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1. Introduction

In the current study of algebraic geometry in positive characteristic there is a growing interest

to curves which are de�ned over a �nite �eld F and have many F-rational points. Such curves,

especially F-maximal curves, play indeed a very important role in Coding theory [16], Chapter

4, x7, [24], x8, [34], xVII.4, [38], x3.2.3, and some further motivation for their investigation

also comes from Number Theory [28], [32] and Finite Geometry [20]. Here, maximality of a

(projective geometrically irreducible non-singular algebraic) curve means that the number of its

F-rational points attains the Hasse-Weil upper bound

q2 + 1 + 2qg ;

with g being the genus of the curve and F the �eld Fq2 of order q
2. The majority of work has

focused on determining the spectrum for the genera of maximal curves, and the relevant known

results and open problems concern those maximal curves which have large genus g with respect

to the order q2 of the underlying �eld; see for example [2], [4], [7], [10], [11], [13], [14], and [15].

The precise upper bound limit is known to be q(q � 1)=2 [23]. It seems plausible that only few

maximal curves can have genus not too distant from the upper limit. However, the problem of

�nding and classifying such maximal curves is still open and appears to be rather di�cult. For

an up-dated discussion of the state of the art, see Section 5. The most well-known maximal

curve is the so-called Hermitian curve H which is de�ned by the equation

Y qZ + Y Zq
�Xq+1 = 0 :(1.1)

In fact, H is the only Fq2-maximal curve, up to isomorphism, of genus q(q� 1)=2 [29] and has a

very large automorphism group (over Fq2), namely Aut(H) �= PGU(3;Fq2). Moreover, all Fq2-

quotient curves of H are also Fq2-maximal, see [26], Proposition 6. So, it would be of interest

to solve the above mentioned open problem for quotient curves arising from automorphism

groups of small order. The key to the solution is to classify all quotient curves of H arising

from automorphisms of prime order; in other words to give a complete classi�cation of Galois

Fq2-coverings � : H ! X of prime degree. This is actually the main goal in the present paper.

Theorem 2.1 states that only �ve types of such coverings exist. It should be noted that almost

all explicit examples of maximal curves in the literature are quotient curves of H. This suggests

that Theorem 2.1 might be an essential step toward the complete solution to the spectrum

problem for maximal curves having large genus. For this reason, Theorem 2.1 also gives some

further useful information, such as an explicit equation for a plane model of the covered curve.

Actually, all these curves appear in previous work as special cases of wider families, see Remark

2.3. Some new information will be given in Sections 3 and 4, such as curves of types (I), (II),

(III) and (IV) in Theorem 2.1 can be obtained from subgroups of prime order of SL(2;Fq)

while those of class (V) from the Singer group S of H. This gives a motivation for the study of

quotient curves arising from subgroups of SL(2;Fq) or from subgroups of the normaliser in S.

In Section 3, a variant of the classical Riemann-Hurwitz formula will be stated which allows a

straightforward computation of the genus of all such but tame curves. However, the apparently

di�cult problem of determining an explicit (possibly singular) plane model for each of them

remains open.
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The present research is a continuation of [4] in which quotient curves arising from the subgroups

of the Singer group of Aut(H) have been investigated. Computations concerning the genera of

certain quotient curves covered by H are also given in [11]. However, their methods and results

are quite di�erent from ours, apart from a very few overlapping parts, see Remarks 2.3, 3.4, 4.3.

Throughout the paper we use the term of a curve to denote a projective geometrically irre-

ducible non-singular algebraic curve de�ned over the algebraic closure �Fq2 of a �nite �eld Fq2 ,

of characteristic p, equipped with the Frobenius morphism over Fq2 .

For basic facts on curves the reader is referred to [30] and [19], Chapter IV. The necessary

background on �nite groups and especially on subgroups of PGU(3;Fq2) can be found in [22],

[20], and [21].

2. Classification of curves prime degree Galois

covered by the Hermitian curve

Our purpose is to prove the following theorem.

Theorem 2.1. Let H be the Hermitian curve de�ned over Fq2 and d a prime number. For

a curve X of genus g such that � : H ! X is a Galois Fq2-covering of degree d, we have

either d = 2 6= p or d = p or d � 3 and (q2 � 1)(q2 � q + 1) � 0 (mod d). Moreover, up to

Fq2-isomorphism one the following cases occurs:

(I) d = 2 6= p, X is the non-singular model of the plane curve

yq + y = x(q+1)=2 ; and g =
(q � 1)2

4
;

(II) d = p with q = pt, X is the non-singular model of one of the following plane curves

(1)
tX

i=1

yq=p
i

+ !xq+1 = 0 ; and g =
q

2
(
q

p
� 1) ;

where ! is a �xed element of Fq2 such that !q�1 = �1;

(2)

yq + y = (

tX
i=1

xq=p
i

)2 ; and g =
q(q � 1)

2p
;

provided that p � 3;

(III) d � 3 and q � 1 (mod d), X is the non-singular model of the plane curve

yq � yx2(q�1)=d + !x(q�1)=d = 0 ; and g =
q(q � 1)

2d
;

where ! is a �xed element in Fq2 such that !q�1 = �1;

(IV) d � 3 and q � �1 (mod d), X is the non-singular model of one of the following plane

curves

(1)

yq + y = x(q+1)=d ; and g =
q � 1

2
(
q + 1

d
� 1) ;

(2)

x(q+1)=d + x2(q+1)=d + yq+1 = 0 ; and g =
(q + 1)(q � 2)

2d
+ 1 ;
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(V) d � 3 and (q2 � q + 1) � 0 (mod d), X is the non-singular model of the plane curve

s(xq=d; y1=d; x1=dyq=d) = 0 ; and g =
1

2
(
q2 � q + 1

d
� 1) ;(2.1)

where s(X;Y;Z) :=
Q
(�X + �qY + Z), with � ranging over all d-th roots of unity.

Remark 2.2. The plane curve C given in (2.1) is actually a plane model of X over Fq3 . To

obtain a plane model over Fq2 , one needs to replace C by ��1(C), with � as in (2.3). It turns

out that a plane model of X over Fq2 is given by cu(X;Y;Z) = 0, where c is an appropriate

element in Fq6 and

u(X;Y;Z) = s(aX + Y + aq
2+1Z; aq

2+1X + aY + Z;X + aq
2+1Y + aZ) = 0 ;(2.2)

s(X;Y;Z) being the projectivization of (2.1).

