � has to be irrational to meat the requirement

E\Z2 = 0. Clearly, E? is generated by (��; 1) and the cut planes are simply

points, namely the points of �?(Z2) (we ignore the shift by Æ). Identifying E?

with R we have �?(Z2) = Z+�Z (after a suitable rescaling). Hence Cc(E
?
c ;Z)

is generated by indicator functions 1[a;b] (on the �D-closure of [a; b] \ NS)
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with a; b 2 Z+ �Z, a < b. How many of them are cohomologous? Clearly,

1[a;b] � 1[0;b�a] and there are unique n;m 2 Z such that b � a = n + �m.

De�ning 1[a;b] = �1[b;a] in case a > b we get

1[0;b�a] = 1[0;n] + 1[n;n+�m] � n1[0;1] +m1[0;�]

which shows that the coinvariants are Z2 provided the two generators given

by the classes of 1[0;1] and of 1[0;�] are independent. This will be shown in

Section 7. Let us mention in this context that the above tilings are very

close to being substitutional [31] (they are strictly substitutional only for �

a quadratic irrationality).

The above result shows that whatever � is, as long as it is irrational

H1(Z2; Cc(E
?
c ;Z)) = Z2. This shows that cohomology is not a very �ne

invariant to distinguish tilings. But we will see in Section 7 how to improve

this.

In our second example we take W = Z3, w = 0 and d = 1. Here we

consider only the case where E?\Z3 = 0, because the other leads essentially

to the above situation. The cut planes are lines in this case which �?(Z3)-

translates of H� = he?� i, � = 1; 2; 3 (again up to the shift by Æ). Any two H�

span E?.

We claim that the result for the cohomology di�ers drastically from the

above in that the coinvariants are in�nitely generated. Fix g1; g2 2 �?(Z3)

and let U be the rhombus (we assume it has interior) whose boundary faces

lie inH1[(H1+g1)[H2[(H2+g2). Clearly, 1U , the indicator function on the
�D-closure of U \NS, belongs to Cc(E

?
c ;Z). Let, for � = 1; 2, �1 (�2) be the

projection onto H1 (H2) which has kernel H2 (H1) and let �� = ��(�
?(Z3)).

Then for all �� 2 �� also 1U+�1+�2 2 Cc(E
?
c ;Z). How many of them are

cohomologous? Let us try to repeat the construction of the �rst example.

Clearly

1U+�1+�2 � 1U+�01+�02 if �1 + �2 � �01 � �02 2 �
?(Z3):

But since the rank of �� is at least 2 (because it is dense in H�) we see that

the number of �?(Z3) orbits of points in �1 + �2 (which is the number of

elements in (�1 + �2)=�
?(Z3)) is in�nite. Therefore the construction used

in the �rst example cannot be used here to reduce the generators to a �nite

set. This does not prove our claim but it outlines a crucial point, namely

that there are in�nitely many orbits of points which are intersections of cut

planes. From this we will conclude below that the tilings of the second

example cannot be substitutional.
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5 SuÆcient conditions for in�nitely generated

cohomology

In this section we review the main results of [17] which provide criteria under

which the cohomology of a canonical projection tiling which satis�es H3 is

in�nitely generated even when rational coeÆcients are considered. We �x a

canonical projection tiling satisfying H3 throughout this section considering

all notions relative to that tiling.

De�nition 6 We call a point x 2 S an intersection-cut-point if it is the only

point in the intersection of d? cut planes.

Let P be the set of intersection-cut-points. Clearly, P is invariant under

the action of �. We let 
(P) = P=� the orbit space. The main result of [17]

is the following theorem:

Theorem 5 [17] If 
(P) is an in�nite set then Hd(GT ;Q) is in�nitely gen-
erated.

We do not repeat its proof here, but let us explain how to obtain criteria

under which 
(P) is in�nite.
Choose d? cut planes H�, which we index now simply by � = 1; : : : ; d?,

such that their intersection is one single point. Let S 0 :=
S
�(H� + �?) and

P 0 = P \ S 0, a subset which is clearly �-invariant. Let L� :=
T
�0 6=�H�0 , a

line, and �� : E? ! L� be the (not necessarily orthogonal) projection with

kernel H�. Then the stabilizer of L�, �
� := � \ L� is certainly a subgroup

of �� = ��(�
?).

Lemma 5 If rank�� < rank�� then 
(P) is an in�nite set.

Proof: Let x 2 L� \P
0. Then, by construction, x+�� 2 P

0, too. The latter

set may be decomposed in its ��-orbits and if rank�� < rank�� there are

in�nitely many. On the other hand, intersection-cut-points of L� \P
0 which

lie in di�erent ��-orbits lie also in di�erent �-orbits. q.e.d.

This gives a criterium which is perhaps most easily checked and at the

same time shows that 
(P) being an in�nite set is a generic feature.

Corollary 5 If rank�� < 2 then 
(P) is an in�nite set.

Proof: Denseness of �? implies that of ��. Hence rank�� � 2. q.e.d.

