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Abstract

We propose an improvement of the splitting functions at small x which overcomes the apparent
problems encountered by the BFKL approach. We obtain a stable expansion for the x{evolution
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loop anomalous dimension 
. The requirement of momentum conservation is always satis�ed.

The residual ambiguity on the splitting functions is e�ectively parameterized in terms of the

value of �, which �xes the small x asymptotic behaviour x�� of the singlet parton distributions.
We derive from this improved evolution function an expansion of the splitting function which

leads to good apparent convergence, and to a description of scaling violations valid both at
large and small x.
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1. The theory of scaling violations in deep inelastic scattering is one of the most solid

consequences of asymptotic freedom and provides a set of fundamental tests of QCD. At large

Q2 and not too small but �xed x the QCD evolution equations for parton densities [1] provide

the basic framework for the description of scaling violations. The complete splitting functions

have been computed in perturbation theory at order �s (LO approximation) and �2s (NLO) [2].

For the �rst few moments the anomalous dimensions at order �3s are also known [3].

At su�ciently small x the approximation of the splitting functions based on the �rst few

terms in the expansion in powers of �s is not in general a good approximation. If not for

other reasons, as soon as x is small enough that �s� � 1, with � = log 1=x, all terms of order

�s(�s�)
n and �2s(�s�)

n which are present [4] in the splitting functions must be considered in

order to achieve an accuracy up to terms of order �3s. In terms of the anomalous dimension


(N;�s), de�ned as the N{th Mellin moment of the singlet splitting function (actually the

eigenvector with largest eigenvalue), these terms correspond to sequences of the form (�s=N)n

or �s(�s=N)n. In most of the kinematic region of HERA [5] the condition �s� � 1 is indeed true.
Hence, in principle one could expect to see in the data indications of important corrections to the
approximation [6, 7] of splitting functions computed only up to order �2s and the corresponding
small x behaviour. In reality this appears not to be the case: the data can be �tted quite
well by the evolution equations in the NLO approximation [7, 8]. Of course it may be that

some corrections exist but they are hidden in a rede�nition of the gluon, which is the dominant
parton density at small x. While the data do not support the presence of large corrections in
the HERA kinematic region [9] the evaluation of the higher order corrections at small x to the
singlet splitting function from the BFKL theory [10, 11, 12] appears to fail. The results of the
recent calculation [13, 14, 15] of the NLO term �1 of the BFKL function � = �s�0+�

2
s�1::: show

that the expansion is very badly behaved, with the non leading term completely overthrowing
the main features of the leading term. Taken at face value, these results appear to hint at
very large corrections to the singlet splitting function at small x in the region explored by
HERA [16].

In this article we address this problem and propose a procedure to construct a meaningful

improvement of the singlet splitting function at small x, using the information from the BFKL

function. We start by de�ning an alternative expansion for the BFKL function �(M) which,
unlike the usual expansion, is well behaved and stable when going from LO to NLO, at least
for values far from M = 1. This is obtained by adding suitable sequences of terms of the

form (�s=M)n or �s(�s=M)n to �s�0 or �
2
s�1 respectively. The coe�cients are determined by

the known form of the singlet anomalous dimension at one and two loops. This amounts to a
resummation [17] of (�s logQ

2=�2)n terms in the inverseM -Mellin transform space. This way of
improving � is completely analogous to the usual way of improving 
 [18]. One important point,
which is naturally reproduced with good accuracy by the above procedure, is the observation

that the value of �(M) at M = 0 is �xed by momentum conservation to be �(0) = 1. This

observation plays a crucial role in formulating the novel expansion and explains why the normal

BFKL expansion is so unstable near M = 0, with �0 � 1=M , �1 � �1=M
2 and so on. This

rather model{independent step is already su�cient to show that no catastrophic deviations

from the NLO approximation of the evolution equations are to be expected. The next step is
to use this novel expansion of � to determine small x resummation corrections to add to the LO

and NLO anomalous dimensions 
. De�ning � as the minimum value of �, �(Mmin) = �, and
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using the results of ref. [19], a meaningful expansion for the improved anomalous dimension

is written down in terms of �0, �1, and �. The large negative correction to �0=�s = �0(1=2)

induced by �s�1, that is formally of order �s but actually is of order one for the relevant values

of �s, suggests that � should be reinterpreted as a nonperturbative parameter. We conclude

by showing that the very good agreement of the data with the NLO evolution equation can be

obtained by choosing a small value of �, compatible with zero.

