
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Laboratory for Particle Physics

(IAS)

Integrating the Latest Technologies into a Java Process Control MMI

F. Momal

The LHC/IAS (equipment control) Group is developing supervisory systems by means of industrial SCADA
packages. For the past four years, we have provided Web remote access to the data coming from our supervisory and
control systems. Combining our findings, an architecture and a strategy have been set-up for a generic Java interface
which offers a remote and unique access to all kinds of control data. Using the object-oriented technology, the
architecture dissociates the data access layer from the presentation one. Thus, the interface may be used to access
different types of data. The data are stored in the interface together with a set of related information (acquisition date,
unit, etc.). The graphical interface is based on components which may be stored independently and which can be
accessed on demand. Attention has been given to easing the integration of commercial components. To help
non-specialists in creating components, a graphical scripting language has been developed.

CERN LHC/99-6

PCAPAC'99 - 12-15 January 1999 - Tsukuba, Japan

Geneva, Switzerland

10 November 1999

Divisional Report

Administrative Secretariat
LHC Division
CERN
CH - 1211 Geneva 23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25271454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Integrating the latest Technologies into a Java Process Control MMI

F.Momal, CERN, Geneva, Switzerland

Abstract

The LHC/IAS (equipment control) Group is developing
supervisory systems by means of industrial SCADA
packages. For the past four years, we have provided Web
remote access to the data coming from our supervisory
and control systems. Combining our findings, an
architecture and a strategy have been set-up for a generic
Java interface which offers a remote and unique access to
all kinds of control data. Using the object-oriented
technology, the architecture dissociates the data access
layer from the presentation one. Thus, the interface may
be used to access different types of data. The data are
stored in the interface together with a set of related
information (acquisition date, unit, etc.). The graphical
interface is based on components which may be stored
independently and which can be accessed on demand.
Attention has been given to easing the integration of
commercial components. To help non-specialists in
creating components, a graphical scripting language has
been developed.

1 TOWARDS A NEW INTERFACE

Process Control Man Machine Interfaces (PCMMI)
whether they be commercial SCADA (Supervisory
Control and Data Acquisition) packages or a home-made
development, do not often stand the comparison with
standard office software in terms of user-friendliness and
programming facilities. We see generally two kinds of
programs: either graphical interface generators without a
strong model for fetching or storing the process variables
or complete SCADA systems which are hard to extend.
 It seems a good time, nowadays that everyone is testing
the usefulness of Java in this area, to try to make Java
supervisory and control packages evolve with the latest
trends in software technologies.

Making a Modern MMI

We would not accept on our office computer what we
still see on control operator consoles. Why can we not cut
and paste a dial or a led from one SCADA window to
another? Why can we not save a user configuration by
clicking on the floppy icon of a toolbar? The first
examples of Java interfaces to control systems are
contained in fixed applets without even the possibility to
have two windows open at the same time.
Microsoft has popularised the notion of dividing an
application between a document and a view. The
document holds everything linked to the intrinsic
meaning of the data whether the view contains the
information on how the data is to be seen; a PCMMI has

exactly the same construction. On one side there is the
process variable with its value and some related data and
on the other side, the graphical representation of the
process variable. While the handling of process variables
has specific requirements (see “real-time database”
below), all the evolutions in terms of user-friendliness
and interactivity that come nowadays with the office
applications, may be applied to the views. For example,
the operator should be able to create a new resizeable
view (seen as a new window), and by clicking around,
copy and paste parts of other views. A good way of
seeing a tree-like structure is the explorer view. It could
be useful to apply this to views which are made of
subcomponents like, for example, dials, text fields, etc.

New concepts coming from the Internet

To use Java means using the Internet facilities. Not only
the PCMMI itself may be downloaded from a remote site,
but it should be possible to open views which are stored
on some Web servers and to remotely save operator made
configurations. Hyperlinks must, of course, be
implemented so that the user may navigate, with a single
click, between views that are stored on different Web
servers. It should be possible to access, with some kind of
URLs, not only a view but also a simple graphical
component.
The success of the Web is largely due to the simplicity of
creating a Web page. The same simplicity could be
brought to PCMMI views by the definition of a well-
adapted scripting language1.

Java approach

Java is a powerful object-oriented language whose
facilities may be efficiently used in the design of a
PCMMI. Java interfaces are a good way of specifying
how the different parts of the system are to work
together, without fixing how they are implemented and
thus easing cooperative development. We see at least
three main interfaces: one describing the real-time
database which is at the heart of the system, one
describing the part which fetches the values of the
process variables from the network and one describing
how the graphical views behave.
The Java event system is well suited for the
communication between the real-time database and the
views and between the views’ components. These
software components should implement the JavaBean

1 The existing graphical description languages are almost never
usable with a simple text editor.

2

standard. All classes can benefit from the Java
serialisation scheme to implement some persistency.
These different points led us to set-up a software
structure for a PCMMI in Java.

2 IMPORTANT PARTS OF A JAVA MMI

Real-time Database

In order to realise, in practice, the division between the
process variables and the views, a PCMMI should be
constructed around some kind of real-time database
(RTDB) communicating with graphical views. This
would also ensure the coherence between the different
representations of the same process variable. The real-
time database should have some knowledge about the
kind of data which it handles. Together with the value of
the process variable, a set of information known as
“metadata” is to be stored. Typically, this will include
the possible range of the variable, the abnormal values,
the physical unit in which it is expressed and a status
telling whether the value is considered valid or not2.
A short-term history may also be saved in the real-time
database. It can then be accessed without fetching it from
the network.
Java is an object-oriented language; therefore the real-
time database should offer an object approach of the
variable.