Lemma 6 If d? > d then 
(P) is an in�nite set.
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Proof: We showed above rank�� � 2. In particular,
P

� rank�� � 2d?. The

statement of the lemma follows therefore from the observation that 
(P) is
an in�nite set if (

L
� ��)=�

? is in�nite and the latter is the case wheneverP
� rank�� > d+ d?. q.e.d.

The claim of our second example above follows from this lemma. Finally,

with a little more thorough analysis [17] one can show that if 
(P) is a �nite
set then d

d?
must be an integer.

5.1 Comparison with substitutional tilings

Apart from those tilings which arrise from the canonical projection method

there is another very important class of tilings for which the cohomology

can be computed. It is the class of of �nite type tilings which allow for a

locally invertible (primitive) substitution. We brie
y describe these tilings

and show that their group of coinvariants with rational coeÆcients is always

�nitely generated. The result of the last section then implies that generi-

cally canonical projection tilings which satisfy H3 do not allow for a locally

invertible substitution.

A substitution of a tiling T (the termini in
ation and de
ation are also

used in this context) is roughly speaking a rule according to which each tile

of T gets substituted with a whole collection of tiles (a patch) such that

these patches �t together (without overlap or gaps) to form a new tiling

which is locally isomorphic to T . Furthermore, the translational congruence

class of the patch which substitutes a tile depends only on the translational

congruence class of that tile and the relative position between two patches

only on the relative position between the two tiles which they substitute.

Therefore, the rule is speci�ed if given for any translational congruence class

of tiles (of which there are only �nitely many) and for all possible relative

positions two neighbouring tiles can have (which are also only �nitely many).

There are other conditions a substitution has to satisfy for it to be useful

in computing cohomology, in particular that there is an inverse procedure

which is also locally de�ned which means that it can be formulated as a rule

depending on translational congruence classes of patches. But rather then

introducing the necessary terminology to formulate these conditions in detail

we present one of the major examples, which is by the way also a canonical

projection method tiling,

26



Fig. 1 Substitution of the octagonal tiling (triangle version).

and refer the reader to [9] and [10] where the theories for the computation

of cohomology are developed.

Of the two approaches to compute the cohomology of substitution tilings

that of [9] is based on the continuous dynamical system (MT ;Rd) whereas
that of [10] is based on the tiling groupoid GT . We consider here the latter.

The essential observation of this approach is that a primitive invertible sub-

stitution gives rise to a homeomorphism � (the Robinson map) between 
T
and the space of paths P� on an oriented graph � in which for any two ver-

tices exists at least one edge which starts at the �rst and ends at the second

vertex. In the simpler case where the substitution forces its border (see [15])

the connectivity matrix � of � is a power of the substitution matrix. A path

on an oriented graph is a sequence of edges which �t together in the sense

that the n+ 1th one starts at the vertex where the nth one ends. A natural

principal topological groupoid G� comes with path spaces, namely the one

given by tail equivalence: two paths are tail equivalent if they agree up to

�nitely many edges. The tiling groupoid GT , which is always principal for

such substitution tilings, is via � identi�ed with a subset of P� � P� and

hence can be compared with G�, in fact, G� is a subset of GT (but neither an

open nor a closed one). The main result of that construction is that the group

of coinvariants with integer coeÆcients3 of GT is a quotient of the group of

coinvariants of G� and the latter is easy to obtain. It is the direct limit of

the system ZN
�
! ZN

�
! � � � where N is the number of vertices of � (which

in the border forcing case coincides with the translational tile-classes). The

3It should be noted that the group of coinvariants was de�ned in [10] without refering
to cocycle cohomology but it coincides with Hd(T ) as de�ned in this article once a relation
to group cohomology can be established as e.g. is the case for projection method tilings
(in the language of [10] this means that the tiling reduces to a Zd-decoration). This is also
the case when rational coeÆcients are considered.
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direct limit of the above system need not to be �nitely generated but when

rational coeÆcients are considered instead of integer ones then the direct

limit becomes that of the system QN
�
! QN

�
! � � � which equals QR where

R is the rank of �n for large n (rank�n stabilizes). Hence, the group of coin-

variants of GT with rational coeÆcients is �nitely generated. To summarize,

when rationalized, the degree d cohomology group of a substitution tiling

which is a the same time a canonical projection tiling is �nitely generated.

In particular, a canonical projection tiling which satis�es H3 is generically

not substitutional.

It is worth comparing the above result with a similar one due to Pleasants

who uses the theory of algebraic number �elds [32]. In the context of projec-

tion method tilings there is an approach to the construction of substitutions

which is based on the torus-parametrization. In fact, it is most powerful not

when tilings are considered but when projection point patterns are looked

at (the latter are closely related to tilings, see [16]). The projection point

pattern given by the data (�; E; A), a lattice � � E , a subspace E, and a

subset A of E?, called the acceptance domain which is subject to rather weak

conditions, is the point set PA := �((E + A) \ �). The canonical choice for

A corresponds to one where PA = f�(�)j� 2 ~P 0g with ~P 0 the set of vertices

(0-cells) of the lift of a canonical projection tiling T (constructed from the

same data with constant weight function). In that case, A is a polytope.