2. We consider the singlet parton density

G(�; t) = x[g(x;Q2) + kq 
 q(x;Q
2)]; (1)

where � = log 1=x, t = logQ2=�2, g(x;Q2) and q(x;Q2) are the gluon and singlet quark parton

densities, respectively, and kq is such that, for each moment

G(N; t) =
Z
1

0
d� e�N� G(�; t); (2)

the associated anomalous dimension 
(N;�s(t)) corresponds to the largest eigenvalue in the

singlet sector. At large t and �xed � the evolution equation in N -moment space is then

d

dt
G(N; t) = 
(N;�s(t)) G(N; t); (3)

where �s(t) is the running coupling. The anomalous dimension is completely known at one and
two loop level:


(N;�s) = �s
0(N) + �2s
1(N) + : : : : (4)

As 
(N;�s) is, for each N , the largest eigenvalue in the singlet sector, momentum conservation
order by order in �s implies that


(1; �s) = 
0(1) = 
1(1) = ::: = 0: (5)

Similarly, at large � and �xed Q2, the following evolution equation for M moments is valid:

d

d�
G(�;M) = �(M;�s) G(�;M); (6)

where

G(�;M) =
Z
1

�1

dt e�Mt G(�; t); (7)

and �(M;�s) is the BFKL function which is now known at NLO accuracy: 1

�(M;�s) = �s�0(M) + �2s�1(M) + : : : : (8)

In eq. (6) the coupling �s is �xed. The inclusion of running e�ects in the BFKL theory

is a delicate point. To next-to-leading order in �s (i.e. to NLLx), running e�ects can be

included [19, 20] by adding to �1 a term proportional to the �rst coe�cient �0 =
11
3
nc �

2
3
nf

1Note that the normalization conventions for �0 and �1 used here are di�erent from those used in either of

refs.[13, 19].
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Figure 1: Graphical representation of di�erent expansions of (a) 
 and (b) � in powers of �s and
1=N (a) and 1=M (b) to order m and n respectively, and the di�erent relations between these
expansions. Vertical lines correspond to terms of the same �xed order in �s: for example the one
loop anomalous dimension 
0 contains terms with m = 1, n = 1; 0;�1;�2; : : :. Diagonal lines
correspond to terms of the same order in �s at �xed

�s

N
(a) or �s

M
(b): for example 
s(�s=N)

contains terms with m = n = 1; 2; 3; : : :. The sum of terms in a vertical line of the 
 plot
is related by duality eqs. (10,11) to the sum of terms in a diagonal line in the � plot and
conversely (marked by the same line style). The solid lines denote terms of the same order in
the \envelope" or \double leading" expansion discussed in the text.

of the �-function. Since furthermore the extra term depends on the de�nition of the gluon

density, it is also necessary to specify the choice of factorization scheme: here we choose the
MS scheme, so that the �1 that we will consider in the sequel is given by [19]

�1(M) = 1
4�2
n2c
~�(M) + 1

8�2
�0nc((2 

0(1)�  0(M) �  0(1�M)) + 1
4n2c
�0(M)2; (9)

where the function ~� is de�ned in the �rst of ref. [13].

In the region where Q2 and 1=x are both large the t and � evolution equations, i.e. eqs.(3,6),
are simultaneously valid, and their mutual consistency requires the validity of the \duality"
relation [11, 21]:

�(
(N;�s); �s) = N; (10)

and its inverse


(�(M;�s); �s) =M: (11)

Using eq. (10), knowledge of the expansion eq. (8) of �(M;�s) to LO and NLO in �s at �xed
M determines the coe�cients of the expansion of 
(N;�s) in powers of �s at �xed

�s

N
:


(N;�s) = 
s(
�s

N
) + �s
ss(

�s

N
) + : : : ; (12)
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where 
s and 
ss contain respectively sums of all the leading and subleading singularities of 


(see �g. 1),

�0(
s(
�s

N
)) =

N

�s
; (13)


ss(
�s

N
) = �

�1(
s(
�s

N
))

�00(
s(
�s

N
))
: (14)