Remark 2.3. Maximal curves over Fq2 with genera as in Theorem 2.1 are known to exist, see

[10], Examples D, E, F, [13], Thm. 3.1, [14], Remark 5.2, [4], [11], Thm. 5.1, Corollary 4.5,

Example 5.10, Example 6.3. However, the interesting question of determining all such maximal

curves is still open, apart from case (I) for which uniqueness up to Fq2-isomorphism has been

already proved [7], Thm. 3.1. In this context, Theorem 2.1 states the uniqueness for maximal

curves prime degree Galois covered by the Hermitian curve, and it also provides a plane model

for such curves by an explicit equation. For d = 3 (or, equivalently q � 2 (mod 3)), Theorem

2.1(V) states that

s(X;Y;Z) = (X + Y + Z)(�X + �2Y + Z)(�2X + �Y + Z)

= X3 + Y 3 + Z3
� 3XY Z ;

so that

s(xq=3; y1=3; x1=3yq=3) = xq + y + xyq � 3(xy)(q+1)=3 ;

de�nes a plane model over Fq3 of a Fq2-maximal curve of genus (q + 1)(q � 2)=6. As before,

a plane model over Fq2 for such a curve is given by cu(X;Y;Z) = 0, where u(X;Y;Z) is as in

(2.2), s(X;Y;Z) = XqZ+Y Zq+XY q
� 3(XY Z)(q+1)=3 and c is an appropriate element in Fq6 .

It should be noticed that this was originally stated in [4], x6.

The proof of Theorem 2.1 uses the well-known isomorphism Aut(H) �= PGU(3;Fq2) (see e.g.

[27], [18], [21], [33]) and it depends on the classi�cation of subgroups of PGU(3;Fq2) of prime

order, see Proposition 2.4. We recall that AutF
q2
(H) = Aut�F

q2
(H), [17], p. 101. To have an

appropriate description of the actions of such subgroups on H, we also need four more plane

models of H di�erent from (1.1), namely:

(M1) Xq+1 + Y q+1 + Zq+1 = 0;

(M2) Y qZ � Y Zq + !Xq+1 = 0, where ! is a �xed element of Fq2 such that !q�1 = �1;

(M3) XY q
�XqY + !Zq+1 = 0, where ! is a �xed element in Fq2 such that !q�1 = �1;

(M4) XY q + Y Zq + ZXq = 0.
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Note that each of the models (M1), (M2) and (M3) is Fq2-isomorphic to (1.1). The model (M4)

is Fq3 -isomorphic to (M1), since for a suitable element a 2 Fq6 , the projective map

� : P2(�Fq)! P2(�Fq) (x : y : x) 7! (ax+ y + aq
2+1z : aq

2+1x+ ay + z : x+ aq
2+1y + az) :

(2.3)

changes (M1) into (M4), cf. [4], Prop. 4.6.

Proposition 2.4. Let Cd = hTdi be a subgroup of Aut(H) �= PGU(3;Fq2) of prime order d.

Then d is as in Theorem 2.1 and up to conjugacy:

(I) If d = 2 6= p and H is de�ned by (1.1), then

Td : (X;Y;Z) 7! (�X;Y;Z) ;

(II) Let d = p.

(1) If H is de�ned by (M2), then

Td : (X;Y;Z) 7! (X;Y + Z;Z) ;

(2) If p � 3 and H is de�ned by (1.1), then

Td : (X;Y;Z) 7! (X + Z;X + Y + Z=2; Z) ;

(III) If d � 3 and q � 1 (mod d) and H is de�ned by (M3), then

Td : (X;Y;Z) 7! (�X;��1Y;Z) ;

where � is a primitive d-th root of unity;

(IV) If d � 3 and q � �1 (mod d) and H is de�ned by (M1), then we have two possibilities,

either

(1)

Td : (X;Y;Z) 7! (�X; Y; Z) ; or

(2)

Td : (X;Y;Z) 7! (�X;��1Y;Z) ;

where � is a primitive d-th root of unity;

(V) If d � 3 and (q2 � q + 1) � 0 (mod d) and H is de�ned by (M4), then

Td : (X;Y;Z) 7! (�X;�qY;Z) ;

where � is a primitive d-th root of unity.

Proof. An essential tool in the proof is the classi�cation of all maximal subgroups of PGU(3;Fq2)

given by Mitchell [27], q odd, and by Hartley [18], q even (see also [25], Ch. V, [21]). This group

has order q3(q3 + 1)(q2 � 1). Hence there is a Sylow d-subgroup of PGU(3;Fq2) for each prime

divisor d of q, q + 1, q � 1, and (q2 � q + 1). Since every subgroup of order d is contained

in a Sylow d-subgroup and any two Sylow d-subgroups are conjugate, we may choose a Sylow

d-subgroup Rd for each d, and only consider those subgroups Cd of order d that are contained

in Rd.

(I) In PGU(3;Fq2), q odd, elements of order 2 are pairwise conjugate, and if H is given by (1.1),

then Td in (I) is an automorphism of order 2 in Aut(H).
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(II) We �rst show that G := Aut(H) � PGU(3;Fq2) has either one or two conjugacy classes

of subgroups of order p, according as p = 2 or p � 3. Let H have equation 1.1. Then a Sylow

p-subgroup Rp of G �xes the point Q := (0 : 1 : 0) and consists of all automorphisms

(X;Y;Z)! (X + aZ; Y + aqX + bZ; Z) ;

where a; b 2 Fq2 , and b
q + b = 0. Since no non-trivial element in Rp �xes a further point of H,

two elements of Rp are conjugate in G i� they are in the stabilizer GQ of Q. By [22], x10.12, GQ

is the semidirect product of Rp with a group H of order (q � 1) comprising all automorphisms

(X;Y;Z)! (uX; uq+1Y;Z) ; u 2 F�
q2 :

Note that the center Z(Rp) of Rp consists of all automorphisms

(X;Y;Z)! (X;Y + b; Z) ; b 2 Fq :

A direct computation shows that Z(Rp) is a full conjugacy class of elements of order p in GQ.

For p = 2, each element of order p is in Z(Rp). Hence we may assume that p � 3. Now let Tp be

as in (II)(2). A straightforward computation shows that the centralizer of Tp in GQ has order

q2, as it consists of all automorphisms

(X;Y;Z)! (X + aZ; Y + aqX + bZ; Z) ; a; b 2 Fq :(�)

Hence, the conjugacy class of Tp comprises q(q
2
� 1) elements of GQ. Since q

3 = q + q(q2 � 1),

this proves that each non-central element of Rp is conjugate to Tp under GQ. Thus G has exactly

two conjugacy classes of elements of order p, provided that p � 3. Now we are in a position to

prove II(1).

For p = 2, the case a = 0 and b = 1 in (�) gives T2 in (II)(1). For p � 3, we see that Tp

above is isomorphic to the automorphism in (II)(1) as follows. We change the model (1.1) into

the model (M2) via the automorphism (X;Y;Z)! (!�1X;!�1Y;Z) with a �xed ! 2 F2
q2

such

that !q�1 = �1; then, the automorphism for a = 0 and b = !q�1 in (�) is turned into the

automorphism in (II)(1).

(III) Let d � 3 and q � 1 (mod d), and denote by D the largest multiplicative subgroup of Fq

of order a power of d. Then the automorphisms (X;Y;Z) ! (uX; u�1Y;Z) with u ranging in

D, form a subgroup which turns out to be a Sylow d-subgroup Rd of PGU(3;Fq2). Since Rd is

cyclic, it has only one subgroup of order d. On the other hand, Rd contains the automorphism

Td as given in this case and the result follows.