But in [32] A is allowed to be more general. In that case, what comes close

to being a substitution after rescaling and is called an in
ation is de�ned to

be a linear map [32] (or even aÆne linear [30]) which has E as one of its

eigenspaces (with eigenvalue of modulus greater than 1), preserves �, and is

contracting in a space F complementary to E. The question under which

conditions such a map de�nes a local in
ation in the same sense as above,

i.e. an in
ation which can be de�ned as a map on translational congruence

classes, leads to a criterion on the acceptance zone A.

The method of Pleasants [32] is designed to construct projection point

patterns with given (�nite) symmetry group (acting by isometries). It is

based on the result that every representation of a �nite isometry group acting

on Rd can be written as a matrix representation where the matrices take

their entries in a real algebraic number �eld K of (�nite) degree p. This

number �eld K is then used to construct a decomposition Rdp = E � E?

where dimE = d, and a lattice � so that the point pattern with the desired

symmetry is the projection point pattern constructed from data (�; E) and

a (general) acceptance domain in E?. Details of the construction can be

found in [32]. In that article Pleasants comes to the conclusion that local

in
ations always exist but, for p > 2, never for polytopal acceptance domain
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(so in particular not for canonical one) whereas this obstruction is absent for

p = 2. Note that dimE? � dimE in his construction, equality holding only

for p = 2. His result, compared with Lemma 6, is therefore in agreement

with ours.

6 Explicit formulae for d
? � 2

The purpose of the present section is to present quantitative results for canon-

ical projection tilings of codimension smaller than or equal to 2 where we

continue to assume H3. The restriction to small codimension is a matter

of simpli�cation. In principle, the calculations can be carried out for any

codimension, however they become quite complicated. Algebraic topology

provides a tool to organize such calculations, namely spectral sequences, and

in a forthcoming article we shall exploit their full power [18]. In this article

we can avoid them by restricting to small codimension. For simplicity we

rule out the case in which 
(P) is in�nite, in which case we already saw

in the last section that the cohomology is in�nitely generated. In fact, the

results below show in particular that �nite 
(P) implies �nitely generated

cohomology (d? � 2).

The calculations rely on the description of the topology of E?
c by cut

planes and we recall here the general set up. C is a countable collection of

cut planes, in fact, �nitely many �-orbits and we index the orbits by I. We

know that the normals of the cut planes span F and that �? lies dense in it.

We now simplify the notation in writing � in place of �?.

The task is to compute the cohomology of the group � with values in

C(E?
c ;Z) and the strategy is a follows. We recognize Cc(E

?
c ;Z), the com-

pactly supported functions, as an �-module in a (�nite) exact sequence of

�-modules and use the functorial properties of the homology functor (we

switch from cohomology to homology), in particular that it turns short exact

sequences into long exact ones, to perform the calculation. The point is that

the other modules of the exact sequence are e�ectively lower dimensional so

that one can proceed recursively.

6.1 Group homology

It turns out to be more convenient to use group homology in place of group

cohomology. Using that E? has d? non-compact independent directions and

Poincar�e duality one proves [17]:

Hk(�; C(E?
c ;Z))

�= Hd�k(�; Cc(E
?
c ;Z)):
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As a general reference to group homology we refer to [27]. Group homology

is de�ned using any (projective) resolution of Z by modules of the group,

i.e. Z-modules which carry an action of the group. We choose here the

following free resolution. Let fe1; � � � ; eNg be a base of � �= ZN. The exterior

ring over �, ��, is the free graded Z-module �� =
LN

k=0 �k�, �k� having

base fei1 ^ � � � ^ eik j1 � ij < ij+1 � Ng with antisymmetric multiplication

(denoted by ^), i.e. the only relations are ei ^ ej = �ej ^ ei. � acts on �k�

trivially. We may regard the � module Z� (the free Z-module with base �

and action of � by shift of the base) as integer valued Laurent polynomials in

N variables ft1; � � � ; tNg. Addition in Z� then corresponds to multiplication

of Laurent-polynomials. Now the resolution reads

0! �N�
 Z�
@
! �N�1�
 Z�

@
! � � ��0�
 Z�

�
! Z! 0;

where @ is the unique Z�-linear derivation of degree 1 determined by @(ei) =

(ti�1) and �(ti) = 1. Now, given a �-moduleM , the homology of the group

� with coeÆcient module M , H�(�;M), is de�ned as the homology of the

complex

0! �N�
 Z�
� M
@
1
! � � ��0�
 Z�
� M ! 0

where, for two �-modulesM1, M2, M1
�M2 is the quotient of the algebraic

tensor product space (over Z) M1 
 M2 by the relations 
 � m1 
 m2 =

m1 
 
 �m2. In particular, Hk(�;Z�) is trivial for all k > 0 and equal to Z

for k = 0.