This corresponds to an expansion of the splitting function in logarithms of x: if for example

we write


s(
�s

N
) =

1X
k=1

g
(s)
k

�
�s

N

�k
(15)

(where g
(s)
1 = nc=�; g

(s)
2 = g

(s)
3 = 0 ; g

(s)
4 = 2�(3)nc=�; : : :), then the associated splitting function

Ps(�s�) �
Z c+i1

c�i1

dN

2�i�s
eN� 
s(

�s

N
) =

1X
k=1

g
(s)
k

(k � 1)!
(�s�)

(k�1); (16)

and similarly for the subleading singularities Pss(�s�), etc.
Likewise, the inverse duality eq. (11) relates the �xed order expansion eq. (4) of 
(N;�s)

to an expansion of �(M;�s) in powers of �s with
�s

M
�xed: if

�(M;�s) = �s(
�s

M
) + �s�ss(

�s

M
) + : : : ; (17)

where now �s(
�s

M
) and �ss(

�s

M
) contain the leading and subleading singularities respectively of

�(M;�s), then


0(�s(
�s

M
)) =

M

�s
; (18)

�ss(
�s

M
) = �


1(�s(
�s

M
))


00(�s(
�s

M
))
: (19)

In principle, since �0 and �1 are known, they can be used to construct an improvement of

the splitting function which includes a summation of leading and subleading logarithms of x.

However, as is now well known, the calculation [13, 14, 15] of �1 has shown that this procedure
is confronted with serious problems. The �xed order expansion eq. (8) is very badly behaved:
at relevant values of �s the NLO term completely overwhelms the LO term. In particular, near

M = 0, the behaviour is unstable, with �0 � 1=M , �1 � �1=M
2. Also, the value of � near

the minimum is subject to a large negative NLO correction, which turns the minimum into a
maximum and can even reverse the sign of � at the minimum. Finally, if one considers the

resulting 
0 and 
1 or their Mellin transforms P0(x) and P1(x) one �nds that the NLO terms
become much larger than the LO terms and negative in the region of relevance for the HERA

data [16]. We now discuss our proposals to deal with all these problems.

Our �rst observation is that a much more stable expansion for �(M) can be obtained if we
make appropriate use of the additional information which is contained in the one and two loop

anomalous dimensions 
0 and 
1. Instead of trying to improve the �xed order expansion eq. (4)
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of 
 by all order summation of singularities deduced from the �xed order expansion eq. (8) of

�, we attempt the converse: we improve �0(M) by adding to it the all order summation of

singularities �s eq. (18) deduced from 
0, �1(M) by adding to it �ss deduced from 
1 eq. (19),

and so on. It can then be seen that the instability atM = 0 of the usual �xed order expansion of

� was inevitable: momentum conservation for the anomalous dimension, eq. (5), implies, given

the duality relation, that the value of �(M) at M = 0 is �xed to unity, since from eq. (10) we

see that at N = 1

�(
(1; �s); �s) = �(0; �s) = 1: (20)

It follows that the �xed order expansion of � must be poorly behaved near M = 0: a simple

model of this behaviour is to think of replacing �s=M with �s=(M +�s) = �s=M ��2s=M
2+ :::

in order to satisfy the momentum conservation constraint. We thus propose a reorganization of

the expansion of � into a \double leading" (DL) expansion, organized in terms of \envelopes"

of the contributions summarized in �g. 1b: each order contains a \vertical" sequence of terms

of �xed order in �s, supplemented by a \diagonal" resummation of singular terms of the same

order in �s if �s=M is considered �xed. To NLO the new expansion is thus

�(M;�s) =
h
�s�0(M) + �s

�
�s

M

�
� nc�s

�M

i
+�s

h
�s�1(M) + �ss

�
�s

M

�
� �s

�
f2
M2 +

f1
M

�
� f0

i
+ � � � (21)

where the LO and NLO terms are contained in the respective square brackets. Thus the LO

term contains three contributions: �0(M) is the leading BFKL function eq. (8), �s(�s=M)
eq. (18) are resummed leading singularities deduced from the one loop anomalous dimension,
and nc�s=(�M) is subtracted to avoid double counting. At LO the momentum conservation
constraint eq. (20) is satis�ed exactly because 
0(1) = 0 and [�0(M)� nc

�M
] �M2 near M = 0.

