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Abstract. This is the second paper in a short series devoted to the study and application of

topological invariants for projection (strip) method quasiperiodic tilings and patterns. In the �rst

paper we study in detail a range of commutative and non-commutative spaces that can be associated

to such patterns. In this paper we use these constructions to de�ne and discuss topological invariants

for projection patterns variously in terms of groupoid cohomology, C� K-theory, �Cech cohomology

and dynamical or group cohomology. We show that, up to order, all these invariants are essentially

the same, hence providing convenient computational methods for the non-commutative invariants.

We also show that these invariants give a useful obstruction to a pattern being a substitution system

and we analyse the qualitative nature of these invariants with this property in mind.

Key words. Quasicrystal, projection method, tiling dynamical system, tiling groupoid, K-theory,

dynamical cohomology, substitution tiling.

x1 Introduction

In [FHK1] we study in detail a range of commutative and non-commutative spaces that

can be associated to projection (strip) method quasiperiodic tilings and patterns [KN],

[dB], [KD]. We discuss the relationships between these various objects and their de-

pendance on the initial projection data. In this paper we use these constructions and

descriptions to de�ne, discuss and apply topological invariants for such patterns.

Reserving detail and elaborations for later, recall that a projection point pattern T

on E = Rd is the pattern of points given by the orthogonal projection of points in a strip

(K�E)\ZN � RN , where ZN is the integer lattice in some higher dimensional Euclidean

space RN containing E, and K � E is the so-called acceptance strip, a fattening of E in

RN de�ned by some suitably chosen region K in the orthogonal complement E? of E in

RN . The pattern T thus depends on the dimension N , the positioning of E in RN and the

shape of the acceptance domain K. When this construction was �rst made [dB], [KD] the

domain K was taken to be the projected image onto E? of the unit cube IN in RN and

this choice gives rise to the so-called canonical patterns, but following [FHK1] we allow

K to be any compact subset of E? which is the closure of its interior (so, with possibly

even fractal boundary, a case of current physical interest [BKS]).

To such a pattern and data we associate in [FHK1] the pattern groupoid GT and

its reduced C� algebra C�(GT ); we also associate an Rd dynamical system with space
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MT (the space of all translations on the pattern T completed with respect to a particular

metric D) and a Zd dynamical system with space a Cantor set XT . Each of these gives rise

to a way of attaching an invariant to the pattern T : respectively, we have the continuous

groupoid cohomology H�(GT ;Z), the C� K-theory K�(C
�(GT )), the topologicalK-theory

of the space MT , K�(MT ), closely related to �Cech cohomology of MT , H�(MT ;Z),

and the dynamical or group (co)homology of the Cantor system, H�(Zd;C(XT ;Z)) or

H�(Z
d;C(XT ;Z)), namely the (co)homology of the group Zd with coeÆcients C(XT ;Z)

the continuous integer valued functions on XT .

The �rst main result of this paper is to demonstrate that all these invariants are

isomorphic as groups. The non-commutative invariant, K�(C
�(GT )), contains the richer

structure of an ordered group (and which appears likely to contain information relevant to

subsequent investigations), only some of which is recoverable from the other invariants, but

on the other hand, the group (co)homology invariants admit greater ease of computation.

We give as an example a complete computation of the cohomology invariants of a projection

method pattern with N = d+ 1 and an arbitrary acceptance domain K.

The second main result of the paper is to demonstrate that all these common invariants

provide an obstruction to the property of self similarity of a pattern. We say that a

pattern T is self similar if there is a constant � > 1 such that when T is magni�ed by

� the original pattern can be derived from the magni�ed one, �T say, by replacing each

element with an arrangement of points determined only by the local structure of �T .

Such a pattern can in fact be de�ned and constructed as a so-called substitution system

and the Penrose tilings are perhaps the best known examples of patterns that can be

constructed as both projection patterns and also as substitution systems. The question

naturally arises as to which projection method patterns are self-similar. We show that

the Q rank of the rationalised invariants mentioned above provides a necessary condition

on self similarity: if T is self similar and translationally �nite, then the Q rank of, for

example, H�(Z
d;C(XT ;Z))
 Q is �nite. Recall that a tiling is translationally �nite if it

has only a �nite number of translation classes of tile. Most examples of substitution tilings

in the literature are translationally �nite, but we note the exceptional example of the \Pin

Wheel" tiling [GS] [Rd].

Much of the �nal part of this paper is devoted to giving a qualitative description of

the cohomology of canonical projection patterns. The main result is Theorem 8.9 which

gives a purely geometric criterion for in�nite generation (or in�nite rank) of (rationalised)

pattern cohomology. As a corollary of this, we show that almost all canonical projection

method patterns fail to be substitution systems and in fact for vast swathes of initial data

all such patterns fail to be self similar.

Nevertheless, there are interesting examples of projection patterns which do exhibit

�nite rank rational cohomology. The third paper in this series, [FHK2], examines the
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computation of these invariants in greater detail, using tools and techniques from algebraic

topology. We give methods there for the computation of these invariants in �ner detail than

merely deciding whether they are of �nite or in�nite rank and we show how to compute

the integral invariants for speci�c, individual patterns. Those methods also shed further

light on the qualitative behaviour of the cohomology of general projection patterns. Our

series is complemented by an article [FHK3] in which some of the arguments have been

simpli�ed at the cost of generality and the description of projection tilings is given in terms

of the dualization method. This article contains also a computation for the invariants in

the case where N � d is smaller than or equal to 2.

The organisation of this paper is as follows. In x2 we review some of the notation

and results used from [FHK1], and in x3 we introduce the notion of continuous similarity

of topological groupoids. This is an important equivalence relation for us as continuously

similar groupoids have the same groupoid cohomology, and we extend some of the results

of [FHK1] showing that many of the groupoids constructed there from projection patterns

are continuously similar. In x4 we de�ne all our invariants and prove them to be additively

equivalent. In xx5 and 6 we illustrate the computability of these invariants by considering

projection patterns arising from data with d = N � 1. In x7 we establish the role our

invariants play in discussing self similarity properties of patterns and prove that a pattern

fails to be self similar if the rationaised homology is in�nitely generated.

The remainder of the paper is devoted to the canonical case, showing that the invari-

ants we construct are computable and e�ective discriminators of tiling properties in more

general situations. In x8 we describe the topology of the groupoids above in a geometric

way, setting up the notation and de�nitions suÆcient to state the main theorem (8.9),

giving suÆcient conditions under which there are in�nitely many independent generators

in rationalised homology. From here until the end of x11, our aim is to prove Theorem

8.9. In xx9,10, we construct (in the indecomposible case independent generators in ra-

tionalised homology, explicitly represented as indicator functions of convex polytopes in

Euclidean space. x11 completes the analysis for the decomposible cases. x12 gives some

general classes of patterns where these conditions are satis�ed, so combining with x7 to

show failure of self-similarity in such cases.
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x2 Review of projection method tilings and patterns

In this section we review the notation and results from [FHK1] which we use in this

paper. We begin by recalling the basic construction of the objects to be studied.

Suppose that E is a d dimensional subspace of RN and E? its orthocomplement.

Suppose that ZN is placed in canonical position and write � = E? \ ZN . Let h�i be the

real subspace generated by �.

We write � for the orthonormal projection onto E and �? for the projection onto E?.

We write Q for the Euclidean closure E + ZN .

Lemma 2.1 ([FHK1] x2) Suppose that F is a subspace of RN complimentary to E and

containing �. Then there is a real subspace V of F with Q\F = V � e� as groups, where
e� = Q \ h�i; moreover, e� contains � with �nite index. �

Now let K be a compact subset of E? which is the closure if its interior in E?. Thus the

boundary of K in E? is compact and nowhere dense. We write � for K + E � RN , the

strip with acceptance domain K.

A point v 2 RN is said to be non-singular if the boundary, @�, of � does not intersect

ZN+v. We write NS for the set of non-singular points in RN . These points are also called

regular in the literature.

For each non-singular point v this data de�nes for us two associated patterns; the

strip point pattern is the set of points ePv = � \ (ZN + v) in � and the projection point

pattern is the set of points Pv = �( ePv), a subset of E.
In the original construction, [dB], [KD], K = �?([0; 1]N) and we call this the canon-

ical acceptance domain. The canonical tiling , de�ned by [OKD] with this choice of ac-

ceptance domain, is formed by picking u 2 NS and projecting onto E those d-dimensional

faces lying entirely in � of the cubical decomposition of RN whose vertices lie at the points

of the lattice ZN + u.

Rather than �x attention on just one pattern, we consider instead all its translated images

about E. If E \ ZN = 0 there are no translational symmetries of the pattern and all

these images are distinct. However, completion of this set of translations with respect to

the following metric encodes topologically properties of their long-range order and their

quasiperiodic \symmetries".
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Given a locally compact subset, A, of Rk , write A[r] = (A\B(r))[@B(r), where B(r)

is the closed ball of radius r centre 0, and @B(r) its boundary. Let dr be the Hausdor�

metric de�ned among closed subsets of B(r) and de�ne a metric on subsets of Rk by

D(A;A0) = inff1=(r + 1) j dr(A[r]; A
0[r]) < 1=rg:

We note that this is a metric on the space of all locally compact subsets of Rk , and that

the resulting topology is compact.

The general construction is now to take a locally compact set A of Rk with a closed

subgroup, H � Rk , acting by translations on Rk . De�ne M(A;H) to be the closure of the

set fA+ v : v 2 Hg with respect to the D metric. The space M(A;H) supports an action

of H by homeomorphisms and we consider (M(A;H); H) as a dynamical system.