Suppose that we can split � = G � H and let us compute H�(�;ZH)

where ZH is the free Z-module generated by H which becomes an �-module

under the action of � given by (g � h) � h0 = h+ h0. Then we can identify

��
 Z�
� ZH �=
M
i+j=k

�iG
 �jH 
 ZH (5)

and under this identi�cation @ 
 1 becomes (�1)deg 
 @0 where @0 is the

boundary operator for the homology of H. It follows that

Hk(�;ZH) �=
M
i+j=k

�iG
Hj(H;ZH) = �kG:

As a special case, Hk(�;Z) = �k� �= Z(
N
k ). Now let � : ZH ! Z be the

sum of the coeÆcients, i.e. �[h] = 1 for all h 2 H. We shall later need the

following lemma:

Lemma 7 Under the identi�cations H(�;ZH) �= �G and H(�;Z) �= ��

the induced map �k : Hk(�;ZH)! Hk(�;Z) becomes the embedding �kG ,!
�k�.
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Proof: Using the decomposition (5) it is easy to see that the induced map

�k :
L

i+j=k �iG 
 Hj(H;ZH) !
L

i+j=k �iG 
 Hj(H;Z) preserves the

bidegree and must be the identity on the �rst factors of the direct summands.

Since Hk(H;ZH) is trivial whenever k 6= 0 and one dimensional for k = 0,

�k can be determined by evaluating �0 on the generator of H0(H;ZH) and

one readily checks that this gives a generator of H0(H;Z) as well. q.e.d.

The basic tool in the calculations below is the following. Whenever we

have a short exact sequence of ��modules

0! A
'
! B

 
! C ! 0 (6)

we get a long exact sequence of homology groups

� � �
 k+1
! Hk+1(�; C)


k+1
! Hk(�; A)

'k! Hk(�; B)
 k! Hk(�; C) � � � : (7)

The maps 'k and  k are the induced homomorphisms and the 
k are the

connecting homomorphisms. For details see [27].

6.2 A CW-like complex

Let C 0 be an arbitrary countable collection of aÆne hyperplanes of F 0, a linear

space, and de�ne C 0-topes as before: compact polytopes which are the closure

of their interior and whose boundary faces belong to hyperplanes from C 0.
For n at most the dimension of F 0 let Cn

C0 be the Z-module generated by the

n-dimensional faces of convex C 0-topes satisfying the relations

[U1] + [U2] = [U1 [ U2]

for any two faces U1; U2, for which U1[U2 is as well a convex face and U1\U2

has no interior (i.e. nonzero codimension in U1). (The above relations then

imply [U1] + [U2] = [U1 [ U2] + [U1 \ U2] if U1 \ U2 has interior.) If we take

C 0 = C, our collection of cut planes, then Cn := Cn
C carries an obvious �-

action, namely 
 � [U ] = [U + 
]. It is therefore an �-module. As �-module

Cd? is isomorphic to Cc(E
?
c ;Z), the isomorphism being given by assigning

to [U ] the indicator function on the closure of U \ NS (which is clopen).

Moreover, C0 is a free Z-module, its above described base is in one to one

correspondence to the intersection-cut-points P.

Proposition 6 There exist �-equivariant module maps Æ and � such that

0! Cd? Æ
! Cd?�1 Æ

! � � �C0 �
! Z! 0; (8)

is an exact sequence of �-modules and �[U ] = 1 for all vertices U of C-topes.
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Proof: For a subset R of � (which we identi�ed with �? � E?) let CR :=

fHi+rjr 2 R; i 2 Ig and SR = fx 2 HjH 2 CRg. Let R be the set of subsets

R � � such that all connected components of E?nSR are bounded and have

interior. R is closed under union and hence forms an upper directed system

under inclusion. For any R 2 R, the CR-topes de�ne a regular polytopal

CW-complex

0! Cd?

CR

ÆR! Cd?�1
CR

ÆR! � � �C0
CR
! 0; (9)

with boundary operators ÆR depending on the choices of orientations for the

n-cells (n > 0) [33]. Moreover, this complex is acyclic (E? is contractible),

i.e. upon replacing C0
CR
! 0 by C0

CR

�R! Z! 0 where �R[U ] = 1, (9) becomes

an exact sequence. Let us constrain the orientation of the n-cells in the

following way: For each n < d? there are �nitely many subsets J � I

such that dim
T
i2J Hi = n and J is maximal. Each n-cell belongs to a

subspace parallel to one of the
T
i2J Hi and we choose its orientation such

that it depends only on the corresponding J (i.e. we choose an orientation

for
T
i2J Hi and then the cell inherits it as a subset). By the same principle,

all d?-cells are supposed to have the same orientation. Then the cochains

and boundary operators ÆR share two crucial properties: �rst, if R � R0 for

R;R0 2 R, then we may identify Cn
CR

with a submodule of Cn
CR0

and under

this identi�cation ÆR(x) = ÆR0(x) for all x 2 Cn
CR
, and second, if U and

U + x are CR-topes then ÆR[U + x] = ÆR[U ] + x. The �rst property implies

that the directed system R gives rise to a directed system of acyclic cochain

complexes, and hence its direct limit is an acyclic complex, and the second

implies, together with the fact that for all 
 2 � and R 2 R also R+ 
 2 R,
that this complex becomes a complex of �-modules. The statement now

follows since Cn
C is the direct limit of Cn

CR
for all n. q.e.d.