At NLO there are again three types of contributions: �1(M) from the NLO �xed order calcu-
lation (eq. (9)), the resummed subleading singularities �ss(�s=M) deduced from the two loop

anomalous dimension, and three double counting terms, f0 = 0, f1 = �nf (13+10n2c)=(36�
2n3c)

and f2 = n2c(11+2nf=n
3
c )=(12�

2) (corresponding to those terms with (m;n) = (1; 0); (2; 1); (2; 2)
respectively in �g. 1b). Note that at the next-to-leading level the momentum conservation con-
straint is not exactly satis�ed because the constant contribution to �1 does not vanish in MS,

even though it is numerically very small (see �g. 2). It could be made exactly zero by a re-

�nement of the double counting subtraction but we leave further discussion of this point for

later.
Plots of the various LO and NLO approximations to � are shown in �g. 2. In this and

other plots in this paper we take �s = 0:2, which is a typical value in the HERA region, and

the number of active 
avours nf = 4. We see that, as discussed above, the usual �xed order

expansion eq. (8) in terms of �0 and �1 is very unstable. However, the new expansion eq. (21)
is stable up to M <

� 0:3 � 0:4. Furthermore, in this region, � evaluated in the double leading

expansion (21) is very close to the resummations of leading and subleading singularities eq. (17)
obtained by duality eq. (18,19) from the one and two loop anomalous dimensions. This shows

that in this region the dominant contribution to �, and thus to 
 , comes from the resummation

of logarithms of Q2=�2 with Q2� �2.
BeyondM � 0:4, the size of the contributions from collinear singular and nonsingular terms

becomes comparable (after all here Q2 � �2), but the calculation of the latter (from the �xed
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Figure 2: Plots of di�erent approximations to the � function discussed in the text: the BFKL
leading and next-to-leading order functions eq. (8), �s�0 and �s�0+�

2
s�1 (dashed); the LO and

NLO dual �s�s and �s�s + �2s�ss of the one and two loop anomalous dimensions (solid), and
the double-leading functions at LO and NLO de�ned in eq. (21) (dotdashed). Note that the
double-leading curves coincide with the resummed ones at small M , and with the �xed order
ones at large M .

expansion eq. (8)) has become unstable due to the in
uence of the singularities at M = 1.
No complete and reliable description of � seems possible without some sort of stabilization of

these singularities. However, since they correspond to infrared singularities of the BFKL kernel

(speci�cally logarithms of Q2=�2 with Q2 � �2) this would necessarily be model dependent. In
particular, such a stabilization cannot be easily deduced from the resummation of the M = 0

singularities: the original symmetry of the gluon{gluon amplitude at large s is spoiled by

running coupling e�ects and by unknown e�ects from the coe�cient function through which it
is related to the deep-inelastic structure functions, in a way which is very di�cult to control

near the photoproduction limitM ! 1. We thus prefer not to enter into this problem: rather
we will discuss later a practical procedure to bypass it.

The results summarized in �g. 2 clearly illustrate the superiority of the new double leading
expansion of � over the �xed order expansion, and already indicate that the complete � function

could after all lead to only small departures from ordinary two loop evolution.

3. Having constructed a more satisfactory expansion eq. (21) of the kernel �, we now derive

from it an improved form of the anomalous dimension 
 to be used in the evolution eq. (3), in

order to achieve a more complete description of scaling violations valid both at large and small
x. In principle, this can be done by using the duality relation eq. (10), which simply gives the
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function 
 as the inverse of the function �. However, in order to derive an analytic expression

for 
(N;�s) which also allows us to clarify the relation to previous attempts we start from the

naive double-leading expansion of 
 [18] in which terms are organized into \envelopes" of the

contributions summarized in �g. 1a in an analogous way to the double leading expansion (21)

of �:


(N;�s) =
h
�s
0(N) + 
s

�
�s

N

�
� nc�s

�N

i
+�s

h
�s
1(N) + 
ss

�
�s

N

�
� �s

�
e2
N2 +

e1
N

�
� e0

i
+ � � � ; (22)

where now e2 = g
(s)
2 = 0, e1 = g

(ss)
1 = nfnc(5+13=(2n2c ))=(18�

2) and e0 = �(
11
2
n3c+nf )=(6�n

2
c).