In [FHK1] we consider the two dynamical systems MPu = M(Pu; E) and M ePu =

M( ePu; E) with the natural E action by translation and prove that the second system is a

�nite isometric extension of the �rst M ePu ��
�!MPu. We regard the two patterns ePu and

Pu to be respectively the most elaborate pattern that can be produced from the projection

data (short of imposing further decorations not directly connected to the geometry of the

construction) and the least decorated pattern de�ned by the projection data.

De�nition 2.2 Given projection data E, RN , K and a point u 2 NS , a projection method

pattern T in E is a locally compact subset T � E whose associated space MT =M(T ; E)

�ts into an E-equivariant factorisation M ePu �!MT �!MPu of ��.

We also de�ne the space e�u as the completion of the set NS \ (Q+u) with respect to the

metric, D(v; w) = jjv � wjj+D( ePv; ePw). There is a canonical contraction e�: e�u �! Q+ u

which is 1-1 when the image is a point in NS.

The variant metric with formula jjv � wjj+D(Pv; Pw) de�nes a possibly di�erent com-

pletion of NS \ (Q + u), which we write �u in [FHK1]. However, in section 5 of that

paper, we explain weak conditions under which the two spaces are identical, and give good

reasons to assume this equivalence in general.

De�nition 2.3 We shall say that the pattern T is standard if E \ ZN = 0 and the two

spaces e�u and �u are identical. Recall that, for standard patterns, all the results of

[FHK1] hold without complication.

The importance of the space e�u lies in the way it can provide a useful model for MT . To

a standard projection method pattern, T , there corresponds a discrete subgroup, HT , of

Q which contains the original lattice ZN � RN with �nite index (and hence is itself free

abelian of rank N). This group acts isometrically on e�u and the action factors by e� to
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the canonical translation action of HT on Q+ u. One of the key results of [FHK1] is to

establish (7.4) the E-equivariant equivalence MT � e�u=HT for standard patterns.

It is convenient to split the group HT in a way which respects the geometry. We can write

HT as the direct sum GT �Gu where Gu
�= Zd, GT �= ZN�d and GT contains �; thus the

real vector space spanned by GT has dimension N � d and is complimentary to E in RN .

Given such a splitting we write F for this complimentary space spanned by GT and

�0 for the skew projection (idempotent map) onto F parallel to E. We write K 0 for �0(K).

Set F o
u = NS \ (Q + u) \ F and let Fu be the D-closure of F o

u in e�u. Let K be

the closure of NS \ (Q + u) \ K 0 in Fu. Then HT acts freely on F by translation by

�0(r), r 2 HT , and this action restricts to F o
u and completes to Fu naturally. We consider

(Fu; HT ) as a non-compact dynamical system. The topology on Fu is easily described.

Lemma 2.4, [FHK1] (9.4) The sets hK, h 2 HT , are compact open in Fu and generate

a basis for the topology. �

Lemma 2.5, [FHK1] (9.2) For a standard pattern T the space e�u is homeomorphic to

Fu�E. Under this homeomorphism, the action of E on e�u is trivial on the Fu component

and is the natural translation on the factor E. The action of HT on e�u is the diagonal

action of the projections of HT in the directions Fu and E, i.e., if h 2 HT and (x; y) 2

Fu � E then h(x; y) = (�0(h)(x); �(h)(y)). �

Lemma 2.6, [FHK1] (10.10) The action by GT on Fu has an open compact fundamental

domain YT homeomorphic to the Cantor set XT = Fu=GT . This de�nes the Cantor dy-

namical system, (XT ; Gu) associated to the pattern T whose mapping torus, MT (XT ; Gu),

is homeomorphic to MT . �

If W is a topological space we write C(W ;Z) for the group of all integer-valued continuous

functions on W and CC(W ;Z) for the subgroup of compactly supported functions. If

W has the action of a group G of homeomorphisms, then C(W ;Z) and CC(W ;Z) are

both naturally Z[G] modules. For a standard pattern T we de�ne CFu as CC(Fu;Z) and

CXT as C(XT ;Z) = CC(XT ;Z). Then CFu is a countable Z[HT ] module and CXT is a

countable Z[Gu] module.

Now suppose G is a topological abelian group acting by homeomorphisms on W . The

transformation groupoid, G(W;G), is the topological space W � G with multiplication

(x; g)(y; h) = (x; g+ h) de�ned whenever y = gx and unde�ned otherwise. The unit space

Go(W;G) is the subspace X � f0g. The range r(x; g) of (x; g) 2 G is de�ned as gx and its

source, s(x; g), is de�ned as x.
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Thus we may de�ne, Ge�T , GFT , GXT and GMT , the transformation groupoids for

the dynamical systems, (e�u; E +HT ), (Fu; HT ), (XT ; Gu) and (MT ; E) respectively.

Given a groupoid G with unit space Go and a subset L of Go, de�ne the reduction of

G to L as the subgroupoid LGL = fg 2 G j r(g); s(g) 2 Lg of G, with unit space, L. If L is

closed then LGL is a closed subgroupoid of G.

The pattern groupoid, GT may be de�ned as the reduction of GMT to the set 
T =

fS 2MT : 0 2 ��(S)g. A variation of this can be de�ned for punctured tilings as in [K1].

Suppose that T is a projection method pattern which happens also to be a punctured

tiling, then we de�ne, 
�T = fS 2 MT : 0 2 �(S)g where �(S) is the set of punctures

for the tiling S. We write GT � for the reduction of GMT to 
�T . This is the punctured

tiling groupoid, and we have noted in [FHK1] instances where it is isomorphic to the

corresponding pattern groupoid.

From a groupoid G we can de�ne the C� algebra C�(G) [Ren], and [FHK1] x11 showed

that many of the algebras produced from the groupoids above are equivalent at the level of

ordered K-theory. In the following we denote by C(W ) the C� algebra of complex valued

functions on a compact space W , and for a non-compact space U , Co(U) denotes the C
�

algebra of complex valued functions tending to zero at in�nity.

Theorem 2.7, [FHK1] x11 Suppose that T is a standard projection method pattern.

Then the following algebras are strong Morita equivalent [MRW] and their ordered K-

theory agrees (without attention to scale)

C(XT )oGu, C�(GT ), C(MT )oE, Co(�u)o (HT + E), Co(Fu)oHT .

If T is a translationally �nite tiling, then C�(GT �) is also strong Morita equivalent to

these algebras. �

x3 Continuous similarity of transformation groupoids

The aim of this section is to show that many of the groupoids we associate with a

projection pattern are related by the important concept of continuous similarity. Further

background facts about groupoids and their cohomology and the idea of similarity may be

found in [Ren].

De�nition 3.1 Two homomorphisms, �;  :G �! H between topological groupoids are

continuously similar if there is a continuous function, �:Go �! H such that

�(r(x))�(x) =  (x)�(s(x)):

Two topological groupoids are continuously similar if there exist homomorphisms �:G �!

H,  :H �! G such that �G =  � is continuously similar to idG and �H = � is continu-

ously similar to idH.
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Our interest in this relation lies in the following fact which we exploit in x4; see [Ren] for

the de�nition of continuous cohomology H�(G;Z) of a topological groupoid G.

Proposition 3.2 ([Ren], with necessary alterations for the continuous category) If G and

H are continuously similar then H�(G;Z) = H�(H;Z). �

We are unaware of any necessary relations between reductions and continuous similarity

in the most general case, but it turns out that the construction of continuous similarities

follows closely the reduction arguments in the examples that interest us.

Lemma 3.3 Suppose that (X;H) is a free topological dynamical system (i.e., hx = x

implies that h is the identity), with transformation groupoid G = G(X;H), and that L;L0

are two closed subsets of Go. Suppose there are continuous functions, :L �! H, Æ:L0 �!

H which de�ne continuous maps �:L �! L0 and �:L0 �! L by �x = (x)x and �x =

Æ(x)x. Then LGL and L0GL0 are continuously similar.

Proof We construct the two homomorphisms, �: LGL �! L0GL0 and  : L0GL0 �! LGL by

putting �(x; g) = (�x; (gx) + g � (x)) and  (y; h) = (�y; Æ(hy) + g � Æ(y)).

A quick check con�rms that these are homomorphisms, and they are both clearly

continuous. Moreover, � (y; h) = (��y; ((Æ(hy)+h�Æ(y))�(y))+Æ(hy)+h�Æ(y)�(�y),

a rather complicated expression which can be simpli�ed if we note that ((Æ(hy) + h �

Æ(y))�(y)) = ((Æ(hy) + h)y) = (�hy), and de�ne �(y) to be the element of H such that

�(y)y = ��y. Then �(y) = Æ(y)+(�y), by de�nition, and so �(hy) = (h�(y))+Æ(hy) =

((Æ(hy) + h� Æ(y))�(y)) + Æ(hy). This gives � (y; h) = (��y; �(hy) + h� �(y)).

It is now easy to see that � is continuously similar to the identity on L0GL0 using the

transfer function, � : L0 �! L0GL0 given by �(y) = (��y;��(y)), also clearly continuous.

Reciprocal expressions give the similarity between  � and the identity on LGL. �

Remark 3.4 Note that if L0 = Go, then Lemma 3.4 can be reexpressed in the following

form. If L is a closed subset of Go for which there is a continuous map :Go �! H such

that (x)x 2 L for all x 2 Go, then LGL is continuously similar to G. (The condition on L

implies that L intersects every H-orbit of (Go; H), but the converse is not true.)

We apply this lemma and remark in two ways as we examine continuous similarities

between the various groupoids of [FHK1].

Lemma 3.5 Suppose that T is a standard projection method pattern and write G for Ge�T .
If L is a clopen subset of Fu then LGL is continuously similar to G.