6.3 Solutions for d? = 1; 2

We now calculate the homology groups Hk(�; C
d?) for d? = 1; 2.

Lemma 8 Given the data of a canonical projection tiling

Hk(�; C
0) =

�
0 for k > 0;

ZL for k = 0;
(10)

where L is the number of �-orbits of vertices of C-topes, i.e. L = j
(P)j.

Proof: Since � acts �xpoint-freely we have ��
 Z�
� C
0 �= ��
 Z�
 ZL

which directly implies the result. q.e.d.
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Theorem 6 If d? = 1 then

Hd�k(T ) = Hk(�; C
1) =

(
Z(

N

k+1) for k > 0;

ZN+L�1 for k = 0:

Proof: In case d? = 1 (8) is a short exact sequence

0! C1 Æ
! C0 �

! Z! 0 (11)

and we use the resulting long sequence of homology groups for the computa-

tion. By the last lemma, apart from the lowest degree every third homology

group in that sequence is trivial so that Hk(�; C
1) �= Hk+1(�;Z) for k > 0.

The remaining part of the sequence has the form 0 ! ZN ! H0(�; C
1) !

ZL ! Z! 0 and hence H0(�; C
1) has no torsion and equals ZN+L�1. q.e.d.

Note that we did not need to know explicitly the morphisms involved.

Theorem 7 Let d? = 2. Then Hd�k(T ) �= Hk(�; C
2) and

Hk(�; C
2) �=

(
Z(

N
k+2)�rk�rk+1+

P
�2I(

��
k+1) for k > 0;

Z1�N+(N2 )�L�r1+
P

�2I(��+l��1) for k = 0;
(12)

where �� is the rank of �� (the stabilizer of H�), l� the number of ��-orbits

of intersection-cut-points in H�, and rk the rank of the module generated by

the submodules �k+1�
� � �k+1� for all � 2 I.

Proof: Inserting C0
0 := Æ(C1) we break the exact sequence (8) into two short

ones

0! C2 Æ
! C1 Æ

! C0 �
! Z! 0:

& %
C0
0

% &
0 0

0! C0
0 ,! C0 ! Z! 0 can be treated as in the case d? = 1. Hence

Hk(�; C
0
0)
�=

(
Z(

N

k+1) for k > 0;

ZN+L�1 for k = 0:
(13)

Furthermore, C1 is a direct sum of �-modules, namely

C1 =
M
�2I

C1
C� ; (14)
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C� = fH�+
j
 2 �g. As before we denote by �� the stabiliser of H� and we

let �̂� be a complimentary subgroup, i.e. � = ��� �̂� (�=�� has no torsion).

Now let ~C� := fH \ H�jH 2 C�; codimH \ H� = 1g, a set of points in H�

which is invariant under ��, and abbreviate Cn
~C�

= Cn
� . It is naturally a

��-module. Then Cn
C�
�= Cn

�
Z�̂
� and the action of ��� �̂� is such that the

�rst (second) summand acts only on the �rst (second) factor. In particular,

Cn
C�

� Z� �= Cn

� 
�� Z�̂
 Z�̂� which implies

H�(�; C
1
C�
) �= H�(�

�; C1
�): (15)

Restricting the boundary maps Æ and � to Cn
� we get a short exact sequence

0! C1
�

Æ�! C0
�

��! Z! 0: (16)

As in Theorem 6 and combined with (14,15) we obtain

Hk(�; C
1) �=

(
Z
P

�(
��
k+1) for k > 0;

Z
P

�(��+l��1) for k = 0:
(17)

with �� and l� as in the statement. Note that the l� are all �nite, since we

required L to be �nite. Eqns. (13,17) give us part of the information needed

to determine H�(�; C
2) from the exact sequence

0! C2 Æ
! C1 Æ

! C0
0 ! 0 (18)

but we have to determine explicitly one morphism, because we have no

longer enough trivial groups in the resulting long exact sequence of homology

groups. We shall therefore determine the induced morphism

�� := Æ� : H�(�; C
1)! H�(�; C

0
0): (19)

For that look at the following commuting diagram

0! C1
� 
 Z�̂�

Æ�
1
! C0

� 
 Z�̂�
��
1
! Z�̂� ! 0

# Æ� 
 1 # # ��

0! C0
0 ,! C0 �

! Z ! 0

where the middle verticle arrow is the inclusion, the right vertical arrow the

sum of the coeÆcients, ��[
] = 1, and the left vertical arrow the map of inter-

est. In fact, �k is the direct sum over all � of (Æ�
 1)k : Hk(�; C
1
� 
 Z�̂�)!