(IV) Let d � 3 and q � �1 (mod d). First we consider the case d = 3. De�ne j as the greatest

power of 3 which divides q + 1. Then a Sylow 3-subgroup of PGU(3;Fq2) has order 3
j+1. To

determine such a Sylow 3-subgroup R3 explicitly, we adopt the plane model (M1) for H. Let us

introduce the following automorphisms of H:

�u;v : (X;Y;Z)! (uX; vY; Z) ;

 u;v : (X;Y;Z)! (Z; uX; vY ) ;

�u;v : (X;Y;Z)! (vY; uZ;X) :

where u; v 2 Fq2 . If both u and v only range in the subgroup M of order 3j of F�
q2
, then the

above automorphisms form a group of order 3j+1 which is a Sylow 3-subgroupR3 of PGU(3;Fq2).
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Note that R3 is the semidirect product of C3 � C
0
3j

by C 00
3 , where C3j = h��;1i, C

0
3j

= h�1;�i,

C 00
3 = h 1;1i, and � is a primitive third root of unity in Fq2 . Moreover, the elements of order

3 in R3 are �u;v with u3 = v3 = 1,  u;v and �u;v, with u; v 2 M . Now let � be an element of

order 3 in C3j � C
0
3j
. It is straightforward to check that � is conjugate either to ��;1 or to ��;�2

under a suitable element �u;v, u; v 2 F
�
q2
. This shows that each subgroup of C3j � C

0
3j

of order

3 is either (IV)(1) or (IV)(2), up to conjugacy. The next step is to check that h u;vi, u; v 2M

and (uv)3
j�1

= 1, is conjugate to h��;�2i. Let w be an element in M such that ws = (uv)�1.

Then the points (w : uw2 : 1), (�w : �2uw2 : 1), (�2w : �uw2 : 1) de�ned over Fq2 are the �xed

points of  u;v. None of these points lies on H, and they are the vertices of a triangle. According

to [27] and [18], PGU(3;Fq2) contains an element that takes this triangle to the fundamental

triangle. Then the conjugate of  u;v under the same element belongs to C3j � C
0
3j
, and thus

h u;vi = h��;�2i up to conjugacy. For (uv)3
j�1

6= 1, it turns out instead that the �xed points

(w : uw2 : 1), (�w : �2uw2 : 1), (�2w : �uw2 : 1) of  u;v are not de�ned over Fq2 , because

w3 = (uv)�1 yields w to be in a cubic extension of Fq2 . As a consequence of [27] and [18],

we have then that  u;v is conjugate to an element of order 3 in a Singer subgroup of order

(q2 � q + 1) of PGU(3;Fq2). Hence the subgroups h u;vi with u; v 2 M but (uv)3
j�1

6= 1, are

pairwise conjugate under PGU(3;Fq2), and thus each of them is conjugate to hT3i as given in

(V). Now, by �u�1;v�1 = �2u;v, all the above assertions hold true when  u;v is replaced by �u;v,

and this completes the proof for d = 3. In the case d > 3, a Sylow d-subgroup Rd of PGU(3;Fq2)

is Cd � C
0
d, with Cd = h��;1i and C

0
d = h�1;�i. Thus each subgroup of order d of Rd is either

h��;1i or h��;��1i, up to conjugacy.

(V) Let d � 3 and (q2� q+1) � 0 (mod d). Then a Sylow d-subgroup is a subgroup of a Singer

subgroup of PGU(3;Fq2), and hence it is conjugate to Cd = hTdi as given in (V), see [3].

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. For each of the subgroups Cd = hTdi listed in Proposition 2.4(I)-(IV)

we will determine a Fq2-plane model for the quotient curve H=Cd, or equivalently the sub�eld

�0 := Fq2(H=Cd) = Fq2(x
0; y0) of the Hermitian function �eld over Fq2 � := Fq2(H) = Fq2(x; y).

For the case (V) we will determine �0 = Fq3 (H=Cd). Afterwards we compute the genus of �
0.

(I) According to Proposition 2.4(I), we de�ne � by yq + y � xq+1 = 0. By considering x0 := x2

and y0 := y we have that �0 is the �xed �eld of Cd and that (y0)q + y0 = (x0)(q+1)=2. For the

value of g see [34], Prop. VI.4.1.

(II) (1) By Proposition 2.4(II.1), � is assumed to be yq � y + !xq+1 = 0, with !q�1 = �1.

Setting x0 := x and y0 := yp � y, we have that [� : �0] = p and that �0 is the �xed �eld of Cd.

Moreover,

TrFq=Fp
(y0) :=

tX
i=1

(y0)q=p
i

= yq � y ; q = pt :

Hence TrFq=Fp
(y0) + !(x0)q+1 = 0. As the polynomial TrFq=Fp

(Y ) + !(x0)q+1 is irreducible, we

obtain the claimed plane model for �0. For the value on g one proceeds as in [34], Prop. VI.4.1.
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(2) Here, by Proposition 2.4(II.2), � is de�ned as in (I) above. Setting x0 := xp � x and

y0 := y � x2=2, then �0 is the �xed �eld of Cd. An easy computation shows that

(y0)q + y0 = �(TrFq=Fp
(x0))2=2 ;

and hence we obtain an equation de�ning �0. For the value of g see [34], Prop. VI.4.1.

(III) By Proposition 2.4(III), we de�ne � by xyq � xqy + ! = 0 with !q�1 = �1. Let x0 := xd,

y0 := xy and

f(X;Y ) := Y q
� Y X2(q�1)=d + !X(q�1)=d :

Then f(x0; y0) = 0, and we claim that f(X;Y ) is irreducible in �Fq[X;Y ]. To prove the claim,

assume on the contrary that f(X;Y ) =
Q

i fi(X;Y ), where fi(X;Y ) are irreducible in
�Fq[X;Y ].

From
Q

i fi(X
d;XY ) = Xq+1(Xq+1+ Y q+1+1) follows that one of the factors on the left hand,

say f1(X
d;XY ) is of type Xt, (0 � t � q + 1). Then f1(X;Y ) = Xt=d, and t � 0 (mod d). But

f(X;Y ) has no factor of type Xk (k > 1), and the claim is proved. Next we show that �0 is the

�xed �eld of Cd. Clearly, �0
� FixCd

(�). Note that ord(Cd) = d yields [� : �0] � d. In fact,

each element of � turns out to be a linear combination of 1; x; : : : ; xd�1 over �0. To prove the

latter claim, choose an element h(x; y) 2 �. Then h(x; y) = a0(x)+ � � �+ai(x)y
i+ � � �+an(x)y

n,

ai(x) 2 Fq2(x). Clearly, h(x; y) = b0(x) + � � �+ bi(x)y
0i+ � � �+ bn(x)y

0n, where bi(x) = ai(x)x
�i.