Proof It suÆces to �nd the function  in the remark.
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Pick an order � on HT in which every non-empty set has a minimal element. The

set EL = fvy : v 2 E; y 2 Lg is naturally homeomorphic to E � L by (2.5), and hence

is clopen in e�u. By the minimality of the E +HT action on e�u, [FHK1] (3.9), we have

[h2HT
hEL = e�u, so that for each x 2 e�u, there is a �-minimal h 2 HT such that

hx 2 EL. Let 0(x) be this g, and note that by the freedom and isometric action of G and

the clopenness of EL, this function x 7! 0(x) is continuous and maps e�u to EL.

Now, given 0(x)x 2 EL, there is a unique 1(x) 2 E such that 1(x)0(x)x 2 L, and

it is clear that x 7! 1(x) is continuous as a map e�u �! E. The desired map  can now

be taken as this composite. �

Lemma 3.6 Suppose that T is a translationally �nite tiling for which we have chosen a

puncturing and which is also a projection method pattern. Then GT and GT � are contin-

uously similar.

Proof we �t the present hypotheses into the case of Lemma 3.3. Let X =MT supporting

the (free) action of E. Let L = 
T and L0 = 
�T . We construct the maps  and Æ as

follows.

Recall the metricDo(A;B) = inff1=(r+1) : A[r] = B[r]g and the argument of Lemma

11.14 [FHK1] which shows that D and Do are equivalent on each of the sets 
T and 
�T .

(Actually the argument refers only to the second space, but the fact that ��T is a Meyer

pattern (see [La] and remark 11.13 [FHK1]) allows it to be applied directly to the �rst

space as well.)

We may assume without loss of generality that, for each S 2MT , each point of ��(S)

is in the interior of a tile of S (if not we shift all the tiles in T by a uniform short generic

displacement and start again equivalently).

Suppose that S 2 
T . We know that 0 2 ��(S) and that by assumption there is a

unique tile in S which contains the origin in its interior. This tile has a puncture at a point

v say, and so S � v 2 
�T . So we have de�ned a map from 
T to E, :S 7! �v which is

clearly continuous with respect to the Do metric. Moreover the map, �:S 7! S � v has

range 
�T .

Conversely, let r be chosen so that every ball in E of radius r contains at least one

point of ��(T ) = Pu. Consider the sets ��(S) \ B(r), as S runs over 
�T and note that

there are only �nitely many possibilities, i.e. the set J = f��(S) \ B(r) : S 2 
�T g is a

�nite collection of non-empty �nite subsets of B(r). Furthermore, by the continuity of ��

on 
�T with respect to the Do metric, for each C 2 J , the set fS 2 

�
T : ��(S)\B(r) = Cg

is clopen.

We de�ne a function, v, from sets to points which chooses, for each C 2 J , an element

v(C) 2 C. De�ne Æ(S) = �v(��(S)\B(r)); this map from patterns to points is continuous

by construction. Also by construction, S + Æ(S) 2 
T . �
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Lemma 3.7, [FHK1](11.6), (11.8) Suppose that T is a standard projection method

pattern. The groupoids GFT and GXT are each a reduction of Ge�T to the sets Fu and YT

respectively and there is a clopen subset L of Fu such that the reduction of Ge�T to L is

isomorphic to GT . �

To summarise,

Corollary 3.8 Suppose that T is a standard projection method pattern. Then GT , Ge�T ,
GFT and GXT are all continuously similar. If T is also a translationally �nite tiling, then

these are all continuously similar to the tiling groupoid, GT �, of [K1].

Proof Lemmas (3.5) and (3.7) show that GT , GFT and GXT are all continuously similar

to Ge�T . The second part is a restatement of (3.6). �

x4 Pattern cohomology and K-theory

We are now in a position to de�ne our topological invariants for projection method

patterns and prove their additive equivalence.

De�nition 4.1 For a standard projection method pattern T we de�ne for each m 2 Z the

following groups.

(a) Hm(GT ;Z), the continuous groupoid cohomology of the pattern groupoid GT ;

(b) Hm(MT ), the �Cech cohomology of the space MT ;

(c) Hd�m(Gu; CXT ) andH
m(Gu;CXT ), the group homology and cohomology of Gu with

coeÆcients CXT ;

(d) Hd�m(HT ;CFu) and H
m(HT ;CFu), the group homology and cohomology of HT with

coeÆcients CFu;

(e) K�(C
�(GT )), the C� K-theory of C�(GT );

(f) K�(C(XT )oGu), the C
� K-theory of the crossed product C(XT )oGu;

and, for translationally �nite tilings,

(g) the continuous groupoid cohomology Hm(GT �;Z).

Theorem 4.2 For a standard projection method pattern T and for each value of m, the

invariants de�ned in (4.1)(a) to (d) are all equivalent as groups. If T is also translationally

�nite, then these are also equivalent to that de�ned in (4.1)(g).

The invariants de�ned in (4.1)(e) and (f) are each equivalent as Z=2 graded ordered

groups. Finally, all these invariants are related via isomorphisms of groups such as

Km(C(XT )oGu) =

1M
j=�1

Hm+d+2j(Gu;CXT ):
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These invariants are, in all cases, torsion free, and those in parts (a) to (d) and (g) are

non-zero only for integers m in the range 0 6 m 6 d.

Proof It is immediate from the de�nition [Ren] that if W is a locally compact space

on which a discrete abelian group G acts freely by homeomorphisms then the continuous

groupoid cohomology H�(G(W;G);Z) is naturally isomorphic to the group cohomology

H�(G;C(W ;Z)) with coeÆcients the continuous compactly supported integer-valued func-

tions on W , with Z[G]-module structure dictated naturally by the G action on W . This

proves the equality of (a) (and (g) where appropriate) with the cohomology versions of (c)

and (d) from (3.8) and the fact that GFT and GXT are transformation groupoids.

By (10.10) [FHK1]MT is homeomorphic to the mapping torus XT �Gu EGu and as

noted in [FH] the �Cech cohomology H�(M(XT ; Gu)) is equivalent to the group cohomol-

ogy H�(Gu; CXT ) (this equivalence is standard and follows, for example, by induction on

the rank of Gu with the induction step passing from Zr to Zr+1 coming from the compar-

ison of the Mayer-Vietoris decomposition of XT �Gu EGu along one coordinate with the

long exact sequence in group cohomology coming from the extension Zr ! Zr+1 ! Z).

This proves the equivalence of (4.1)(b) with the cohomological invariant of (4.1)(c).

The equation of Hm(Gu; CXT ) with Hd�m(Gu;CXT ) is simply Poincar�e duality for

the group Gu
�= Zd.

By Lemma 2.5, a decomposition of CFu as a Z[HT ] = Z[Gu]
Z[GT ] module is given

by CXT 
 Z[GT ] where CXT is a trivial Z[GT ] module. Standard homological algebra

now tells us that
Hp(HT ;CFu) =Hp(Gu �GT ;CXT 
 Z[GT ])

=Hp(Gu;CXT )

establishing the equality of (4.1)(c) and (d) in homology. (A similar argument also works

in cohomology.)

The equality of (4.1)(e) and (f) follows from the Morita equivalence of the underlying

C� algebras in (2.7) and the equality

Km(C(XT )oGu) =

1M
j=�1

Hm+d+2j(Gu;CXT )

is one of the main results of [FH].

The torsion-freedom of these invariants also follows from the results of [FH], while

the vanishing of the (co)homological invariants outside the range of dimensions stated is

immediate from their identi�cation with the (co)homology of the group Gu = Zd. �

We make one further reduction of the complexity of the computation of these invariants.

Recall �rst the construction of section 2, in particular the equation F \Q = V � e� splitting



12 FORREST HUNTON KELLENDONK

F into continuous and discrete directions, and in which the projection �0(ZN) is dense.

Recall also the map e�: �u �! Q+ u de�ned in (2.2 �.) for each u 2 NS.

De�nition 4.3 The restriction of e� to Fu is written �:Fu �! F\(Q+u) = (F\Q)+�0(u);

this map is �0(ZN)-equivariant and j��1(v)j = 1 precisely when v 2 NS \F \ (Q+u) (see

Lemma 9.2 of [FHK1]).

Let �T = fv 2 HT : �0(v) 2 V g and CVu = ff 2 CFu : �(supp(f)) � V + �0(u)g,

where supp refers to the support of the function. This is consistent with setting Vu = fx 2

Fu : �(x) 2 V + �0(u)g and taking CVu as CC(Vu;Z). There is a natural decomposition

CFu = CVu 
ZZ[e�].

Lemma 4.4 As a subgroup of HT = GT � Gu, �T satis�es �T = (�T \ GT ) � Gu.

Moreover, �T is complemented in HT by a group ��, naturally isomorphic to e�.

With this splitting, the action of Z[HT ] = Z[�T ] 
 Z[��] on CFu = CVu 
ZZ[e�] is
the obvious one, and hence there is an isomorphism of homology groups H�(HT ;CFu) �=

H�(�T ;CVu).

Proof The decompositions and restrictions on GT and Gu follow from the de�nition and

the original construction of (10.1) in [FHK1]. The conclusion in homology it the same

homological argument as used in the previous proof. �

We note that since HT � Z
N and �?(ZN) is dense in Q\F , the group �T acts minimally

on V and hence on Vu.

Corollary 4.5 With the data above,

Kn(C
�(GT )) =

1M
j=�1

Hn+2j(�T ;CVu): �

This is, in fact, the most computationally eÆcient route to these invariants and, with the

exception of section 6, the one we shall use in the remainder of this paper and in [FHK2].

x5 Inverse limit acceptance domains

Our immediate goal is to illustrate the computation of the invariants introduced in x4

by examining projection method patterns on Rd arising as projection from Rd+1 for more

or less arbitrary acceptance domains K. To facilitate those computations we examine in

this section a general technique which sometimes simpli�es the computations of projection
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pattern cohomology when the acceptance domain is disconnected. We assume throughout

that all the projection patterns are standard.