PCMMI Graphical Components

The graphical part of a process control MMI may be seen
as a set of representations of process variables and a set
of user actuators (buttons, etc.). These representations
can be symbolic and linked to the physically controlled
element, such as the standard representation of a valve,
or can be more generic, such as a trend curve. In either
case, the representation may often be applied to different
processes. By standardising the software structure and
the behaviour of an MMI atomic representation, one
should be able to reuse others developments and not
rewrite indefinitely the code needed to represent a led or
a pump. Component’s technology, as defined by Sun or
by Microsoft, is well suited to MMI visual components.
Any modern process control MMI should use this
technology to easily integrate other developments and to
gain modularity. Sun has defined a way of developing
software components (JavaBeans[3]) and since a MMI
component shares the graphical behaviour of a JavaBean,
any Java PCMMI integrating the notion of software
components should stick with that definition. This would
ensure the durability of the developments. It will also
ease the use of off-the-shelf components which may be of
interest, such as a trending component.

2 In case of network failure for example, the value can’t be
considered as valid.

Communication between components is normally made
with Java events. This is also perfectly suitable for our
kind of needs. Events, as they are described in the Java
1.1 specification, may be used to update the graphical
representation of a component whenever the process
variable to which it is linked to changes. Events are also
a good way of transmitting user actions such as a mouse
click.
However, MMI components have specific constraints if
they must be automatically linked to data in the real-time
database and they must behave in a homogeneous way.
Therefore, the definition of a PCMMI component is more
restrictive than simply following the JavaBean standard.
The interface we defined for our system comes with the
description of a standard behaviour. Specific events are
used and a way of saving and loading the configuration
files is recommended. PCMMI components are also
asked to offer some specialised introspection mechanism
so that they may be inserted into other PCMMI
components. By following these recommendations, a
component is certain to be smoothly inserted into the
system.
A very powerful, yet simple to use, mechanism exists in
Java which enables the loading of a class (which could be
a software component) at run-time and automatically
bind it to the application. This can be used to load, on
demand, the components asked for by the user from a
remote repository. While lightening the application, it
ensures all the users that they use the latest version of the
components3. It also allows integrating new components
without having to restart the application.

A scripting language

Scripting is a fast and powerful way to assemble
components together and to describe how the different
software parts of a system should behave together. Most
of a process control display may be described easily with
a scripting language. While it is important to have an
efficient way to program components, a computing
knowledge is not required to position these components
and to connect them to the real-time database. A
WYSIWYG interface is always welcome for that kind of
work but it is never as powerful as a good, adapted
scripting language. The best example is, I believe, the
success of HTML. A graphical oriented and editable
scripting language is the best and easy way to describe
relations between components and even to create simple
PCMMI components. It also has the enormous advantage
to be easily generated by programs and ensures the
durability of this part of the development. This is very
seldom in SCADA systems.

3 We use the same mechanism to store and load the network
drivers.

3

3 ASSEMBLING ALL TOGETHER

We have tried to implement all the previously described
ideas into a system which we developed and which is
named “RemoteView”. It is based around a set of
interfaces which describes how the real-time database,
the network drivers and the graphical components are to
be accessed. A clear split has been made between the
RTDB and the graphical representations. Several
implementations of these interfaces have been made.
Socket, HTTP, …
The interaction between the components and the RTDB
is based on a subscription mechanism. A component
subscribes the set of process variables which it displays.
Whenever one of the variables changes, an event is sent
to the component.
Each component offers one or several ways of
representing a set of process variables. We call it a
representation type. A component loader has the function
of finding, on demand, the Java component that offers a
given representation type. It will do so by scanning the
component repository. This repository may be a Web
server, a database or a simple file system.

A configuration manager, which mimics a file system,
handles the remote storage and the retrieval of all the
configuration files. It may be used by all the PCMMI
parts to save their status.
Events are used to inform the window manager of the
user actions. For example, whenever the user clicks on
the representation of one or several variables, an event is
broadcasted. Using this feature, it is easy to insert, for
example a set of variables into a trend chart or to paste a
component into a panel of components.
Each view is inserted in a specific window with a menu
bar. This resembles the menu bar of any standard
application with “new”, “open” and “save” buttons.
By using an introspection mechanism, the window
manager is able to represent the views as a tree-like
structure. This facilitates the manipulation and the
recombination of the views.
A graphical scripting language named dgsl (dynamic
graphic scripting language) has been defined. The dgsl
interpreter, which is a standard graphical component,
looks into the script for the RTDB variables it has to
subscribe to. Each modification in the value of a
subscribed variable launches the execution of the script.
The first release of this Java interface is now running.

REFERENCES

[1] F.Momal, C. Pinto-Pereira, “USING WORLD-
WIDE-WEB FOR CONTROL SYSTEMS”,
ICALEPCS 1995, Chicago
(http://wwwlhc.cern.ch/ICALEPCS95/icalep95.htm)

[2] F.Momal, ”TOWARDS A NEW GENERIC
APPROACH FOR WEB ACCESS TO CONTROL
DATA”, ICALEPCS 1997, Beijing
(http://wwwlhc.cern.ch/Docs/p005.PDF)

[3] Prashant Sridharan, “JavaBeans”, Prentice Hall
PTR, 1997

Graphical component

Real-time
database

Subscribe

Value of process
variable has changed

Implement

Load

Component loader

Component repository

Figure 1: The Graphical Components

Figure 2: The dgsl interpretor in its window