In this equation, the leading and subleading singularities 
s and 
ss are obtained using duality

eq. (10) from �0 and �1, and summed up to give expressions which are exact at NLLx. These

are then added to the usual one and two loop contributions, and the subtractions take care of

the double counting of singular terms.
It can be shown that the dual of the double leading expansion of � eq. (21) coincides with

this double leading expansion of 
 eq. (22) order by order in perturbation theory, up to terms
which are higher order in the sense of the double leading expansions. However, it is clear that
these additional subleading terms must be numerically important. Indeed, it is well know that

at small N the anomalous dimension in the small-x expansion eq. (12) is completely dominated
by 
ss(�s=N) which grows very large and negative, leading to completely unphysical results
in the HERA region [16]. It is clear that this perturbative instability will also be a problem
in the double leading expansion eq. (22). On the other hand, we know from �g. 2 that the
exact dual of � in double leading expansion is stable, and not too far from the usual two loop
result. The origin of this instability problem, and a suitable reorganization of the perturbative

expansion which allows the resummation of the dominant part of the subleading terms have
been discussed in ref. [19]. After this resummation, the resulting expression for 
 in double
leading expansion will be very close to the exact dual of the corresponding expansion of �.

The procedure of ref. [19] can be interpreted in a simple way whenever the all-order \true"

function �(M;�s) possesses a minimum at a real value of M , Mmin, with 0 < Mmin < 1

(although the �nal result for the anomalous dimension will retain its validity even in the absence

of such minimum). Using � to denote this minimum value of �,

� � �(Mmin; �s) = �0 +��; �0 � �s�0(
1
2
) = 4nc

�
�s ln 2: (23)

The instability turns out to be due to the fact that higher order contributions to 
 must
change the asymptotic small x behaviour from x��0 to x��. The starting point of the proposed

procedure consists of absorbing the value of the correction to the value of � at the minimum

into the leading order term in the expansion of �:

�(M;�s) = �s�0(M) + �2s�1(M) + : : :

= (�s�0(M) + ��) + �2s ~�1(M) + � � � ; (24)

where ~�n(M) � �n(M) � cn, with cn chosen so that ~�n(M) no longer leads to an O(�ns ) shift

in the minimum. Since the position Mmin of the all-order minimum is not known, one must

in practice expand it in powers of �s around the leading order value M = 1
2
, so at higher
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orders the expressions for the subtraction constants cn can become quite complicated functions

of �i and their derivatives at M = 1
2
[19]. However at NLO we have simply c1 = �1(

1
2
), so

�� = �2s�1(
1
2
) + � � �.

A stable expansion of 
 in resummed leading and subleading singularities can now be ob-

tained from the duality eqs.(13,14,. . . ) by treating �0 +�� as the LO contribution to �, and

the subsequent terms ~�i as perturbative corrections to it. Of course, since the reorganization

eq. (24) amounts to a reshu�ing of perturbative orders, to any �nite order the anomalous

dimension obtained in this way will be equal to the old one up to formally subleading correc-

tions. Explicitly, we �nd in place of the previous expansion in sums of singularities eq. (12) the

resummed expansion


(N;�s) = 
s
�

�s

N���

�
+ �s~
ss

�
�s

N���

�
+ : : : ; (25)

where

~
ss
�

�s

N���

�
� 
ss

�
�s

N���

�
�

�1(
1
2
)

�00
�

s
�

�s

N���

�� : (26)

In terms of splitting functions this resummed expansion is simply

xP (x; �s) = �se
���[Ps(�s�) + �s ~Pss(�s�) + : : :]

= �se
���[Ps(�s�) + �s ~Pss(�s�) � ���Ps(�s�) + : : :]: (27)

The expansion is now stable [19], in the sense that it may be shown that ~Pss(�s�)=Ps(�s�)
remains bounded as � ! 1: subleading corrections will then be small provided only that �s
is su�ciently small. This result may be shown to be true to all orders in perturbation theory,

using an inductive argument.
We can thus replace the unresummed singularities 
s and 
ss in eq. (22) with the resummed

singularities eq. (25) to obtain a double leading expansion with stable small x behaviour:


(N;�s) =
h
�s
0(N) + 
s(

�s

N���
)� �s

nc
�N

i
+�s

h
�s
1(N) + ~
ss(

�s

N���
)� �s(

e2
N2 +

e1
N
)� e0

i
+ � � � : (28)

Momentum conservation is violated by the resummation because 
s and 
ss and the subtraction

terms do not vanish at N = 1. It can be restored by simply adding to the constant e0 a further

series of constant terms beginning at O(�2s): these are all formally subleading in the double

leading expansion. This constant shift in 
 is precisely analogous to the shift made on � in
eq. (23) which generated the resummation.