Suppose that K and Ki, i = 1; 2; : : : , are compact subsets of E? each of which is

the closure of its interior, and suppose that IntK = [iIntKi is a disjoint union and that

@K = [@Ki. This occurs if the Ki are all disjoint, for example, but the setup can be a

little more general. Let K�i = [
j6i

Kj, so that IntK�i = [
j6i

IntKj is a disjoint union and

@K�i = [
j6i

@Kj.

We de�ne NSi = RN n (E + ZN + @K�i ) and �i = K�i + E. So for each u 2 NSi we

have eP i
u = ZN \�i and P i

u = �( eP i
u). From these we construct e�i

u, �
i
u, MP i

u and so on, as

usual. In fact, in the following, we shall be interested only in the strip pattern eP i
u.

Provided u is non-singular for K, and hence is non-singular for all K�i , we can take a

space F complimentary to E in RN and a corresponding group Gu which will play their

usual roles for all sets of projection data (E;RN ; K�i ) and (E;RN ; K). For each domain,

K�i , we construct the corresponding F
i
u etc. The following lemma follows easily from the

de�nitions.

Lemma 5.1 Suppose j < i throughout the statement of this lemma. Then NSi is a dense

subset of NSj and NS = \iNS
i. Moreover, for u 2 NSi, we have a natural continu-

ous E + ZN equivariant surjection e�i
u �!

e�j
u, and a natural continuous E equivariant

surjection M eP i
u �!M eP j

u; this latter is described equivalently by the formula S 7! S \�j.

We also have an ZN-equivariant map F i
u �! F j

u, and a Gu-equivariant map Xi
u �!

Xj
u. All these maps respect the commutative diagrams of [FHK1] and they map many-to-

one only when the image is in (the appropriate embedding of) NSj nNSi. �

Theorem 5.2With the notation and assumptions above, we have the following equivariant

homeomorphisms.

(a) e�u
�= lim
 

e�i
u, E + ZN equivariantly;

(b) M ePu �= lim
 

M eP i
u, E-equivariantly;

(c) Fu �= lim
 

F i
u, ZN-equivariantly;

(d) Xu
�= lim
 

Xi
u, Gu-equivariantly.

Proof Once again the results are straightforward from the de�nitions. The mapM ePu �!
M eP i

u is again equivalently written S 7! S \ �i. �

The following is now a direct consequence of (4.2), (5.2)(b) and the behaviour of �Cech

cohomology on inverse limits.

Corollary 5.3 There is a natural equivalence H�(G ePu) = lim
!

H�(G eP i
u).
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x6 Cohomology of the case d=N{1

In this section we determine the cohomology for standard projection method patterns

when d = N � 1. It is the only case for which we have such a complete answer.

Here E is a codimension 1 subspace of RN and so E \ZN = 0 implies that � = 0. So

assuming E \ ZN = 0, the pattern considered is automatically standard, [FHK1] (5.2).

Moreover,MPv =MPu =M ePu for all u; v 2 NS and so, given E and K, there is only one

projection pattern torusMP to consider, no need to parametrise by u, and an equivalence

between HP and the original lattice ZN [FHK1] (8.2). With this in mind, we shall avoid

further explicit mention of any particular non-singular point u. Write e1; :::; eN for the

usual unit vector basis of RN , which are also the generators of ZN . Choose the space F as

that spanned by eN , and so GT = heN i and Gu = he1; e2; :::; eN�1i. Recall that we write

K 0 = �0(K) � F , where �0 is the skew projection onto F parallel to E and that �0 maps

K homeomorphically to K 0, preserving the boundary, @K 0 = �0(@K) �= @K.

Now any compact subset of E? such as K which is the closure of its interior is a

countable union of closed disjoint intervals; thus @K and hence @K 0 is countable. Pick

A = fp1; p2; :::g, pj 2 @K 0, to be a set of representatives of �0(ZN) orbits of @K 0, a

countable and possibly �nite set. Write k 2 Z+ [1 for the cardinality of A.

Theorem 6.1 If T is a projection method pattern with d = N � 1 and E \ ZN = 0, then

Hm(GT ) = Hm(TN n k points ) =

8>><
>>:

Z(
N

m) for m 6 N � 2;

ZN+k�1 for m = N � 1;

0 otherwise.

An in�nite superscript denotes the countably in�nite direct sum of copies of Z.

Proof We know that IntK 0 is the union of a countable number of open intervals, whose

closures, Ki, are disjoint. We use the notation and results of x5, setting K�i = [
j6i

Kj as

the �nite union of disjoint closed intervals, [ij[sjeN ; rjeN ] say. As MT = M eP , by (5.3)

it is enough to compute the direct limit lim
!

H�(M eP i).

We consider the process of completion giving rise to the spaceM eP i which we consider

as e�i (the completion of the non-singular points NSi) modulo the action of ZN . The limit

points introduced in e�i arise as the limit of patterns P i
xn

as xn approaches a singular

point, either from a positive eN direction, or from a negative one. To be more precise,

suppose that xn = x + tneN 2 NS is a sequence converging to x 2 RN in the Euclidean

topology. If (tn) is an increasing sequence, then lim
n!1

eP i
xn

exists in the D metric and is the

point pattern (x+ ZN) \ ( [
j6i

(sjeN ; rjeN ] + E). Likewise, if (tn) is a decreasing sequence

then lim
n!1

eP i
xn

is the point pattern (x+ ZN) \ ( [
j6i

[sjeN ; rjeN ) + E). These two patterns
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are the same if and only if x 2 NSi. If x 62 NSi then these two patterns de�ne the two

D limit points in e�i over x 2 RN . Thus the quotient M eP i �! TN is 1-1 precisely when

mapping to the set NSi=ZN , and otherwise it is 2-1; we can picture the map intuitively

as a process of \closing the gaps" made by cutting TN along the �nite set of hyperplanes

(@K�i +E)=ZN , c.f. [L].

We examine the space M eP i more detail. Given r > 0, consider the space M i
r =

f(S \ B(r)) [ @B(r) : S 2 M eP i
ug endowed with the Hausdor� metric dr among the set of

all closed subsets of B(r), the closed ball in RN with centre 0 and radius r. By construction

M i
r is compact and, for s > r and i > j, there are natural restriction maps M i

s �! M j
r ,

whose inverse limit for �xed i = j isM eP i, and whose inverse limit over all i and r by (5.2)

is M eP . The map M i
r �! TN given by ePv 7! v mod ZN , v 2 NSi, factors the canonical

quotient M eP i �! TN .

De�ne Ci
r as the set fv 2 T

N : (v+ZN)\(@�i\IntB(r)) 6= ;g. As before,M i
r �! TN

is 2-1 precisely on those points mapped to Ci
r and otherwise is 1-1.

The intersection @�i \ B(r) is, for all r large enough compared with the diameter of

K�i , equal to a �nite union of codimension 1 discs, parallel to E, and of radius at least

r � 1, and at most r. Each of these discs has centre �?(a) for some a 2 @K�i . Consider

this collection of discs modulo ZN and select two, say with centres �?(a) and �?(b), where

a; b 2 @K�i . Then, for r very large and a� b 2 �
0(ZN), these discs will overlap modulo ZN .

Since there are a �nite number of such pairs in @K�i to consider, we have a universal r such

that if a; b 2 @K�i and a� b 2 �0(ZN), then the disc with centre �?(a) overlaps, modulo

ZN , the disc with centre �?(b). If a�b 62 �0(ZN), then these discs will not overlap, modulo

ZN . Hence for r suÆciently large, @�i \ B(r) mod ZN has precisely jAij components.

For the same r, Ci
r mod Z

N is also a �nite union of discs of radius at least r � 1

and at most r; likewise Ci
r has exactly jAij components, in direct correspondence with the

elements of Ai.

The description above of the limiting points in e�i as we approach Ci
r in a direction

transverse to E, shows that M i
r is homeomorphic to T

N with a small open neighbourhood

of Ci
r removed. There is a natural homotopy equivalence with the space TN n Ci

r.

We can now examine what happens as we let �rst r and then i tend to in�nity in

this construction. For the above suÆciently large r, the map M i
r+1 �! M i

r is, up to

homotopy, the injection from TN n Ci
r+1 to T

N n Ci
r, and this is simply, up to homotopy,

the identity from TN n jAij points to itself. Hence H�(M i
r) = H�(TN n jAij points) and

H�(M i
r) �! H�(Mr+1) is the identity showing that H�(M eP i) is the cohomology of the

torus with jAij punctures.

Finally, for each i and for r suÆciently large (depending on i) the mapM i+1
r �!M i

r is

that induced by the inclusion of Ai in Ai+1, and this corresponds in the above description

to the adding of a new puncture for each element of Ai+1 n Ai. In cohomology, the map
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Hp(M i�1
r ) �! Hp(M i

r) is thus the identity for p 6= d, and in dimension d = N�1 gives rise

to the direct system of groups and injections � � � �! ZN�1+jAij �! ZN�1+jAi+1j �! � � �

which gives the required formula. �

We give an alternative proof of this theorem from a di�erent perspective in [FHK2].

We note that the system (Xi
u; Gu) is in fact a Denjoy example [PSS] with ZN�1 action

and dislocation along k separate orbits.

Corollary 6.2 Suppose that � is a dense countable subgroup of R �nitely generated by

r free generators. Suppose we Cantorize R by cutting and splitting along k �-orbits (as

described e.g. in [PSS]) to form the locally Cantor space R0 on which � acts continuously,

freely and minimally. Consider the �-module C of compactly supported integer valued

functions de�ned on R0. Then H�(�; C) = H�(Tr n k points;Z). �

x7 Homological conditions for self similarity

This section shows that the (co)homological invariants de�ned in x4 provide an ob-

struction to a pattern arising as a substitution system. This result will be used in subse-

quent sections to show that almost all canonical projection method tilings fail to be self

similar.