Thus h(x; y) = b0(x) + � � � + bi(x)y
0i + � � � + bb(x)y

0n. It remains to show that bi(x) is a linear

combination of 1; x; : : : ; xd�1 over �0. For bi(x) 2 Fq2 [x], then bi(x) = b0 + : : : bix
i + � � �+ bsx

s.

Replacing x0 = xdj+k, (0 � k < d) by xkx0
j, we see that bi(x) is a linear combination of

1; x; : : : ; xd�1 over �0. Finally, let a(x) = a0+� � �+ad�1x
d�1, b(x) = b0+: : : bd�1x

d�1, ai; bi 2 �
0.

Then there exists c(x) = c0 + � � � + cd�1x
d�1, ci 2 �0=Fq2 such that a(x)=b(x) = c(x), and this

completes the proof. Since Td has two �xed points on H, namely (1 : 0 : 0) and (0 : 1 : 0), from

the Riemann-Hurwitz formula applied to H ! H=Cd, the genus is equal to (q
2
� q)=2d.

Remark 2.5. Concerning the above Item (III), the referee pointed out a shorter proof of the

absolute irreducibility which uses the polynomial g(Y;Z) = yqz � yzq + ! = 0 with !q�1 = �1

instead of f(X;Y ). We sketch here the proof.

Let Td be the automorphism of order d given in Proposition 2.4 (III); i.e., Td : (X;Y;Z) 7!

(X;�Y; ��1Z). We then have

H
0 = Fq2(z

0; y0) � Fq2(z; y) = H

[ p [ p  � degree q

Fq2(z
d) � Fq2(z)

"

degree d

It can easily be seen that the extensions

Fq2(z
d) � Fq2(z) � Fq2(z; y)

are absolutely irreducible (i.e., the relative degrees of the �elds involved do not change if one

extends the base �eld from Fq2 to its algebraic closure). Also easily seen are:

Fq2(z
0; y0) � HhTdi and H

0(z) = H :
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From this one concludes that Fq2(z
0; y0) = HhTdi and

[Fq2(z
0; y0) : Fq2(z

0)] = q;

and, moreover, this degree does not change by going to the algebraic closure of Fq2 . This means

that the polynomial g(Y;Z) is indeed absolutely irreducible.

(IV) Here � is de�ned by xq+1 + yq+1 + 1 = 0.

(1) Let x0 := xd and y0 = y. Then [� : �0] = d and �0 is the �xed �eld of Cd. There are exactly

q + 1 totally rami�ed points in H ! H=Cd, namely (0 : � : 1), with �q+1 = �1, and we obtain

the claimed value for g.

(2) Let x0 = xd, y0 = xy, and

f(X;Y ) := X(q+1)=d +X2(q+1)=d + Y q+1 :

Then f(x0; y0) = 0, and we see that f(X;Y ) is �Fq-irreducible arguing as in the proof of (III).

Since Td has no �xed point on H, the Riemann-Hurwitz formula applied to H ! H=Cd gives

g = (q2 � q + 2d� 2)=2d.

(V) By Remark 2.2 � can be de�ned over Fq3 by xyq + y + xq = 0.

Claim. The following

f(X;Y ) := s(Xq=d; Y 1=d;X1=dY q=d)

belongs to Fq[X;Y ] and it is absolutely irreducible.

Proof of the Claim. We only need to show that d j i and d j j for each term ci;jX
i
1X

j�i
2 X

d�j
3 in

s(X1;X2;X3). Clearly, s(X1; 
qX2;X3) = s(X1;X2;X3) for each 

d = 1, and s(X1;X2;X3) =

s(X2;X3;X1) = s(X3;X1;X2). Polynomials satisfying both of the above properties have been

investigated in [3]. In our case, s(X1;X2;X3) contains X
d
2 . Thus [3], Lemma 6, yields d� j �

(q2+1)(�i) (mod d), whence j � qi (mod d) follows by (q2�q+1) � 0 (mod d). Equivalently,

there are integers uij and vij such that qi� j = duij and (q � 1)j + i = dvij . Then

s(Xq=d; Y 1=d;X1=dY q=d) =
X

ci;jX
qi+d�jY j�i+q(d�j) ;

and it follows that f(X;Y ) 2 Fq2 [X;Y ]. To show that it is absolutely irreducible, let x0 := xd,

y0 := yd. Then

f(x0; y0) =
Y
�d=1

(�xq + �qy + xyq) = (xyq + y + xq)
Y

�d=1;� 6=1

(�xq + �qy + xyq) ;(�)

Since the product on the right side has d irreducible factors, the absolutely irreducibility of

f(X;Y ) can be proved by arguing as in case (III). This completes the proof of the claim.

Now (�) implies f(x0; y0) = 0 and then, �0 = Fq3 (x
0; y0) is the �xed of Cd over Fq3 . To compute

the genus, as Td has exactly three �xed points which are the only (totally) rami�ed points, we

use the Riemann-Hurwitz formula.

Remark 2.6. It seems plausible that one can prove the assertion that the polynomial f(X;Y )

written in the above claim, is absolutely irreducible using arguments to the ones in Remark 2.5.
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3. The genus of maximal curves arising from

tame subgroups of SL(2;Fq)

We have already noticed that the group of automorphism Aut(H) of the Hermitian curve H is

isomorphic to PGU(3;Fq2). From the classi�cation of subgroups of PSU(3;Fq2) given in [27],

[18] and [21] it follows that Aut(H) contains a subgroup � isomorphic to SL(2;Fq); moreover,

any two such subgroups are conjugate in Aut(H). Geometrically, � is contained in the subgroup

of Aut(H) that preserves a non-incident point-line pair (P0; `), where P0 2 P
2(Fq2) n H and

` is its polar line with respect to the unitary polarity associated with H. In particular, ` is a

Fq2-rational line meeting H in (q + 1) pairwise distinct Fq2-rational points.

In this section our aim is to compute the genus of the quotient curve of H arising from each

tame subgroup of �, see Proposition 3.3. Recall that an automorphism group is called tame if

its order is prime to the characteristic of the base �eld. For this purpose, we need at �rst to

give a suitable description of the action of subgroups of � on H. We will use the plane model

(M3) in x2.

We de�ne the above point-line pair (P0; `) by choosing P0 = (0 : 0 : 1) and ` as the line at

in�nity: Z = 0. Then the subgroup of automorphisms of P2(�Fq2) preserving both (P0; `) and

H, consists of maps of type

(X;Y;Z)! (aX + bY; cX + dY; Z) ;(3.1)

where

acq � aqc = 0; bdq � bqd = 0; bcq � aqd = �1; and adq � bqc = 1 :

Those maps with a; b; c; d 2 Fq and ad� bc = 1, form a subgroup isomorphic to SL(2;Fq). We

choose this subgroup to represent �.