It is important to recognize that there is inevitably an ambiguity in the double counting

subtraction terms in eq. (28). For example, at the leading order of the double leading expansion
instead of subtracting nc�s

�N
we could have subtracted nc�s

�(N���)
, since this di�ers only by formally

subleading terms: �� = O(�2s), so

�s

N
=

�s

N ���

 
1�

��

N ���
+ : : :

!
: (29)
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Following the same type of subtraction at NLO, the resummed double leading anomalous

dimension may thus be written as


(N;�s) =
h
�s
0(N) + 
s(

�s

N���
)� �s

nc
�(N���)

i
+�s

h
�s
1(N) + ~
ss(

�s

N���
) + nc��

�(N���)2
� �s(

e2
(N���)2

+ e1
N���

)� e0
i
+ � � � :(30)

The extra term at NLO comes from the �rst correction in eq. (29), which is of order
�3s
N2 , and

thus a subleading singularity. The characteristic feature of this alternative resummation is

that the �xed order anomalous dimensions 
0, 
1 are preserved in their entirety, including the

position of their singularities. As with the previous expansion eq. (28) momentum conservation

may be imposed by adding to e0 a series of terms constant in N and starting at O(�2s).

This completes our procedure of inclusion of the most important part of the subleading

corrections, as we shall see shortly by a direct comparison of the resummed expansions eq. (28)

and eq. (30) with the exact dual of � evaluated according to eq. (21). In the sequel we will
discuss the phenomenology based on the two resummed expansions eq. (28) and eq. (30) on
an equal footing, taking the spread of the results as an indication of the residual ambiguity
due to subleading terms. Although formally the di�erences between the two expansions are

subleading, we will �nd that in practice they may be quite substantial, because �� may be
large.

4. So far we have constructed resummations of the anomalous dimension and splitting function
which satisfy the elementary requirements of perturbative stability and momentum conserva-
tion. This construction relies necessarily on the value � of � near its minimum, since it is this
which determines the small x behaviour of successive approximations to the splitting function.
In order to obtain a formulation that can be of practical use for actual phenomenology, we will
need however to improve the description of �(M) in the \central region" near its minimum

Mmin, since as we already observed, we cannot reliably determine the position and value of
the minimum of � without a stabilization of the M = 1 singularity. Indeed, we can see from

�g. 2 that in the central region � evaluated in the double leading expansion is dominated by

the presumably unphysical M = 1 poles of �, and at NLO this means that it actually has no
minimum, becoming rapidly negative. However, one can use the value � of the true � at the

minimum as a useful parameter for an e�ective description of the � function around M = 1=2.
Indeed, �� as estimated from its next-to-leading order value �2s�1(1=2) turns out to be of the

same order as �0 for plausible values of �s, a feature which can be also directly seen from
�g. 2. This supports the idea that � and �� are not truly perturbative quantities: in general

we expect that the overall shift of the minimum will still be of the order of �0 and negative.

It is this order transmutation that makes the impact of the resummations eq. (28,30), and the

di�erences between them, quite substantial.

In �g. 3 and �g. 4 we display the results for the resummed anomalous dimensions in the two
di�erent expansions eq. (28) and eq. (30) respectively, each computed at next-to-leading order.
In both �gures we show for comparison the �xed order anomalous dimension �s
0(N)+�2s
1(N)

eq. (4). Also for comparison, we show the exact dual of � computed at NLO in the double

leading expansion eq. (21), obtained from eq. (10) by exact numerical inversion. This curve is

thus simply the inverse of the corresponding curve already shown in �g. 2.
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Figure 3: Comparison of the anomalous dimension 
 evaluated at NLO in the resummed
expansion eq. (28) for three di�erent values of � (dashed) with the usual �xed order perturbative
anomalous dimension (also at NLO) eq. (4) (dotted) and that obtained by exact duality from
� at NLO in the expansion eq. (21) as displayed in �g. 2 (solid). The unresummed 
 eq. (22)
is also shown at NLO. Notice that the � = 0:21 curve is very close to the two loop anomalous
dimension down to the branch point at N = �.