We adopt the construction of substitution tilings in [AP] and shall consider only

translationally �nite tilings. Anderson and Putnam establish the following fact about

translationally �nite substitution tilings with recognizability.

Theorem 7.1 [AP] Suppose that T is a translationally �nite tiling of Rd , stationary

under some substitution procedure. Then MT is the inverse limit of a stationary sequence

of spaces and maps

Y

 � Y


 � � � �

where Y is a �nite CW complex and  is a cellular map. �

Corollary 7.2 Suppose that T is a translationally �nite tiling which is stationary under

some substitution procedure. Then for eachm, the rationalise �Cech cohomology Hm(MT )


Q has �nite Q -dimension.

Proof From (7.1) Hm(MT ) = lim
!

Hm(Y ). So H�(MT ) 
 Q = lim
!

(H�(Y ) 
 Q ). Thus

the Q dimension of H�(MT )
Q is bounded by that of H�(Y )
Q and this is �nite since

Y is a �nite CW complex. �
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The conclusion of (7.2) actually applies to much more general pattern constructions. Note

that the only principle used is that the space MT of the tiling dynamical system is the

inverse limit of a sequence of maps between uniformly �nite CW complexes. We sketch a

generalization whose details can be reconstructed by combining the ideas to be found in

[Pr] and [Fo].

Translationally �nite substitution tilings are analysed combinatorially by Priebe in

her PhD Thesis [Pr] where the useful notion of derivative tiling, generalised from the 1-

dimensional symbolic dynamical concept [Du], is developed. We do not pursue the details

here except to note that the derivative of an almost periodic translationally �nite tiling is

almost periodic and translationally �nite, and that the process of deriving can be iterated.

Suppose that T is an almost periodic translationally �nite tiling. By means of repeated

derivatives, and adapting the analysis of [Fo] for periodic lattices, we may build a Bratteli

diagram, B, for T . Its set of vertices at level t is formally the set of translation classes of the

tiles in the tth derivative tiling, and the edges relating two consecutive levels, t and t+1 say,

are determined by the way in which the tiles of the (t+ 1)th derivative tiling are built out

of the tiles of the tth derivative tiling. The diagram B de�nes a canonical dimension group,

K0(B). Adapting the argument of [Fo] we can de�ne a surjection K0(B) �! Hd(MT )

and hence a surjection K0(B)
 Q �! Hd(MT )
 Q .

In [Pr] it is shown that the repeated derivatives of a translationally �nite aperiodic

substitution tiling have a uniformly bounded number of translation classes of tiles. In

particular, the number of vertices at each level of its Bratteli diagram B is bounded uni-

formly. Thus K0(B) 
 Q is �nite dimensional over Q , being a direct limit of uniformly

�nite dimensional Q vector spaces, and so we reprove (5.2) for the case p = d .

It is worth extracting the full power of this argument since it applies to a wider class

than the substitution tilings.

Theorem 7.3 Suppose that T is a translationally �nite tiling of Rd whose repeated deriva-

tives have a uniformly bounded number of translation classes of tiles, then Hd(GT )
 Q is

�nite dimensional over Q . �

Thus, when we take a pattern, T , computeits rationalized homology H0(�T ;CVu) 
 Q

and �nd it is in�nite dimensional (see for example section 12), we know we are treating a

pattern or tiling which is outwith the class speci�ed in Theorem 7.3, and a fortiori outside

the class of substitution tilings.

x8 The canonical projection tiling

For the �rst time in our studies now, we narrow our attention to the classical projection

method tilings of [OKD] [dB] etc. This section outlines the simpli�cations to be found



18 FORREST HUNTON KELLENDONK

in this case, and describes the main result of the remainder of this paper; a suÆcient

condition for in�nitely generated rationalised H0.

In the canonical case, we have data (K;E; u) where K = �?([0; 1]N) and u 2 NS.

From section 8 in [FHK1] we see that, but for a few exceptional cases, we have HT = ZN ,

and if we elect either to exclude these exceptions (as most authors do) or to include

them only in their most decorated form (MT = M ePu), we make HT = ZN a standing

assumption.

With Theorem 9.4 [FHK1] we have a description of the topology of CFu: it is

generated by intersection and di�erences of the images of a certain compact open set K.

With the canonical choice of K above, we now give a second geometrical description of the

elements of CFu and CVu, following more closely the work of Le [L].

De�nition 8.1 We adopt the notation, eJ = hej : j 2 Ji, where J � f1; 2; :::; Ng and

fejg is the standard unit basis of RN or ZN . Let n be the dimension of F .

Let I = fJ � f1; 2; :::; Ng : dim�0(eJ ) = n�1g and de�ne I� to be the set of elements

of I minimal with respect to containment.

De�ne ZNn�1 = [fe
J + v : jJ j = n� 1; v 2 ZNg.

Lemma 8.2 i/ I� is a sub-collection of the n � 1-element subsets of f1; 2:::; Ng. Also

every subspace of F of the form �0(eJ ), with jJ j = n� 1, is contained in �0(eJ
0

) for some

J 0 2 I�.

ii/ With the canonical acceptance domain and F chosen transverse to E etc., RN n

NS = �?�1�?(ZNn�1) and �
0(ZNn�1) = F nNS.

Proof Part i/ is straightforward. For part ii/, with the data above, �0(K) is a convex

polytope in F , with interior, each of whose extreme points is of the form �0(v) where

v 2 f0; 1gN . By i/, each of the faces of �0(K) is contained in some �0(eJ + v) where

v 2 f0; 1gN and J 2 I�. Also by i/, we have �0(ZNn�1) = �0([feJ + v : v 2 ZN ; J 2 I�g).

However, by de�nition, F nNS is the union of the faces of those polytopes of the form

�0(K + v), v 2 ZN . Thus �0(ZNn�1) = �0([feJ + v : v 2 ZN ; J 2 I�g) � F nNS.

Conversely, it is easy to show that for each J 2 I�, there is a face of �0(K) which

is contained in �0(eJ + v) for some v 2 ZN . Then for each J 2 I� and each v 2 ZN ,

there is some shift of �0(K), say �0(K + w) for some w 2 ZN , one of whose faces, � say,

contains the point �0(v) as an extreme point, and � � �0(eJ + v). However, by letting v

run over ZN with w accompanying, we cover each �0(eJ + w) by shifts of �. So we �nd

that [f�+ �0(w) : w 2 ZNg = [f�0(eJ + w) : w 2 ZNg. Thus �0(ZNn�1) = [f�
0(eJ + v) :

v 2 ZN ; J 2 I�g � F nNS and we are done. �

De�nition 8.3 Recall the subspace V from (2.1) and write dimV = m. Let I�(V ) be the

set fJ 2 I� : dim(�0(eJ ) \ V ) = m� 1g.
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The following is straightforward from De�nition 4.3 and Lemma 8.2 above.

Lemma 8.4 i/ I�(V ) = fJ 2 I� : �0(eJ ) \ V 6= V g.

ii/ If u 62 NS, then

(V + �0(u)) nNS = (V + �0(u)) \ �0(ZNn�1)

= (V + �0(u)) \ ([f�0(eJ + v) : v 2 ZN ; J 2 I�(V )g): �

With these notations in mind, we are well equipped to describe the topology of Vu.

De�nition 8.5 Given u 2 NS, de�ne a set, �u, of m� 1-dimensional aÆne subspaces of

V whose elements are of the form (�0(eJ + v)\ (V + �0(u)))� �0(u) where J 2 I�(V ) and

v 2 ZN . Such a space may be written more conveniently, �0(eJ + v � u) \ V .

We say that a subset of V is a �u-tope, if it is a compact polytope which is the closure

of its interior and each of whose faces is a subset of some element of �u.

We shall also say that a subset, B, of Vu is a �u-tope if B is clopen and �(B)� �0(u)

is a �u-tope subset of V in the sense above (recall � from (4.3) above).

Theorem 8.6 The set of �u-topes is � invariant and the indicator functions of �u-topes

generate CVu as a Z-module, �-equivariantly. The set of �u-topes in Vu is thus precisely

the collection of compact open subsets of Vu.

Proof By Theorem 9.3 of [FHK1] we know that CFu is generated by indicator functions

of the sets formed by �nite intersection, union and di�erence of sets of the form K+�0(v);

this collection is written Bu. By de�nition 4.3, CVu is generated by the indicator functions

of sets, B0u = fB 2 Bu : �(B) � V + �0(u)g. So if B 2 B0u, then �(B) is the closure of the

corresponding intersection, union and di�erence of sets of the form (�0([0; 1]N) + �0(v)) \

(V + �0(u)).

However, � is a map which sends open sets to sets with interior (cf. Lemma 9.3

[FHK1]) and so �(B), being clearly a polytope, is the closure of its interior. Moreover,

each of the faces of �(B) is, by the proof of Lemma 8.2, contained in some �0(eJ ) + �0(v).

Thus we con�rm the conditions needed for a �u-tope.

The conclusion about the topology and the �T equivariance of the construction are

immediate. �

Remark 8.7 We compare this with the topology described in [L]. There each open half-

space de�ned by a hyperplane element of �u is completed to de�ne a clopen subset of a

totally disconnected space. Using Theorem 8.6 above, it is straightforward to see that the
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two topologies agree since each open half-space in V is a union of the interiors of �u-topes

(in V ), and each �u-tope in Vu is an intersection of clopen half-spaces.