Let G be a subgroup of �. The following lemma shows that the action of G on the a�ne points

of H is semi-regular, i.e. each point-orbit of a�ne points of H under G has length equal to the

order of G.

Lemma 3.1. Let � 2 � and P 2 H an a�ne point such that �(P ) = P . Then � is the identity

map.

Proof. It follows from (3.1) and the fact that �q = � for each � 2 Fq.

From now on we assume that G is tame and investigate the action of G on the set I := ` \ H,

consisting of all points (1 : m : 0);m 2 Fq, together with (0 : 1 : 0). Since � acts on I as

PSL(2;Fq) in its natural 2-transitive permutation representation on P1(Fq), we have actually

to consider �G instead of G, where �G is the image of G under the canonical epimorphism

� : � �= SL(2;Fq)! PSL(2;Fq) :

Note that the kernel of � is trivial for p = 2, otherwise it is the subgroup of order 2 generated

by the automorphism

(X;Y;Z) 7! (�X;�Y;Z) :

Hence either ord(G) = 2ord( �G) or ord(G) = ord( �G), and in the later case ord( �G) must be odd.
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According to the classi�cation of subgroups of PSL(2;Fq) [22], Hauptsatz 8.27, the tame sub-

group �G is one of the following groups:

(3.1) Cyclic of order d, where d j (q + 1) for p = 2, or d j (q + 1)=2 for p � 3 ;

(3.2) Dihedral of order 2d, where d j (q + 1)=2 for p � 3 ;

(3.3) Cyclic of order d where d j (q � 1) for p = 2, or where d j (q � 1)=2 id p � 3 ;

(3.4) Dihedral of order 2d, where d j (q � 1)=2 for p � 3 ;

(3.5) The group Sym4 for q
2
� 1 (mod 16) ; p � 5 ;

(3.6) The group Alt4 for p � 5 ;

(3.7) The group Alt5 for q
2
� 1 (mod 5) ; p � 7 .

We will use the symbols C`, D` to denote the cyclic group of order ` and the dihedral group of

order 2`, respectively. The possibilities for the action of �G on I are listed in cases (3.1)-(3.7)

below.

Case 3.1. Here �G has (q + 1)=d orbits each of them having length d.

Case 3.2. If q � 3 (mod 4), then no involution �xes a point, and each orbit has length 2d. If

q � 1 (mod 4), then every involution has two �xed points. Hence just two orbits have length d

and the remaining (q + 1)=2d � 1 orbits have length 2d.

Case 3.3. Here �G has two �xed points and the remaining (q � 1)=d orbits have length d.

Case 3.4. Here �G has an orbit of length 2. If q � 3 (mod 4), then the remaining (q � 1)=2d

orbits have length 2d. If q � 1 (mod 4), then just 2 orbits have length d and the remaining

(q � 1)=2d � 1 orbits have length 2d.

Case 3.5. For P 2 P1(Fq), let S be the stabilizer of P under Sym4. We show �rst that S

is either trivial, or isomorphic to any of the following cyclic groups: C2; C3, or C4. If S 6�= C3,

then S contains an involution � that �xes a point Q 6= P . Since PSL(2;Fq) is 2-transitive on

P1(Fq), we may assume that P is the in�nite point and Q is the origin. Then � is given by the

permutation X 0 = �X;Y 0 = y; Z 0 = Z, so � is uniquely determined. This yields that S cannot

be isomorphic to Alt4;D4 or D2. From the classi�cation of subgroups of Sym4, it remains to

show that S is not isomorphic to Sym3. Let � 2 S be an element of order 3; then � is given by

X 0 = cX + d; Y 0 = Y;Z 0 = Z, with c; d 2 Fq and c
3 = 1. Then c�c is the permutation cX � d

which is di�erent from c�1X � c�1d. On the other hand, the latter permutation is ��1. Hence

c�c 6= ��1, and this shows that S 6� Sym3.

Let S �= C4. Then q � 1 (mod 4) and S is generated by X 0 = cX; Y 0 = Y;Z 0 = Z , with c4 = 1.

Since Sym4 contains exactly three elements of order 4, �G has just one orbit of length 6.

Let S �= C3. Then q � 1 (mod 3) and S can be assumed to be generated by X 0 = cX; Y 0 =

Y;Z 0 = Z, with c3 = 1. Since Sym4 contains exactly four subgroups of order 3, it turns out

that �G has exactly one orbit of length 8.

Let S �= C2. Then S can be assumed to be generated by the involution � given by X 0 =

�X;Y 0 = Y;Z 0 = Z. Note that � 2 PSL(2;Fq) implies q � 1 (mod 4). Clearly, the orbit

of P under �G has length 12. In particular, the conjugacy class of � has size 6. Hence � is a

non-central involution and �G has only one orbit of length 12.
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The above discussion proves the following results:

(I) For q � 1 (mod 4) and q � 1 (mod 3), �G has one orbit of length 6, one orbit of length 8,

one orbit of length 12 and each other orbit has length 24.

(II) For q � 1 (mod 4) and q � 2 (mod 3), �G has one orbit of length 6, one orbit of length 12

and each other orbit has length 24.

(III) For q � 3 (mod 4) and q � 1 (mod 3), �G has one orbit of length 8, and each other orbit

has length 24.

(IV) For q � 3 (mod 4) and q � 2 (mod 3), each orbit under �G has length 24.

Case 3.6. A repetition of the arguments used above shows that the following cases occur:

(I) For q � 1 (mod 4) and q � 1 (mod 3), �G has two orbits of length 4, one orbit of length 6

and each other orbit has length 12.

(II) For q � 1 (mod 4) and q � 2 (mod 3), �G has one orbit of length 6 and each other orbit has

length 12.

(III) For q � 3 (mod 4) and q � 1 (mod 3), �G has two orbits of length 4 and each other orbit

has length 12.

(IV) For q � 3 (mod 4) and q � 2 (mod 43), each orbit under �G has length 12.

Case 3.7. Similar arguments can be used to prove the following.

(I) For q � 1 (mod 5); q � 1 (mod 4), and q � 1 (mod 3), �G has one orbit of length 12, one

orbit of length 20, one orbit of length 30 and the remaining orbits have length 60.

(II) For q � 1 (mod 5); q � 1 (mod 4), and q � 2 (mod 3), �G has one orbit of length 12, one

orbit of length 30 and the remaining orbits have length 60.

(III) For q � 1 (mod 5); q � 3 (mod 4), and q � 1 (mod 3), �G has one orbit of length 12, one

orbit of length 30 and the remaining orbits have length 60.

(IV) For q � 1 (mod 5); q � 3 (mod 4), and q � 2 (mod 3), �G has one orbit of length 12, and

the remaining orbits have length 60.

(V) For q � 4 (mod 5); q � 1 (mod 4), and q � 1 (mod 3), �G has one orbit of length 20, one

orbit of length 30 and the remaining orbits have length 60.