Hk(�; C
0
0). The above commutative diagram gives rise to two long exact

sequences of homology groups together with vertical maps, all commuting,
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(Æ� 
 1)� being one of them. Now we use that for k > 0, Hk(�; C
0
�
Z�̂�) =

Hk(�; C
0) = 0 so that we can express (Æ� 
 1)� through ��� . In fact, un-

der the identi�cations Hk(�; C
0
� 
 Z�̂�) �= Hk+1(�;Z�̂

�) and Hk(�; C
0
0)
�=

Hk+1(�;Z), which are valid for k > 0, we get

(Æ� 
 1)k = ��k+1:

By Lemma 7 the map ��k becomes the embedding �k�
� ,! �k� under the

above identi�cations. For k > 0 therefore, the rank of �k is equal to the rank

of the span of the submodules �k+1�
�, � 2 I, in �k+1�. This is rk. The long

exact sequence corresponding to (18) implies

Hk(�; C
2) �= Hk+1(�; C

0
0)=im�k+1 �Hk(�; C

1) \ ker �k:

Since, for k > 0, dimHk(�; C
1) \ ker �k = dimHk(�; C

1) � rk we get the

result of the theorem (the case k = 0 needs a little extra care), provided the

homology groups are torsion free. That this is the case we know from [12].

q.e.d.

6.4 Example: octagonal tilings

We provide here one example, the octagonal tilings. A whole list of codimen-

sion 2 examples will be presented elsewhere [34].

The (undecorated) octagonal tilings are two dimensional tilings which

may be constructed from the data (Z4; 0; E), the four dimensional integer

lattice Z4 (with standard basis feigi=1;:::;4) and the two dimensional invariant

subspace of the eightfold symmetry C8: ei 7! ei+1 for i = 1; 2; 3 and e4 7! �e1
on which C8 acts by rotation around �

4
[35, 36]. It consists of squares and

450-rhombi all edges having equal length. E? is, of course, also an invariant

subspace of the eightfold symmetry and the cut-planes (which are lines) are

well known, they are the tangents to the boundary faces of the projection of

the unit cube into E? which is a regular octagon. They are translates under

�?(Z4) of the four lines spanned by e?i which form an orbit under C8 (we

may ignore the shift by Æ). From these lines we get all our information, the

numbers L, �i, li, I = f1; : : : ; 4g, and r1; r2; r3 (higher rk are unecessary since
d = 2). Usually it is not so easy to determine L but in our case it is easy

to see that apart from the orbit of intersection-cut-point at 0 there only two

other ones: the orbit of 1p
2
(e?1 + e?3 ) and that of 1p

2
(e?2 + e?4 ). Hence L = 3.

Clearly, �1 is spanned by e?1 and e?2 � e?4 . Hence �1 = 2 and l1 = 2 which

carries over to all i by symmetry. Finally, r1 = 3 and rk = 0 for k � 2 as
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�i = 2. Inserting the numbers yields

H0(T ) = Z

H1(T ) = Z5

H2(T ) = Z9:

This result is in agreement with a calculation we made using Anderson and

Putnam's method [9] (the octagonal tiling is substitutional, its substitution

is given in Fig. 1).

7 The non-commutative approach

This section is included to connect the cohomology of the tiling with its non-

commutative topological invariants. Starting point of the non-commutative

approach is the observation that, when translationally congruent tilings are

identi�ed, one is forced to consider non-Hausdor� spaces. In fact, for a (com-

pletely) non-periodic tiling T , no two points in MT =Rd can be separated

by open neighbourhoods (in the quotient topology). Connes non commu-

tative geometry was motivated from the desire to analyse such spaces. In

the non-commutative topological approach [37] one studies the properties

of the (non-commutative) C�-algebra associated with the dynamical system

(MT ;Rd). This algebra is the crossed product algebra of C(MT ), the alge-
bra of continuous functions over MT , with the group Rd . We denote it by

C(MT )� Rd . Topologically, this algebra may be described by its K-theory

[38, 39]. It turns out that the K-groups are closely related to the Czech-

cohomology of MT . K-groups, however, contain additional information in

form of a natural order structure on the K0-group and this is the advantage

of the non-commutative approach. And we have seen in the �rst example

that cohomology without extra structure is not a very �ne invariant.

Equally well from the mathematical point of view, but from a physically

motivated point of view less complicated, is to work with the formulation

of the quotient MT =Rd as the space of orbits of the tiling groupoid GT
(or of GT ). The C�-algebra whose K-theory provides the non-commutative

topological invariant is then the corresponding groupoid-C�-algebra [24, 15].

The importance of this groupoid C�-algebra for physical systems lies in the

fact that it provides an abstract de�nition of the algebra of observables [15,

10] for particles moving in the tiling. A topological invariant of it governs

the gap labelling: the scaled ordered K0-group and its image under a tracial

state.

If T is a projection method tiling GT (and GT ) are equivalent in the sense
of Muhly et al. to the transformation groupoid G(X;G1). This is proven di-
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rectly in [16] but it also follows from our analysis of Sect. 3.4 where similarity

of the two groupoids has been shown. By application of the theory of Muhly

etal. [25] we obtain:

Theorem 8 The K-groups of C(MT )�Rd and of the groupoid-C�-algebras

of GT and of G(X;G1) are isomorphic the isomorphism preserving the order

on the K0-group.