De�nition 8.8 Write P for the set of points in V which can found as the 0-dimensional

intersection ofm elements of �u. Note that, under the assumptions on �u, P is a countable

set, invariant under shifts by �T .

Say that P is �nitely generated if P is the disjoint union of a �nite number of �T

orbits, and is in�nitely generated otherwise. Write 
(P) for the collection of � orbits in

P.

The main theorem concerning canonical projection method tilings is the following.

Theorem 8.9 Given a canonical projection method tiling T and the constructions above,

if P is in�nitely generated, then Hd(GT ) is in�nitely generated and Hd(GT )
Q is in�nite

dimensional.

We complete the proof of this theorem in Section 11, but the following algebraic observation

provides a signi�cant simplifying step.

Lemma 8.10 Suppose that G is a torsion-free Z module. For a Z-module H write H=2

for H 
 Z=2, its reduction modulo 2. Given a Z-module homomorphism �:G �! H=2, if

Im� is in�nite dimensional as a Z=2 subspace of H=2 then G is in�nitely generated as a

Z-module and G
 Q is in�nitely generated as a Q vector space.

Proof It is suÆcient to prove the statement concerning G 
 Q . Suppose that �(sn) is a

sequence of independent elements in Im� and suppose that there is some relation

mX
n=1

qnsn = 0

for qn 2 Q . Since G is torsion-free, we can assume the qn are integers and have no common

factor; in particular, they are not all even. Applying the map � then gives a non-trivial

relation among the �(sn), a direct contradiction, as required. �

x9 Constructing �-topes

In section 8, we described the basic compact open subsets of Vu as �u-topes. In this

section we abstract this idea conveniently. Here we develop some constructions based on

a general collection of aÆne hyperplanes, �, of a vector space, W , with group action,

�. Always, the example in mind is � = �u, W = V and � = �T . Indeed the �rst few

de�nitions and constructions are only the slightest generalisation of those of section 8.
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De�nition 9.1 Suppose that W is a vector space of dimension m and that � is a �nitely

generated free abelian group acting minimally by translation on W . We write w 7! w + 

for the group action by  2 �, and we may think of � as a dense subgroup of W without

confusion.

Suppose that � is a countable collection of aÆne subspaces ofW such that each H 2 �

has dimension m � 1, and such that, if H 2 � and  2 �, then H +  2 �. We suppose

that the number of � orbits in � is �nite, and we write 
(�) for the set of orbits.

If H 2 �, then we de�ne a unit normal vector, �(H). We suppose that the set

N (�) = f�(H) : H 2 �g is �nite and that we have chosen the �(H) consistently so that

��(H) 62 N (�). Finally, we suppose that N (�) generates W as a vector space.

Now we consider points formed by the intersection of elements of �.

De�nition 9.2 Write P for the set of points in W which can found as the 0-dimensional

intersection of m elements of �. Note that, under the assumptions on �, P is a countable

set, invariant under shifts by �.

Say that P is �nitely generated if P is the disjoint union of a �nite number of � orbits

and is in�nitely generated otherwise. Write 
(P) for the collection of � orbits in P.

We say that a subset, D, of W is a �-tope, if D is a compact polytope which is the

closure of its interior and each of whose faces is a subset of some element of �.

In the space W 0 = W n [fH : H 2 �g, the collection of sets, A, of the form A \W 0,

where A is a �-tope, is an algebra.

We write CW for the ring of integer-valued functions generated by indicator functions

of elements of A. This de�nes a canonical �-equivariant topological extension of W which

we shall write W .

It is at this level of generality that we shall prove Theorem 8.9.

De�nition 9.3 Suppose that D � W is a �-tope. A point p 2 W is a vertex of D if

p 2 @D and we have H1; :::; Hm 2 � such that fpg = \Hi and for each i the component of

Hi \ @D which contains p is a union of faces of D.

If we wish to specify theHi in the de�nition above, then we say that v is a (H1; :::; Hm)-

vertex of D. Note that, given the orbit class of eachHi, this information de�nes Hi uniquely

for each 1 6 i 6 m.

It is clear that a vertex is an element of P. Conversely, each element of P is a vertex in

some �-tope { this uses the fact that N (�) generate W and that each �-orbit in W is

in�nite in all directions in W .

Note also the fact that v may be a (H1; :::; Hm)-vertex of D simultaneously for distinct

choices of (H1; :::; Hm).
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We develop now an idea of decomposition of sets of vectors, to be used in the division of

cases in sections 10 and 11.

Construction 9.4 Suppose that A is a �nite set of non-zero, pair-wise non-parallel vectors

in Rm and suppose A spans Rm . The example we have in mind is of N (�), the set of

normals.

A decomposition of A is a partition A = A1 [ A2 such that V1 \ V2 = 0 where each

Vj is the space spanned by Aj , j = 1; 2. A is indecomposible if no such decomposition is

possible. It is not hard to show that every set A has a unique partition into indecomposible

subsets.

Suppose that B � A is a basis for Rm . Then, by requiring B to an orthonormal basis,

we de�ne an inner product which we write as square brackets [:; :]B. De�ne a �nite graph

G(B;A) with vertices B and an edge from x to y whenever x 6= y and there is a z 2 A nB

such that [x; z]B 6= 0 and [y; z]B 6= 0.

Lemma 9.5 The following are equivalent.

i/ A is indecomposible;

ii/ for all bases B � A, G(B;A) is connected;

iii/ for some basis B � A, G(B;A) is connected. �

Remark 9.6 Note that if �:Rm �! Rm is a linear bijection, then A is indecomposible if

and only if �(A) is indecomposible.

Proposition 9.7 Suppose that dimW > 1, that 0 62 A � W spans W and that A has no

parallel elements. Suppose that B � A is a basis for W and that G(B;A) is connected.

Then there is a closed convex polytope, C, of W , with interior, such that

i/ each b 2 B is the normal of exactly one face in C;

ii/ the normal of each face of C is an element of A;

iii/ there is a vertex v of C in the mutual intersection of the faces normal to some

element of B;

iv/ and we can �nd a to > 0 so that the points v +
P

a2AnB taa are in the interior of

C for all 0 < ta < to, a 2 A nB.

(All normals are taken with respect to the inner product [:; :]B.)

Proof We prove this by induction on jAj. If jAj 6 2, then graph connectedness implies

that jAj = jBj = 1 which is excluded by assumption on the dimension of W .

Consider the case jAj = 3; this implies that jBj = 2. Graph connectedness also implies

that a has non-zero components in each B coordinate direction. Thus we can construct a

triangle C in W with the required properties.
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For larger values of jAj, graph connectedness again shows that we can �nd a 2 A nB.

Consider the graph G(B;A n a), a subgraph of G(B;A) with the same vertex set. Write

G1; :::; Gk for the connected components of G(B;A n a); this de�nes a partition of the

vertices B = B1 [ B2::: [ Bk. Let Wj be the space spanned by Bj; then Gj = G(Bj;Aj)

where Aj = (A n a) \Wj . Let �j be the orthonormal projection of W onto Wj . Since the

reinstatement of a reconnects the graph, we have �j(a) 6= 0 for all 1 6 j 6 k.

If dimWj > 2, then, since j�j(Ana)nf0gj < jAj, induction shows that we can construct

a closed convex set Cj inWj , with interior and with properties i/ to iv/ above with respect

to Bj and Aj . Let vj be the vertex distinguished in property iii/.

On the other hand, if dimWj = 1, then de�ne Cj to be the closed interval with end

points 0 and �j(a)( 6= 0). Let vj = 0.

Consider C 0 = f
P
cj : cj 2 Cj ; 1 6 j 6 kg, where we have decomposed W = �Wj .

Then C 0 is a closed convex polytope with interior, and the point v = v1 � � � � � vk is a

vertex of C 0 contained in the intersection of faces normal to elements of B. Moreover,

every face of C 0 is normal to some element of Ana. Property iv/ is also quickly con�rmed.

It is possible though that property i/ does not hold for C 0; this is where we use the

extra element a chosen at the beginning. Let H be the hyperplane orthogonal to a.

Suppose that F; F 0 are two faces of C 0 orthogonal to b 2 B and with v 2 F . By

construction, F 0 has the form F +
P

j2J �j(a) where J is a subset of those indices j for

which dimWj = 1. However, we know that �j(a) 6= 0 for each j 2 J and also, by property

iv/, that vj + t�j(a) 2 Cj n vj for all t > 0 suÆciently small and for all j. Therefore, for

all t > 0 suÆciently small, ta+ v +H separates v from F 0.

Since there are a �nite number of combinations of faces and j to consider, we can

choose t > 0 such that ta+ v +H separates v from every face of C 0 orthonormal to some

element of B which does not actually contain v. Let H+ be the closed half space which

contains v and which has boundary ta+ v +H. Then C = C 0 \H+ is a set which obeys

all the conditions required by the lemma. �

Theorem 9.8 Suppose that N (�) is indecomposible. Suppose that Hi; 1 6 i 6 m is a

collection of elements of � which intersect at a point fvg = \Hi. Then there is a convex

�-tope, C, for which v is the unique (H1; :::; Hm)-vertex in C.

Proof Let B0 = f�(Hi) : 1 6 i 6 mg, a basis for W . Let � : W �! W be a vector space

automorphism which sends B0 to an orthonormal unit basis ofW . For each � 2 N let a(�)

be the unit vector normal to �(�?) such that [a(�); �(�)] > 0. Let A = fa(�) : � 2 Ng

and B = fa(�) : � 2 B0g. Note that, by construction, a(�) = �(�) for each � 2 B.