(VI) For q � 4 (mod 5); q � 1 (mod 4), and q � 2 (mod 3), �G has one orbit of length 30 and

the remaining orbits have length 60.

(VII) For q � 4 (mod 5); q � 3 (mod 4), and q � 1 (mod 3), �G has one orbit of length 20, and

the remaining orbits have length 60.

(VIII) For q � 4 (mod 5); q � 3 (mod 4), and q � 2 (mod 3), each orbit under �G has length 60.

Now, the previous case by case analysis of the possible actions of �G together with the Riemann-

Hurwitz formula (see Lemma 3.2) allows us to compute the genus of the quotient curves associ-

ated to G, provided that G is tame. We stress that such curves are Fq2-maximal.

To state Lemma 3.2 let X denote a curve of genus g and H a subgroup of Aut(X ). Let g0 be

the genus of the quotient curve X=H and suppose that the natural morphism � : X ! X=H is
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separable. Then the Riemann-Hurwitz formula applied to � states

2g � 2 = n(2g0 � 2) + � ;

where n is the order of H and � is the degree of the rami�cation divisor D associated to �. For

P 2 X let

nP := #f� 2 H : �(P ) = Pg :

Note that #��1(�(P )) = n=nP and that nQ = nP for each Q 2 ��1(�(P )). Now assume that

H is tame, so that p does not divide nP for each P 2 X , and the multiplicity of D at P is

(nP � 1). As a matter of terminology, the orbit of P is said to be small if it consists of less than

n elements.

Lemma 3.2. If G is a tame subgroup of Aut(X ) and ord(G) = n , then

2g � 2 = n(2g0 � 2) +

sX
i=1

(n� `i) ;

where `1; : : : ; `s are the lengths of the small orbits of G on X .

We notice that the above computation generalizes Guerrero's approach [5], V.2.5, and it can be

deduced from the proof of [5], V.1.3.

Proposition 3.3. Let G denote a tame subgroup of � �= SL(2;Fq), g the genus of the quotient

curve H=G. Then we obtain the following values for g, where �G denotes the image of G under

the canonical epimorphism SL(2;Fq)! PSL(2;Fq).

1. If �G �= Cd, then

g =

8><
>:

(q+1)(q�2)
2d + 1 if d is odd; d j (q + 1) for p = 2, or

d j (q + 1)=2 for p � 3 ;
(q+1)(q�3)

4d + 1 if d j (q + 1)=2 and p � 3 :

2. If �G �= Dd, with d j (q + 1)=2 and p � 3, then

g =

(
(q+1)(q�3)

8d + 1 for q � 3 (mod 4) ;
(q+1)(q�3)+4d

8d
for q � 1 (mod 4) :

3. If �G �= Cd, then

g =

8><
>:

q(q�1)
2d

if d is odd; d j (q � 1) for p = 2, or

d j (q � 1)=2 for p � 3 ;
(q�1)2

4d if d j (q � 1)=2 and p � 3 :

4. If �G �= Dd, with d j (q � 1)=2 and p � 3, then

g =

(
(q�1)2+4d

8d
for q � 3 (mod 4) ;

(q�1)2

8d for q � 1 (mod 4) :

5. If �G �= Sym4, q
2
� 1 (mod 16), p � 5, then

g =

8>>><
>>>:
(q � 1)2=96 for q � 1 (mod 24) ;

(q2 � 2q + 33)=96 for q � �7 (mod 24) ;

(q2 � 2q + 61)=96 for q � 7 (mod 24) ;

(q2 � 2q + 93)=96 for q � �1 (mod 24):
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6. If �G �= Alt4, p � 5, then

g =

8>>><
>>>:
(q � 1)2=48 for q � 1 (mod 12) ;

(q2 � 2q + 33)=48 for q � 5 (mod 12) ;

(q2 � 2q + 13)=48 for q � �5 (mod 12) ;

(q2 � 2q + 45)=48 for q � �1 (mod 12):

7. If �G �= Alt5 and q2 � 1 (mod 5), p � 7, then

g =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(q � 1)2=240 for q � 1 (mod 60) ;

(q2 � 2q + 81)=240 for q � 41 (mod 60) ;

(q2 � 2q + 61)=240 for q � 31 (mod 60) ;

(q2 � 2q + 141)=240 for q � 11 (mod 60) ;

(q2 � 2q + 97)=240 for q � 49 (mod 60) ;

(q2 � 2q + 177)=240 for q � 29 (mod 60) ;

(q2 � 2q + 157)=240 for q � 19 (mod 60) ;

(q2 � 2q + 237)=240 for q � 59 (mod 60):

Remark 3.4. Comparison with results in [11] shows that the only overlapping concerns Propo-

sition 3.3(1)(4). More precisely, case 1 and [11], Example 5.10, as well as case 4 and [11], Example

5.6, coincide. Furthermore, note that SL(2;Fq) is a subgroup of the group F introduced in [11],

p.27; actually F is the central product of SL(2;Fq) with a cyclic group of order (q + 1). The

results in the present section give an almost complete answer to the question posed in loc. cit.

4. The genus of maximal curves arising from weakly tame subgroups

of the normaliser of a Singer subgroup in PSU(3;Fq2)

The automorphism group Aut(H) of the Hermitian curve H contains cyclic groups of order

(q2 � q + 1); any two such groups are conjugate in Aut(H), [27], [18], [21]. These groups

and their subgroups are the so-called Singer subgroups of Aut(H). Moreover, the normaliser

N = N(�) of a Singer subgroup � of order (q2 � q + 1) is a group of order 3(q2 � q + 1) which

is actually the semidirect product of � with a subgroup C3 of order 3. Let H be given by (M4)

(cf. x2). According to [3], x3, � can be chosen as the subgroup generated by

h : (X;Y;Z)! (�X;�qY;Z)

with � 2 Fq6 a primitive (q2 � q + 1)-th root of unity, while C3 is generated by (X;Y;Z) !

(Y;Z;X). By [31], Ch. 4, the subgroups of N up to conjugacy in N are as follows, where for

i = 0; 1; 2, we let hi denote the automorphism

(X;Y;Z)! (�iY; �2iZ;X)

of H, � being a primitive third root of unity.

Lemma 4.1. (I) For every divisor n of (q2 � q + 1), the cyclic subgroup Cn of order n, with

Cn = hh
(q2�q+1)=n

i;

(II) (1) Let q � 2 (mod 3) and n � 0 (mod 3), or q � 1 (mod 3). For every divisor n of

(q2� q+1), the subgroup of order 3n which is the semidirect product of Cn = hh
(q2�q+1)=n

i

with hh0i.
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(2) Let q � 2 (mod 3) and n 6� 0 (mod 3). For every divisor n of (q2 � q + 1), the

subgroup Gi (i = 0; 1; 2) of order 3n which is the semidirect product of Cn = hh(q
2�q+1)=n

i

with hhii.