In �g. 3 we show the anomalous dimension computed at NLO using the resummation

eq. (28), for � = �0 and � = 0. The �rst value corresponds to the LO approximation to �, while
the second value is close to the NLO approximation when �s is in the region �s � 0:1�0:2. We
might expect the value of � as determined by the actual all-order minimum of � to lie within

this range. Note that, in general, the resummed anomalous dimension has a cut starting at

N = �, which corresponds to the x�� power rise; for this reason our plots stop at this value of
N . The � = 0 curve, corresponding to the next-to-leading order approximation to �, is seen to
be very close to the exact dual of � at NLO in the expansion eq. (21), as already anticipated.

This is to be contrasted with the corresponding unresummed anomalous dimension eq. (22),

which is also displayed in �g. 3, and is characterized by the rapid fall at small N discussed
already in ref. [16, 19]. This comparison demonstrates that indeed the perturbative reorgani-

zation eliminates this pathological steep decrease. The resummed curve with � = 0 and the
exact dual of � become rather di�erent for small N <� 0:2. However, this is precisely the range

of N which corresponds to the central region of M where we cannot trust the next-to-leading

order determination of �. Finally, we show that we can choose a value of � ' 0:21 such that

the resummed anomalous dimension closely reproduces the two loop result down to the branch
point at N = �. This shows that the absence of visible deviations from the usual two loop

evolution can be accommodated by the resummed anomalous dimension. However this is not
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Figure 4: Comparison of the anomalous dimension 
 evaluated at NLO in the resummed
expansion eq. (30) for two di�erent values of � (dashed) with the usual �xed order perturbative
anomalous dimension (also at NLO) eq. (4) (solid) and that obtained by exact duality from �
at NLO as in �g. 3 (dotdash). Notice that the � = 0 curve is virtually indistinguishable from
the �xed order anomalous dimension for all values of N .

necessarily the best option phenomenologically: perhaps the data could be better �tted by a
di�erent value of � if a suitable modi�cation of the input parton distributions is introduced.
It is nevertheless clear that large values of � such as � � �0 can be easily excluded within the

framework of this resummation, since they would lead to sizeable deviations from the standard

two loop scaling violations in the medium and large x region.
The splitting functions corresponding to the anomalous dimensions of �g. 3 are displayed

in �g. 5. The basic qualitative features are of course preserved: in particular, the curves with

small values of � = 0 and � = 0:21 are closest to the two loop result. However, on a more

quantitative level, it is clear that anomalous dimensions which coincide in a certain range of N ,

but di�er in other regions (such as very small N) may lead to splitting functions which di�er

over a considerable region in x. In particular, the � = 0:21 curve displays the predicted x��

growth at su�ciently large � (x <� 10�4). The dip seen in the �gure for intermediate values of �

is necessary in order to compensate this growth in such a way that the moments for moderate

values of N remain unchanged. Note that the x�� behaviour of the splitting function at small x

is corrected by logs [19]: Ps �
�!1

��3=2x��. If � = 0 this logarithmic drop provides the dominant

large � behaviour which appears in the �gure.

If the anomalous dimensions are instead resummed as in eq. (30), the results are as shown

in �g. 4, again for the two very di�erent values of �, � = 0 and � = �0. When � = 0 the

resummed anomalous dimension is now essentially indistinguishable from the two loop result.

11



Figure 5: The splitting functions corresponding to the anomalous dimensions of �g. 3.

This is due to the fact that the simple poles at N = 0 which are now retained in 
0 and 
1
provide the dominant small N behaviour. The branch point at N = � in 
s and 
ss is then
relatively subdominant. This remains of course true for all � � 0, and in practice also for small
values of � such as � <� 0:1. When instead � = �0 the result does not di�er appreciably from
the resummed anomalous dimension shown in �g. 3, since now the dominant smallN behaviour

is given by the branch point at N = �0, which is not a�ected by changes in the double counting

prescription. Summarizing, the peculiar feature of the resummation eq. (30) is that it leads to
results which are extremely close to usual two loops for any value of � � 0, without the need
for a �ne-tuning of �.