The isomorphism between the �rst two K-groups was already observed in

[9]. Most important, in the present case there is a relation between K-theory

and cohomology [12]:

Theorem 9 Let (X;Zd) be a Zd-dynamical system where X is homeomor-

phic to the Cantor set. Then

Ki(C(X)� Zd) �=
M
j

Hd�i+2j(Zd; C(X;Z))

as unordered groups.

Thus, in view of Corollary 3:

Corollary 6 For canonical projection method tilings

Ki(C
�(GT )) �=

M
j

Hd�i+2j(T )

as unordered groups.

It is an interesting question whether this result is true for general �nite type

tilings. As already mentioned, the isomorphism of the Corollary neglects a

lot of information contained in the K-groups, namely order on K0. One can

cure for this at least partly by looking at the order on Hd(T ), the group of

coinvariants, which is induced by the unique invariant probability measure

on 
T (the dynamical system (MT ;Rd) is uniquely ergodic). That measure

de�nes a group homomorphism Cc(E
?
c ;Z)! R which by invariance induces

a homomorphism � : Hd(T ) ! R. The subset ��1(R>0) is closed under

addition and de�nes a positive cone of Hd(T ) which sits inside the positive

cone of K0(C
�(GT ) and contains already a good portion of the information,

including that needed for the standard gap-labelling. In fact, for d = 1,

where H1(T ) = K0(C
�(GT )), this order is precisely the order de�ned on the

K0-group in the standard way [38].

With this information at hand let us come back to our �rst example,

W = Z2, w = 0, d = 1, and E speci�ed by an irrational number �. To keep
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track of this dependence we write T (�) for a canonical projection method

tiling obtained from these data. The unique invariant probabibity measure

on 
T (�) is the Lebesgue measure on E? normalized in such the way that

�?(
) (the projection of the unit cell) has measure 1. From this we see that

with [1[a;b]] denoting the coinvariant class of 1[a;b],

�([1[a;b]]) =
b� a

1 + �
:

In particular, the rank of �(H1(T (�))) is 2 and hence H1(T (�)) �= Z2. Now,

�(n[1[0;1]] +m[1[0;�]]) > 0, for n;m 2 Z, whenever (n;m) has positive scalar

product with (1; �) and hence belongs to the upper right half space de�ned

by E? in R2 . It follows that K0(GT
(�)) is order isomorphic to K0(GT

(�0))

whenever there exists a matrix M 2 GL(2;Z) such that � 0 = M11�+M12

M21�+M22
.

Note that in the above cases � is injective. We remark without further

explanation that the order unit improves the invariant even more. K0(GT
(�))

and K0(GT
(�0)) are order isomorphic with isomorphism preserving the order

unit whenever � 0 = ��.
Coming back to our second example, W = Z3, w = 0, d = 1, again the

unique invariant probabibity measure on 
T is the Lebesgues measure on E?

normalized in such the way that �?(
) has measure 1. Thus all the elements

[1U+�1+�2]� [1U ] are mapped to 0 by � . In fact, one can show that the image

of � is �nitely generated so that in this case all but �nitely many generators

of the K0-group are neither positive nor negative, i.e. they are in�nitesimal.

Acknowledgements. The third author thanks F. G�ahler for helpful discus-

sions. The collaboration of the �rst two authors was initiated by the William

Gordon Seggie Brown Fellowship at The University of Edinburgh, Scotland,

and is now supported by a Collaborative Travel Grant from the British Coun-

cil and the Research Council of Norway with the generous assistance of The

University of Leicester, England, and the EU Network \Non-commutative

Geometry" at NTNU Trondheim, Norway. The collaboration of the �rst

and third authors was supported by the Sonderforschungsbereich 288, \Dif-

ferentialgeometrie und Quantenphysik" at TU Berlin, Germany, and by the

EU Network and NTNU Trondheim. The �rst author is supported while

at NTNU Trondheim, as a post-doctoral fellow of the EU Network and the

third author is supported by the Sfb288 at TU Berlin. All three authors are

most grateful for the �nancial help received from these various sources.

38



References

[1] P.J. Steinhardt and S. Ostlund. The Physics of Quasicrystals. World

Scienti�c, 1987.

[2] C. Janot and R. Mosseri. Proc. 5th Int. Conf. on Quasicrystals. World

Scienti�c, 1995.

[3] F. Axel and D. Gratias. Behond Quasicrystals. Springer, 1995.

[4] R.V. Moody. The Mathematics of Long Range Aperiodic Order. Kluwer,

1997.

[5] M. Duneau and A. Katz. Quasiperiodic patterns and icosahedral sym-

metry. J. Physique, 47:181{196, 1986.

[6] C. Oguey, A. Katz, and M. Duneau. A geometrical approach to

quasiperiodic tilings. Commun. Math. Phys., 118:99{118, 1988.

[7] N.G. de Bruijn. Algebraic theory of Penrose's nonperiodic tilings of the

plane. Kon. Nederl. Akad. Wetensch. Proc. Ser., A 84:38{66, 1981.