Therefore the inner product [:; :]B = 0 used to de�ne the graph G(B;A) above is precisely

the canonical inner product, h:; :i, in W .
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By remark 9.6, A is indecomposable. Thus the graph G(B;A) is connected by 9.5,

and so we may form by 9.7 a convex set, Co, in W with the properties outlined in 9.7. The

set C1 = ��1(Co) is then a closed convex polytope in W , with interior, and such that

i/ each � 2 B0 is the normal of exactly one face in C1,

ii/ the normal of each face of C1 is an element of N , and

iii/ there is a vertex, v1, of C1 in the mutual intersection of the faces normal to some

element of B0.

However, we know that the orbit of an element H of � is dense in W in the sense that

for every hyperplane, H 0, of W , parallel to H, and every � > 0, there is an H 00 2 [H] such

that H 0 and H 00 are separated by a vector of length at most �. Therefore we may adjust

C1 slightly without disturbing the combinatorial properties of its faces to form a �-tope

with the same properties. The vertex v1 is disturbed to the new vertex, v 2 P, with the

required properties. �

x10 Theorem 8.9: The indecomposible case

We pursue the abstract construction of section 9 a little further.

Suppose that v is a (H1; :::; Hm) vertex of D, a �-tope. A suÆciently small spherical

neighbourhood of v, U say, is covered by 2m conical regions, with interior, bounded by the

hyperplanes Hi. By construction, D \ U is a (uniquely de�ned) union of some of these

regions.

De�nition 10.1With the data above, we de�ne j0(v; (H1; :::; Hm); D) equal to the number,

mod 2, of the conical regions, found above, which unite to form D \ U . Note that this

number is independent of the choice of U suÆciently small.

The following is clear by construction.

Lemma 10.2 Suppose that D and B are two �-topes with disjoint interior and that v 2 P

is a (H1; :::; Hm)-vertex of D and of B, for some choice of hyperplanes Hi. Then either

i/ v is not a (H1; :::; Hm)-vertex of D [B and

0 = j0(v; (H1; :::; Hm); D) + j0(v; (H1; :::; Hm); B) mod 2

or

ii/ v is (H1; :::; Hm)-vertex of D [ B and

j0(v; (H1; :::; Hm); D [ B) = j0(v; (H1; :::; Hm); D) + j0(v; (H1; :::; Hm); B) mod 2

�

We now de�ne a map.
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De�nition 10.3 Consider the two index sets

Jo = f(p; (H1; :::; Hm)) 2 P � �m : fpg = \fHi : 1 6 i 6 mg g

J = f([p]; ([H1]; :::; [Hm])) 2 
(P)� 
(�)m : (p; (H1; :::; Hm)) 2 Jog

By construction, � acts naturally on Jo and J = Jo=�. Also J is in�nite if and only if


(P) is in�nite.

Consider the group �Jo(Z=2) as a �-module with � acting coordinate-wise. Therefore,

H0(�;�Jo(Z=2)) = �J (Z=2).

Given D, a �-tope, with a vertex v, de�ne jo(v;D) to be the element of �Jo(Z=2)

which is zero everywhere except on the coordinates

f(v; (H1; :::; Hm)) : v is a (H1; :::; Hm)-vertex of Dg (� Jo)

where we dictate the value j0(v; (H1; :::; Hm); D).

Likewise, de�ne j(v;D) 2 �J (Z=2) as the element which is zero everywhere except on

the coordinates f([v]; ([H1]; :::; [Hm])) : v is a (H1; :::; Hm)-vertex of Dg where we dictate

the value j0(v; (H1; :::; Hm); D).

Let �o(D) =
P
jo(v;D) and �(D) =

P
j(v;D) where each sum is over all vertices of

D.

Proposition 10.4 The map � de�ned in this way is � invariant and additive in A�. Thus

we de�ne a map �o : CW �! �Jo(Z=2) which quotients through to �� : H0(�;CW ) �!

�J (Z=2).

Proof It is clear that � is � invariant since [v] = [v + ] and j0(v; (H1; :::; Hm); D) =

j0(v + ; (H1 + ; :::; Hm + ); D + ) by construction. We need to check now that this

extends additively.

Suppose D is an �-tope and we can write D as the disjoint union of two �-topes,

Dj , j = 1; 2. To show additivity of � it will suÆce to show that in this case �o(D) =

�o(D1) + �o(D2). To do this we need only appeal to Lemma 10.2 above.

The quotienting through to homology is immediate. �

Corollary 10.5 Suppose that N (�) is indecomposible and P is in�nitely generated, then

H0(�; CW )
 Q is in�nite dimensional.

Proof If P is in�nitely generated, then a cardinality argument �nds classes [H1]; :::; [Hm]

such that \Hi is a singleton, and such that the set P 0 = fv : \Ki = fvg; Ki 2 [Hi]g has

an in�nite number of disjoint � orbits.
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Select from P 0 an in�nite sequence, fvng, transverse to the orbit structure, and for

each vn construct, by Theorem 9.8 and De�nition 10.3 above, a �-tope, An, which has

�(An) equal to 1 on the coordinate ([vn]; ([H1]; :::; [Hm])). Since only a �nite number of

coordinates are indicated in any particular element, �(An), we may assume, passing to a

subsequence if necessary, that for n0 < n, we have �(An0) equal to 0 on the coordinate

([vn]; ([H1]; :::; [Hm])). Therefore, these �(An) are independent by construction, and so the

map � has in�nitely generated image. We are done by 8.10. �

x11 The Proof of Theorem 8.9 completed

Once again we exploit the generalities of section 9.

Construction 11.1 Suppose that N (�) is decomposible and that N1;N2; :::;Nk are its

components. Let Wj = ([i6=jNi)
? = \i6=jN

?
i so that W = �jWj . Let �j be the skew

projection onto Wj with kernel �
i6=j

Wi.

Lemma 11.2 For each j, the map �j is open and sendsW onto Wj, indeed �
�1
j (Wj) = W .

Therefore, we have W = �W j and CW = 
jCWj.

The group � acts naturally on Wj via the isomorphism W=W?j � Wj induced by the

adjoint of �j. In the product representation above, � acts by the diagonal action. �

The space W j has an alternative construction analogous to that of W (9.2). There is a

collection of cutting hyperplanes, �j , so that the clopen sets in W j are the �j -topes. In

fact, we have by construction, �j = fH \Wj : H 2 �; �(H) 2 Njg and N (�j) = f� 2 N :

� 2 Wjg = Nj , so only those elements of � whose normal is parallel to Wj inuence the

topology on W j .

In particular, we gather the following facts.

Lemma 11.3 Given the construction above,

i/ N (�j) is indecomposable;

ii/ if H 2 �j, then there is a unique H 0 2 � (equal to ��1j (H)) such that H = H 0\Wj,

and �(H 0) = �(H); and

iii/ Pj , the point set de�ned using �j, is equal to �j(P). In the product in 11.2,

�jPj = P. �

We are now in a position to prove a more general form of Theorem 9.8. Recall the indexing

sets, J and Jo from 10.3.

The following theorem improves the argument of 10.5 to the decomposible case. This

involves taking independent constructions of suitable �-topes in section 9 and combining
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their properties with respect to a product of maps, �, constructed in section 10 for the

indecomposible case. An additional subtlety has to be met if we have 1 dimensional parts

to our decomposition.

Theorem 11.4 Given the data above, there is a map ��:H0(�;CW ) �! �JZ=2 such that

for all v 2 P, there are Hi 2 � : 1 6 i 6 m so that ([v]; ([H1]; :::; [Hm])) 2 J , and an

element fv 2 H0(�; CW ) such that ��(fv) has value 1 at coordinate ([v]; ([H1]; :::; [Hm])).

Proof We prove the conclusion with some superstructure.

Claim: There are maps, �o and �� so that the following diagram commutes.

CW
�o
�! �JoZ=2

???yq
???yq

H0(�;CW )
��
�! �JZ=2:

Moreover, for each v 2 P, there are Hi : 1 6 i 6 m so that ([v]; ([H1]; :::; [Hm])) 2 J , and

an element fv 2 CW such that ��q(fv) has value 1 at coordinate ([v]; ([H1]; :::; [Hm])).

The previous work establishes this claim in the indecomposable case with the sole exception

of when jN j = 1, which we tidy up now.

If jN j = 1 then dimW = 1, and so, by section 7, H0(�;CW ) = ZM+k�1 where

M = rank(�) > 1 and k is the number of orbits in P. We see that J is in natural

correspondence with 
(P) in this case, and so k is also the cardinality of J .

Take, therefore, a surjection s:H0(�;CW ) �! �JZ=2. With the canonical map

q:�JoZ=2 �! �JZ=2 construct the surjection

s� q:H0(�;CW )� (�JoZ=2) �! �JZ=2:

Since CW � Z1 (i.e. the in�nite direct sum of Z), we have complete freedom to �nd a

map � which makes the following sequence exact at the middle term

Z1 � CW
q��
�! H0(�;CW )� (�JoZ=2)

s�q
�! �JZ=2:

The exactness gives the commuting square property. By surjectivity, for each [v] 2 
(P)

we de�ne fv 2 CW quite arbitrarily so that sq(fv) has value 1 on the coordinate [v] 2 J .

This completes the indecomposable case.

Now suppose that N = [Nj is a partition into indecomposibles. Form the spaces

Wj , of dimension mj = dimWj , etc. as above. � acts by translation by elements �j(�)
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which may or may not be free. If we must consider only free actions, then we should

consider rather the action of �j(�), which is also represented by a free subaction by a

complimented subgroup of �. Lemma 4.4 gives a natural equation between H0(�; CWj)

and H0(�j(�); CWj) therefore, so no complication arises if we stick with the � action.

Note also that rank(�j�) > 1 (since �j� is dense in Wj) so, should mj = 1, the

argument for dimW = 1 above continues to apply.