Finally, in �g. 6 we display the splitting functions obtained from the resummed anomalous

dimensions of �g. 4. The � = �0 case is, as expected, very close to the corresponding curve

in �g. 5. However the � = 0 curve is now in signi�cantly better agreement with the two loop
result than any of the resummed splitting functions of �g. 5, even that computed with the

optimized value � = 0:21. Moreover, this agreement now holds in the entire range of �. This

is due to the fact that the corresponding anomalous dimension is now very close to the �xed
order one for all N > 0, and not only for N > � = 0:21. This demonstrates explicitly that one

cannot exclude the possibility that the known small x corrections to splitting functions resum
to a result which is essentially indistinguishable from the two-loop one. This however is only

possible if � <� 0.
To summarise, we �nd that the known success of perturbative evolution, and in particular

double asymptotic scaling at HERA can be accommodated within two distinct possibilities,

both of which are compatible with our current knowledge of anomalous dimensions at small x,

and in particular with the inclusion of corrections derived from the BFKL equation to usual
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Figure 6: The splitting functions corresponding to the anomalous dimensions of �g. 4.

perturbative evolution. One possibility, embodied by the resummed anomalous dimension
eq. (30) with � <� 0, is that double scaling remains a very good approximation to perturbative
evolution even if the x! 0 limit is taken at �nite Q2. The other option, corresponding to the
resummation eq. (28) with a small value of �, is that double scaling is a good approximation
in a wide region at small x, including the HERA region, but eventually substantial deviations

from it will show up at su�ciently small x. In the latter case, the best-�t parton distributions
might be signi�cantly di�er from those determined at two loops even at the edge of the HERA

kinematic region. Both resummations are however fully compatible with a smooth matching

to Regge theory in the low Q2 region [22].

5. In conclusion, we have presented a procedure for the systematic improvement of the split-

ting functions at small x which overcomes the di�culties of a straightforward implementation
of the BFKL approach. The basic ingredients of our approach are the following. First, we

achieve a stabilization of the perturbative expansion of the function � near M = 0 through the

resummation of all the LO and NLO collinear singularities derived from the known one{ and
two{loop anomalous dimensions. The resulting � function is regular at M = 0, and in fact,

to a good accuracy, satis�es the requirement imposed by momentum conservation via duality.
Then, we acknowledge that without a similar stabilization of the M = 1 singularity it is not

possible to obtain an reliable determination of � in the central region M � 1=2. However, we
do not have an equally model{independent prescription to achieve this stabilization at M = 1.

Nevertheless, the behaviour of � in the central region can be e�ectively parameterized in terms

of a single parameter � which �xes the asymptotic small x behaviour of the singlet parton

distribution. This enables us to arrive at an analytic expression for the improved splitting

function, which is valid both at small and large x and is free of perturbative instabilities.

13



This formulation can be directly confronted with the data, which ultimately will provide a

determination of � along with �s and the input parton densities. The well known agreement of

the small x data with the usual Q2 evolution equations suggests that the optimal value of � will

turn out to be small, and possibly even negative for the relevant value of �s. Such a value of

� is theoretically attractive, because it corresponds to a structure function whose leading-twist

component does not grow as a power of x in the Regge limit: it would thus be compatible

with unitarity constraints, and with an extension of the region of applicability of perturbation

theory towards this limit.

Several alternative approaches to deal with the same problem through the resummation

of various classes of formally subleading contributions have been recently presented in the

literature. Speci�c proposals are based on making a particular choice of the renormalization

scale [23], or on a di�erent identi�cation of the large logs which are resummed by the � evolution

equation (6), either by a function of � itself [24], or by a function of Q2 [17, 25], or both [26].

The main shortcoming of these approaches is their model dependence. For instance, in ref. [25]
the value of � is calculated, and � is supposedly determined for all 0 � M � 1. This however
requires the introduction of a symmetrization of �, which we consider to be strongly model
dependent: indeed, in ref. [25] it is recognized that their value of � only signals the limit of
applicability of their computation. We contrast this situation with the approach to resummation

presented here, which makes maximal use of all the available model-independent information,
with a realistic parameterization of the remaining uncertainties. We expect further progress to
be possible only on the basis of either genuinely nonperturbative input, or through a substantial
extension of the standard perturbative domain.
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