The genera of the quotient curves arising from the above subgroups of Aut(H) are given in the

following

Proposition 4.2. Let n � 3 be an integer satisfying (q2�q+1) � 0 (mod n). The genus of the

quotient curve of the Hermitian curve over Fq2 arising from a tame subgroup in the normaliser

of the Singer subgroup of Aut(H) is equal to either

1. g = ((q2 � q + 1)=n� 1)=2, or

2. g = (q2 � q + 1� n)=6n for q � 2 (mod 3) and n � 0 (mod 3) or q � 1 (mod 3), or

3. g = (q2 � q + 1� 3n)=6n for q � 2 (mod 3) and n 6� 0 (mod 3).

Proof. In order to apply the Riemann-Hurwitz formula as stated in Lemma 3.2, we take a

subgroup G from the list in Lemma 4.1, and determine its small orbits on H. As (I) was

investigated in previous work, see remark below, we limit ourselves to case (II). Then G has a

short orbit O of length 3 consisting of the �xed points of h which are (1 : 0 : 0), (0 : 1 : 0) and

(0 : 0 : 1). For q � 1 (mod 3), h0 has two �xed points E1 = (� : �2 : 1) and E2 = (�2 : � : 1) on

H. If they belonged to the same orbit under G, then Cn would contain an element that sends

E1 to E2, and hence �n = 1 would follow. On the other hand, q2 � q + 1 � 0 (mod 3) together

with q � 1 (mod 3) implies n 6� 0 (mod 3). This contradiction shows that G has a further two

orbits, O0 := f(�� : �q�2 : 1) j �n = 1g, and O00 = f(��2 : �q� : 1) j �n = 1g. Now, from Lemma

3.2, q2 � q � 2 = 3n(2g � 2) + 3n� 3 + 2(3n� n), and thus g = (q2 � q � n+ 1)=6n. For q � 2

(mod 3), the picture is richer. Let n � 0 (mod 3). Then G contains the linear transformation

(X;Y;Z)! (�X; �2Y;Z), and therefore hi, (0 � i � 2), as de�ned in Lemma 4.1, belongs to G.

A straightforward computation shows that each of these automorphisms has three �xed points,

namely

Fix(h0) =f(� : �
2 : 1); (1 : � : �2); (�2 : 1 : �)g ;

Fix(h1) =f(1 : �
2 : 1); (1 : 1 : �2); (�2 : 1 : 1)g ;

Fix(h2) =f(1 : � : 1); (1 : 1 : �); (� : 1 : 1)g :

Note that Fix(h0) is disjoint from H, while both Fix(h1) and Fix(h2) lie on H. Also, h0 induces

a 3-cycle on both Fix(h1) and Fix(h2). It turns out that G has two more short orbits, both

of length n. As before, this gives g = (q2 � q � n + 1)=6n. Finally, let n 6� 0 (mod 3). As

Fix(h0) is disjoint from H, G0 has just one short orbit, namely O. Thus, Lemma 3.2 gives

g = (q2 � q + 3n+ 1)=6n. It remains to consider G1 and G2. Note that hi (0 � i � 2) does not

belong to Gj for i 6= j. This shows that Gi, (i = 1; 2) has exactly four short orbits, namely O,

Oi := f(��
2i : �q; 1) : �n = 1g, O0

i := f(� : �q�2i : 1) : �n = 1g, O00
i = f(� : �q : �2i) : �n = 1g.

From Lemma 3.2, q2�q�2 = 3n(2g�2)+3n�3+3(3n�n), and hence g = (q2�q�3n+1)=6n.

Remark 4.3. Proposition 4.2(1) has been previously stated in [4] and independently in [11],

Thm. 5.1. Instead, Proposition 4.2(2)(3) provide new genera for Fq2-maximal curves.
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5. On the third largest genus

The genus g of a Fq2-maximal curve X satis�es [23], [35], [8]

g � g2 := b
(q�1)2

4
c or g = g1 := q(q � 1)=2 :

As remarked in x1, the Hermitian curve H is the only Fq2-maximal curve (up to Fq2-

isomorphism) with genus g1 and hence H is the only maximal curve having genus as large

as possible [29]. The curves de�ned by the non-singular models of the following plane curves

yq + y = x(q+1)=2 q odd ; and

tX
i=1

yq=2
i

= xq+1 q = 2t ;

have genus (q � 1)2=4 and q(q � 2)=4, respectively. This shows that g2 is the second largest

genus for Fq2-maximal curves. For q odd, the above curve is the only Fq2-maximal curve (up to

Fq2-isomorphism) of genus (q � 1)2=4 [7]. It seems plausible that uniqueness also holds true for

q even but it has been so far proved under the additional Condition (�) below (see [1]). Next we

look for the third largest genus g3 that X can have. Since the non-singular model of the curve

yq + y = x(q+1)=3 ; q � 2 (mod 3) ;

has genus (q � 1)(q � 2)=6, it is reasonable to search g3 in the interval

]d (q�1)(q�2)
6 e; b

(q�1)2

4 c[ :(5.1)

In fact, according to [9], Prop. 2.5, for q odd we have

g3 � (q � 1)(q � 2)=4 :

Since X is equipped with an Fq2-intrinsic linear series DX [7], x1, the approach due to St�ohr

and Voloch [36] can be applied to investigate DX . We have dim(DX ) � 2, equality holding i�

X is Fq2-isomorphic to the Hermitian curve [9], Thm. 2.4. Now if the genus belongs to (5.1),

then dim(DX ) = 3 [4], Lemma 3.1. So we look for g3 among Fq2-maximal curves X such that

dim(DX ) = 3. In this case, the �rst three positive Weierstrass non-gaps at P 2 X satisfy [7],

Prop. 1.5(i),

m1(P ) < m2(P ) � q < m3(P ) :(5.2)

For P 2 X (Fq2), we have m2(P ) = q and m1(P ) � q=2 by 2m1(P ) � m2(P ). At this point,

we invoke Fuhrmann computations [6], Anhang x2, concerning the genus of certain semigroups

of type hm; q; q + 1i. Notice that Fuhrmann's results were summarized in [4], Lemma 3.4. It

follows that g (the genus of X ) satis�es

g � b q
2�q+4
6
c ;(5.3)

provided that

m1(P ) 62 fb
q+1
2
c; q � 1g ; P 2 X (Fq2) :(5.4)

This leads to investigate some consequences of the following implication

8P 2 X (Fq2); m1(P ) = q � 1 ) g < b
q2 � q + 4

6
c :(�)

Proposition 5.1. If Condition (�) is satis�ed, then g3 = b
q2�q+4

6 c.
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Remark 5.2. If q � 2 (mod 3), the case d = 3 in Theorem 2.1(V) provides a Fq2-maximal

curve of genus (q2 � q � 2)=6. For this curve, m1(P ) = q � 1 for each Fq2-rational point P , see

[4], Prop. 6.4. Therefore Condition (�) above is not trivial.

Corollary 5.3. If Condition (�) is satis�ed, then (q2 � q � 2)=6 is the fourth larger genus that

a maximal curve can have for q � 2 (mod 3).