Consider the index sets Jjo and Jj formed from Pj and �j in Wj , as for P and � be-

fore. By (11.2) we can write each element of Jjo in the form (�j(v); (�j(H1); :::; �j(Hmj
)))

for some v 2 P and some uniquely determined collection, H1; :::; Hmj
, of elements of �

whose intersection is an aÆne translate of the space ��1j (0) = �
i6=j

Wi. Therefore the map

Jo �! �jJjo which sends (v; (H1; :::; Hm)) to (�j(v); (�j(H1); :::; �j(Hm))
�) in the jth

coordinate (the star indicates that we drop any 0 entries from the list) is well-de�ned and,

in fact, a bijection.

Consider the group �0 = \f��1j (�j(�)) : 1 6 j 6 kg which contains � automatically.

By construction, we have Jo=�
0 = �j(Jjo=�j(�)) = �jJj . Thus we have a sequence of

maps

�jJjo = Jo
q
�! Jo=�

q0

�! Jo=�
0 = �jJj

which will be used in the sequel.

Having proved the claim in the indecomposable case, we may suppose, for each 1 6

j 6 k, that we have commuting squares

CWj

�jo
�! �JjoZ=2

???yqj
???yqj

H0(�;CWj)
�j�
�! �JjZ=2

and for each v 2 P, we �nd elements fv;j 2 CWj de�ned from �j(v) 2 Pj (Lemma 11.3),

so that �j�qj(fv;j) has value 1 in the ([�j(v)]; [H1;j]; : : : ; [Hmj;j ])) coordinate.

The equation CW = 
jCWj allows us to build the map


�jo:CW �! 
j �Jjo Z=2

and the range is naturally equal to �Jo 
j Z=2 = �JoZ=2 using the equations between

index sets noted before. The construction is clearly � equivariant and so we deduce a

quotiented map: ��:H0(�;CW ) �! �JZ=2 which completes a square as required, with

q:�JoZ=2 �! �JZ=2 de�ned from the corresponding map on the index sets, described

above.
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Likewise, the index map q0 : J �! �jJj describes the quotient of �JZ=2 by the �0

action, giving the map, for which we use the same letter,

q0 : �JZ=2 �! ��jJjZ=2 = 
j �Jj Z=2:

The composition q0q is therefore de�ned


j �Jjo Z=2 = �JoZ=2
q0q
�! 
j �Jj Z=2:

Given v, the element fv = 
jfv;j 2 CW is, by assumption, mapped by


jqj�j� : CW �! 
j �Jj Z=2 = ��jJjZ=2

to an element with value 1 at the �j([�j(v)]; [H1;j]; :::; [Hmj;j]) coordinate. So therefore


jqj�j� = q0q�o. Keeping track of �-orbits in the index sets, we �nd q�o(fv) with value 1

in the ([v]; [H 01]; :::; [H
0
m]) coordinate, with H

0
i chosen in � so that (�j(H

0
1); :::; �j(H

0
m))
� =

(H1;j; :::; Hmj;j). So the decomposible case follows. �

Proof of Theorem 8.9 We now assume the construction above for W = V , � = �u and

� = �T . The result follows exactly as for Corollary 10.5, using the more general result

above. �

x12 Corollaries of Theorem 8.9

To apply Theorem 8.9 we must be able to count the orbits in P. This is a geometric

exercise, and each case will have its own peculiarities. However, we present in this section

two elementary general conditions which are suÆcient to give in�nite orbits in P.

Recall the general set-up from section 9, and the construction of P as points which

are the proper intersection of m hyperplanes picked from �.

De�nition 12.1 Suppose that H1; :::; Hm is a set of hyperplanes chosen from �, intersect-

ing in a single point. Let P� be the collection of points in P which can be de�ned as the

intersection of H 01; : : : ; H
0
m with each H 0i in the same �-orbit as Hi, 1 6 i 6 m.

For each i 2 f1; 2; : : : ;mg, de�ne �i:W �! \j 6=iHj as the surjective idempotent with

kernel Hi.

We can de�ne a product structure to W via the isomorphism W
�i�i
�! �iHi.

Given i 2 f1; 2; : : : ;mg, let Pi = �i(P
�), and �i = �i(�).

Proposition 12.2 In the product description above, �Pi = P
� and ��i � �.

If
P

i rank�i > rank�, then the number of � orbits in P� is in�nite.
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Proof Each �i acts naturally on \j 6=iHj by translation. By construction P� is the free

��i orbit of a single point, namely the point at the intersection \Hi; from this the �rst

equality follows immediately. The second containment is straightforward. Moreover, there

is a 1-1 correspondence between the � orbits of P� and the � cosets in ��i, from which

the third statement is immediate. �

Corollary 12.3 Suppose that rank� < 2 dimW , then P is in�nitely generated.

Proof Recall that � is a dense subgroup of W implying that rank�i > 2 for each i. The

inequality of Proposition 12.2 above gives the result therefore (recall that P� � P by

de�nition). �

Corollary 12.4 Suppose that Tu is the canonical projection method tiling in Rd , with data

(E; u), and suppose that E \ ZN = 0. If rank�+ 2d < N then H0(GTu) 
 Q is in�nite

dimensional, and so Tu is not a substitution tiling.

Proof With the same correspondences as noted in the proof of Theorem 8.9 at the end of

section 11, note that rank�T = N � rank� and that m = dimV = N � d� rank�. Now

use the last corollary. �

Examples 12.5 The examples of the Octagonal tiling (see eg. [Been] [Soc] [Be]), a

substitution tiling with N = 4, � = 0 and d = 2, shows that the inequality of Corollary

12.4 should be strict. And the Penrose tiling (see eg. [Soc] [S]), a substitution tiling with

N = 5, � � Z and d = 2, shows that all components of the inequality are important.

We can pursue the construction above a little further, by considering higher dimensional

intersections of transverse elements of �.

De�nition 12.6 Suppose that H1; : : : ; Hm are elements of � with single point mutual

intersection fpg = \Hj .

Write �(H1; : : : ; Hk) for the stabiliser in � of the intersection L = \16j6kHj , i.e. the

complemented subgroup, f 2 �:L+  = Lg.

Let �0(H1; : : : ; Hk : Hk+1; : : : ; Hm) = f� 2 R
N : f�+pg = L\ (L0+);  2 �g, where

L0 = \k+16j6mHj .

We think of �0(H1; : : : ; Hk : Hk+1; : : : ; Hm) as the projection of � onto L collapsing in the

L0 direction.

The following is straightforward from the de�nitions.

Lemma 12.7With the notation above
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i/ �0(H1; : : : ; Hk : Hk+1; : : : ; Hm) is a group with �(H1; : : : ; Hk) as a subgroup.

ii/ �0(H1; : : : ; Hk : Hk+1; : : : ; Hm) + p = P \ L.

iii/ If q 2 P \ L, then (� + q) \ L = �(H1; : : : ; Hk) + q. �

This gives immediately an easy way to determine whether we have an in�nite number of

orbits in P.

Lemma 12.8 If, for some choice of H1; : : : ; Hm, the group �(H1; : : : ; Hk) has in�nite

index in �0(H1; : : : ; Hk : Hk+1; : : : ; Hm) (equivalently, if the rank of �(H1; : : : ; Hk) is

strictly smaller than the rank of �0(H1; : : : ; Hk : Hk+1; : : : ; Hm)), then P contains an

in�nite number of � orbits.

Proof By Lemma 12.7 ii/ and iii/ the orbits in P which intersect L are enumerated

precisely by the cosets of �(H1; : : : ; Hk) in �
0(H1; : : : ; Hk : Hk+1; : : : ; Hm). This is in�nite

by assumption. �

De�nition 12.9 Given a transverse collection, H = H1; : : : ; Hm, of elements of � and

J � f1; 2; : : : ;mg, write �(H; J) = �(Hj : j 2 J) and �
0(H; J) = �0(Hj : j 2 J jHj : j 62 J).

The techniques proving the last two lemmas, give the following.

Lemma 12.10 For every choice of H = (H1; : : : ; Hm) as above and for every pair of sets,

J1; J2 such that J1 [ J2 = f1; 2; :::;mg, �
0(H; J1) + �0(H; J2) and �(H; J1) + �(H; J2) are

both direct sums.

If P has a �nite number of � orbits, then

�(H; J1) + �(H; J2) � �(H; J1 \ J2) � �0(H; J1 \ J2) � �0(H; J1) + �0(H; J2)

is a sequence of subgroups all of mutual �nite index. �

From which we deduce

Theorem 12.11 Suppose P has a �nite number of � orbits and that H = (H1; : : : ; Hm)

is a collection of transverse elements of �. Then for all J1; J2 � f1; 2; ::;mg such that

jJ2j = m� 1, we have rank�(H; J1) = (m� jJ1j)rank�(H; J2).

In particular, putting J1 = ;, we have rank� = mrank�(H; J2).

Corollary 12.12 If Tu is a canonical projection method tiling with �nite rationalised H0,

then there is an integer, g say, such that (g � 1)N 0 = gd, where N 0 = N � rank�.
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Examples 12.13 For Penrose tilings, octagonal tilings and dodecagonal tilings (the un-

decorated versions described in [Soc]) we have always N 0 = 4 and d = 2, hence g = 2.

From the above it is clear that g must be 2 in d = 2 if the rationalized homology is �nitely

generated. And indeed, all three tilings above are substitutional. It is not diÆcult to

construct examples in which d = 4 and g = 3, for example.

It is clear also that in the generic placement of planes projections of � onto lines will have

higher rank than intersections and so the � groups of 12.6 will be of strictly smaller rank

than �0. Thus, from 12.8 and 8.9, we deduce

Theorem 12.14 Suppose that T is a canonical projection method tiling and that E is in

generic position, then H0(GT )
 Q is in�nite dimensional, and T is not a substitution. �
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