[8] P. Kramer and M. Schlottmann. Dualisation of Voronoi domains and

Klotz construction: a general method for the generation of quasiperiodic

tilings. J. Phys., A 22:L1097, 1989.

[9] J.E. Anderson and I.F. Putnam. Topological invariants for substitution

tilings and their associated C�-algebras. To appear in Ergod. Th. and

Dynam. Sys., 1995.

[10] J. Kellendonk. The local structure of tilings and their integer group of

coinvariants. Commun. Math. Phys., 187(1):115{157, 1997.

[11] T.T.Q. Le. Local rules for quasiperiodic tilings. In R.V. Moody, edi-

tor, The Mathematics of Long Range Aperiodic Order, pages 331{366.

Kluwer, 1997.

[12] A.H. Forrest and J. Hunton. The cohomology and K-theory of commut-

ing homeomorphisms of the Cantor set. Ergod. Th. and Dynam. Sys.,

19:611{625, 1999.

[13] J. Bellissard. Gap labelling theorems for Schr�odinger's operators. In

M. Waldschmidt, P. Moussa, J.M. Luck, and C. Itzykson, editors, From

Number Theory to Physics. 538-630, Springer-Verlag, 1992.

39



[14] J. Bellissard, A. Bovier, and J.M. Ghez. Gap labelling theorems for one

dimensional discrete Schr�odinger operators. Rev. Math. Phys., 4:1{38,

1992.

[15] J. Kellendonk. Non commutative geometry of tilings and gap labelling.

Rev. Math. Phys., 7:1133{1180, 1995.

[16] A.H. Forrest, J. Hunton, and J. Kellendonk. Projection quasicrystals I:

Toral rotations. SFB-preprint No. 340, 1998.

[17] A.H. Forrest, J. Hunton, and J. Kellendonk. Projection quasicrystals II:

Versus substitutions. preprint

[18] A.H. Forrest, J.R. Hunton, and J. Kellendonk. Projection quasicrystals

III: Cohomology. in preparation

[19] M. Schlottmann. Periodic and quasi-periodic Laguerre tilings. Int. J.

Mod. Phys. B, 7:1351{1363, 1993.

[20] J. Bellissard, E. Contensou, and A. Legrand. K-th�eorie des quasi-

cristeaux, image par la trace: le cas du r�eseau octogonal. C. R. Acad.

Sci. Paris, S�erie I, 326:197{200, 1998.

[21] D. J. Rudolph. Markov tilings of Rn and representations of Rn actions.

Contemporary Mathematics, 94:271{290, 1989.

[22] C. Radin and M. Wol�. Space tilings and local isomorphism. Geom.

Ded., 42:355{360, 1992.

[23] J. Kellendonk. Topological equivalence of tilings. J. Math. Phys.,

38(4):1823{1842, 1997.

[24] J. Renault. A Groupoid approach to C�-Algebras. Lecture Notes in

Math. 793. Springer-Verlag, 1980.

[25] P.S. Muhly, J.N. Renault, and D.P. Williams. Equivalence and isomor-

phism for groupoid C�-algebras. J. Operator Theory, 17:3{22, 1987.

[26] J. Renault. private communication.

[27] K.S. Brown. Cohomology of Groups. Springer-Verlag, 1982.

[28] M. Baake, D. Joseph, P. Kramer, and M. Schlottmann. Root lattices

and quasicrystals. J. Phys. A: Math. Gen., 23:L1037{L1041, 1990.

40



[29] F. G�ahler and P. Stamp
i. The dualisation method revisited: dualisation

of product Laguerre complexes as a unifying framework. Int. J. Mod.

Phys. B, 7:1333{1349, 1993.

[30] M. Baake, J. Hermisson, and P. Pleasants. The torus parametrization

of quasiperiodic LI-classes. J. Phys., A 30:3029{3056, 1997.

[31] J.A. Mingo. C�-algebras associated with one-dimensional almost peri-

odic tilings. Commun. Math. Phys., 183:307{337, 1997.

[32] P. A.B. Pleasants. The construction of quasicrystals with arbitrary sym-

metry group. In C. Janot and R. Mosseri, editors, Proc. 5th Int. Conf.

on Quasicrystals, pages 22{30. World Scienti�c, 1995.

[33] W.S. Massey. A Basic Couse in Algebraic Topology. Springer-Verlag,

1991.

[34] F. G�ahler and J. Kellendonk. in preparation.

[35] F.P.M. Beenker. Algebraic theory of non-periodic tilings of the plane

by two simple building blocks: a square and a rhombus. Thesis, Techn.

Univ. Eindhoven, TH-report 82-WSK-04, 1982.

[36] J.E.S. Socolar. Simple octagonal and dodecagonal quasicrystals. Phys.

Rev. B, 39(15):10519{10551, 1989.

[37] A. Connes. Non Commutative Geometry. Academic Press, 1994.

[38] B. Blackadar. K-Theory for Operator Algebras. MSRI Publications 5.

Springer-Verlag, 1986.

[39] Wegge-Olson. K-theory of C�-algebras. A friendly approach. Oxford

University Press, 1993.

41