Proof. It follows from the theorem and the remark.

Proof of Proposition 5.1. We �rst notice that Fq2-maximal curves having genus b
q2�q+4

6 c come

from the case d = 3 in Theorem 2.1. Now let X be a Fq2-maximal curve of genus g such that

dim(DX ) = 3. Then (5.3), (5.4) together with the hypothesis allow us to assumem1(P ) = b
q+1
2
c.

If q is odd, then g = (q � 1)2=4 [7], Thm. 2.3; otherwise g = q(q � 2)=4 [1] and this completes

the proof.

Remark 5.4. By Fuhrmann's results (op. cit.), a Fq2-maximal curve of genus b
q2�q+4

6
c must

have at least a Fq2-rational point P such that m1(P ) 2 fb
2q+2
3
c; q � 2g. For q � 1 (mod 3),

Proposition 5.6(5) shows that (2q + 1)=3 occurs as a non-gap at certain Fq2-rational points.

Finally, we discuss necessary conditions for the existence of non-trivial separable Fq2-coverings

� : H ! X

from the Hermitian curve H to a (Fq2-maximal) curve X .

Proposition 5.5. Let g denote the genus of X . If g > b q
2�q+4
3 c, then deg(�) = 2, g = b (q�1)2

4 c,

and one of the following holds:

1. X is the non-singular model of yq + y = x(q+1)=2 provided that q odd

2. X is the non-singular model of
Pt

i=1 y
q=2i = xq+1 provided that q = 2t.

Proof. See [1].

Proposition 5.6. Let g denote the genus of X . If g > b q
2�q+6
8
c and deg(�) > 2 then

1. deg(�) = 3;

2. � is unrami�ed i� q � 2 (mod 3) and g = (q2 � q + 4)=6;

3. If � is rami�ed, then g � (q2 � q)=3.

Suppose now that � is rami�ed and that g > b
(q�1)(q�2)

6
c. Then

4. If q � 2 (mod 3), q � 5, then g = (q2 � q � 2)=6 and � is (totally) rami�ed at 3 points

P1; P2; P3 62 Fq2(H). Moreover for each i, �(Pi) 62 X (Fq2) and the Weierstrass semigroup

at �(Pi) is given by

fh=3 : h � 0 (mod 3); h 2 Sg ;

where

S := [q�2
j=1[jq � (j � 1); jq] [ f0; q2 � 2q + 2; q2 � 2q + 3; : : : g :

In particular, m1(�(Pi)) = (2q � 1)=3 and m2(�(Pi)) = q.
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5. If q � 1 (mod 3), then g = (q2�q)=6 and � is (totally) rami�ed at 2 points P1; P2 2 H(Fq2).

The Weierstrass semigroup at �(Pi) 2 X (Fq2) is given by

h(2q + 1)=3; q; q + 1i :

In particular, m1(�(Pi)) = (2q + 1)=3.

6. If q � 0 (mod 3) and g = (q2�q)=6, then � is (totally) rami�ed just at 1 point P1 2 H(Fq2);

moreover m1(�(P1)) = 2q=3.

7. If � is normal, i.e. if � is Galois, then X is Fq2-isomorphic to one of the curves of case

d = 3 in Theorem 2.1.

Proof. The hypotheses on g and deg(�) together with the Riemann-Hurwitz formula yield

deg(�) = 3. Statement 2 also follows form the Riemann-Hurwitz formula. To see 3 we can

assume that p 6= 3 and that � has just one (totally) rami�ed point. But then (q2 � q � 4) � 0

(mod 3), contradicting 2.

Now let us assume that � is rami�ed at P 2 H and let Q := �(P ). By the hypothesis on g,

from [4], Lemma 3.1, [7], Prop. 1.5, we have

m1(Q) < m2(Q) � q < m3(Q) :(��)

On the other hand, the only possibility for the Weierstrass semigroup H(P ) at P is the above

semigroup S (whenever P 62 H(Fq2)), and H(P ) = hq; q + 1i (whenever P 2 H(Fq2) [12], Thm.

2. Let us notice that if h 2 H(Q), then 3h 2 H(P ); the converse also holds for p 6= 3 (see e.g.

[37], proof of Lemma 3.4).

Case q � 2 (mod 3). We claim that P 62 H(Fq2) and Q 62 X (Fq2). To see this we �rst suppose

that P 2 H(Fq2). Then m3(Q) = q + 1 and we have 4 elements in H(P ) which are both

congruent to zero modulo 3 and bounded by 3q + 3. This contradicts (��). Now assume that

Q 2 X (Fq2) so that m3(Q) = q + 1. We then have 3q + 3 2 H(P ) so that 3q + 3 � 4q � 3, i.e.

q = 5. In this case H(Q) = f0; 3; 5; 6; 7; 8 : : : g so that g = 3. On the other hand g = 4 by [7],

Thm. 2.3, g = 4. This contradiction completes the proof. Thus by [37], Lemma 3.4,

g = #f` 2 N n S : ` � 0 (mod 3)g ;

whence g = (q2 � q � 2)=6 follows by an easy computation. Then the rami�cation number of

� is 6 and so it rami�es at three points. The statement on Weierstrass semigroups comes from

[37], proof of Lemma 3.4.

Case q � 1 (mod 3). We claim that P 2 H(Fq2). For P 2 H(Fq2), we have indeed just one

element in H(P ) which is both congruent to zero modulo 3 and less than or equal to 3q. This

contradicts (��). Now the proof can be done as in the previous case, except that

fh=3 : h � 0 (mod 3); h 2 hq; q + 1ig = h(2q + 1)=3; q; q + 1i

follows from [6], xA.2.

Case q � 0 (mod 3). Due to wild rami�cations, the previous argument does not apply to

compute the genus as before. For g = (q2 � q)=3, the rami�cation number is 4, and hence � is

rami�ed just at one point P1 2 H. The non-gaps at P1 less than or equal to 3q turn out to be

either q; 2q�1; 2q; 3q�2; 3q�1; 3q, or q; q+1; 2q; 2q+1; 2q+2; 3q. This yieldsm1(�(P1)) = 2q=3

and m2(�(P1)) = q.
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Remark 5.7. Let X be the curve in Theorem 2.1(II)(2) and P0 the unique Fq2-rational point

over x =1. Note that DX = j(q+1)P0j. Now, an easy computation shows that the �rst (p+1)

positive Weierstrass non-gaps are 2q=p; : : : ; pq=p; q+1. This generalizes Proposition 5.6(6) and

yields dim(DX ) = p.

Remark 5.8. Our �nal remark concerns the open question of determining all Fq2-maximal

curves X such that dim(DX ) = 3. To the list of the known examples given in [4], x6, the

non-singular model of the curve x(q+1)=3 + x2(q+1)=3 + yq+1 = 0, q � 2 (mod 3), (see Theorem

2.1(IV)(2)), has to be added.
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