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Abstract

In this paper, we present a naturally numerical method for �nding the maximal hermitian so-

lution X+ of the Discrete-Time Algebraic Riccati Equation (DTARE) based on the convergence

of a monotone sequence of hermitian matrices.
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1 Introduction

The paper is concerned with a new representation of the Discrete-Time Riccati Equation (DTARE)

X = Q+A�XA�A�XB(R+B�XB)�1B�XA (1)

where Q and R are hermitian matrices of sizes n� n and m�m respectively; the coe�cients A

and B are n� n and n�m respectively; n� n solution matrices X are to be found for which,

of course, (R+B �XB) is invertible, such that the solutions X are called admissible.

It is well known that the maximal hermite matrix plays a key role in the minimal factorization

of the realization

	(z) = B�(z�1I �A�)�1Q(zI �A)�1B +R

In other words, we mention there exists a one-to-one correspondence between the admissible

solutions of (1) and the set of all realizations 	(z) with all their poles in D = f� : 0 < j�j < 1g

and 	(1) = I, and with the property that

	(z) = (�(z�1))�D�(z)

is a minimal factorization of 	(z) for some matrix D, provided that (A;B) is controllable and

�(A) � D. For more details, see [1], where the existence of the maximal hermite solution X+

are also discussed.

Theorem 1.1 Assume that R > 0, Q � 0, and (A;B) is stabilizable (i.e. there exists a matrix

K such that A+BK is stable), then X+ exists and X+ � 0.

With the new representation of DTARE (1), the existence of its non-negatively-de�ned matrix is

derived somehow relaxing the hypothesis on the stability of (A;B) (Corollary 3.7). Furthermore,

it also yields a natural numerical algorithm for �nding the solution X+ of DTARE (Corollary

3.5).

2 About numerical algorithms

The numerical algorithms for solving the Riccati Equations can be roughly classi�ed in two

categories: invariant subspace and iterative methods.

The invariant (or deating) subspace methods have a large scope of applicability. According

to [2] the �rst invariant subspace method for the Continuous-Time Algebraic Riccati Equation

(CTARE) was given in [3]. Extensions were reported in [4] and [5]. Numerical stable method for
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computing bases of invariant subspaces via the ordered Schur form was initiated in [6] and [7].

This idea was applied to Riccati equations in [8], [9] and [10]. The most recent improvements

were (based on singular value decomposition) [11], [12] as well as a provision of a symmetric

representation of the Riccati solution. Also important is [13], where invariant space methods

were applied even for \singular" problems.

The iterative methods produce a sequence of self-adjoint matrices that converge to the Riccati

solution (without involving the symmetric representations of the Riccati solution). The best

known example is, perhaps, Kleinman's algorithm [14] which is, in fact, a Newton-Raphson

scheme, that works if R > 0 and Q � 0. A more general iterative method for the discrete time

case was reported in [15]. Even though the applicability of iterative methods is rather limited,

they are still considered for their numerical accuracy.

In this work, we present a new representation of the Discrete-Time Algebraic Riccati Equa-

tion, where the iterative entries X�

k
are positive de�nite. The representation yields the mono-

tonicity of the sequence fX�

k
g in both variables k 2 IN and � 2 J � IR.

3 Main results

We recall two important results of matrix inverse:

Lemma 3.1 (The matrix inverse lemma) With the appropriate conditions on dimensions

of matrices X;B;R, where X and R are invertible, we have

(X�1 +BR�1B�)�1 = X �XB(R+B�XB)�1B�X

Proof: See [16] problem 5.28, p.126 or [17] problem A4, p.668.

2

Lemma 3.2 Assume that two matrices W;Z are hermitian and W � Z > 0 then

W�1 � Z�1

Proof: See [18] p.92.

2

Proposition 3.3 Assume X and R are invertible, then DTARE (1)

X = Q+A�XA�A�XB(R +B�XB)�1B�XA

is equivalent to

X = Q+A�(X�1 +BR�1B�)�1A (2)
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Proof: We proceed directly:

Q+A�XA�A�XB(R +B�XB)�1B�XA

= Q+A�[X �XB(R+B�XB)�1B�X]A ( from the lemma (3.1))

= Q+A�(X�1 +BR�1B�)�1A

The proof is completed.

2

Now we turn to investigate a class of hermitian matrix sequence with one parameter � 2 J �

IR.

Let us denote J = f� 2 IR : Q� := Q+�I > 0g and obviously remark that the set J is not empty.

Set

X�

1 := Q� +A�(BR�1B�)�1A (3)

X�

k+1 := Q� +A�((X�

k)
�1 +BR�1B�)�1A k � 1 (4)

Theorem 3.4 Assume that Q� and R are positive-de�nite hermite matrices with a �xed �, then

the sequence (3), (4) de�nes a non-increasing positive-de�nite hermite matrix, which converges

to the maximal hermite solution X�
+ of DTARE

X = Q� +A�XA�A�XB(R+B�XB)�1B�XA (5)

Proof: The non-increasing property of X�

k
is proved by induction.

First notice that X�
1 � Q� > 0 by de�nition (3) and so (X�

1)
�1 is positive-de�nite. This

implies X�
2 = Q� +A�(X�1

1
+BR�1B�)�1A � Q� > 0 .

Applying Proposition 3.2 to the case of W := (X�
1)
�1 +BR�1B� and Z := BR�1B�, we have

((X�

1)
�1 +BR�1B�)�1 � (BR�1B�)�1

and

X�

2 �X�

1 = A�[((X�

1)
�1 +BR�1B�)�1 � (BR�1B�)�1]A � 0

Hence X�
1 � X�

2 � Q� > 0.

Now assume that X�
1 � X�

2 � ::: � X�

k
� Q� > 0.

With the same argument, we have

X�

k+1 = Q� +A�((X�

k)
�1 +BR�1B�)�1A � Q� > 0
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Then, applying Proposition 3.2 to the case of W := X�

k�1
;Z := X�

k
, we get

(X�

k�1)
�1 � (X�

k)
�1

This implies 0 < (X�

k�1
)�1 +BR�1B� � (X�

k
)�1 +BR�1B�.

Proposition 3.2 is applied again to yield

((X�

k�1)
�1 +BR�1B�)�1 � ((X�

k)
�1 +BR�1B�)�1

and

X�

k+1 �X�

k = A�[((X�

k)
�1 +BR�1B�)�1 � ((X�

k�1)
�1 +BR�1B�)�1]A � 0

Hence with a given � 2 J , fX�

k
g is a non-increasing, positive-de�nite sequence in terms of k;

thereby completing the induction argument.

We also conclude that the sequence fX�

k
g converges to a positive-de�nite hermite matrix and

the limit

X�

1 = lim
k!1

X�

k � Q�

The fact that X�
1 is a solution, DTARE (5) is easily derived when applying Proposition 3.3 to

the right-hand side of (4) and then letting k tend to in�nity.

Now we prove that X�
1 is the maximal hermitian solution of DTARE (5).

First, by the maximality of X�
+ we have X�

+ � X�
1 > 0.

The inverse inequality is derived by induction. At �rst, we have

X�

+ = Q� +A�X�

+A�A�X�

+B(R+B�X�

+B)
�1B�X�

+A

= Q� +A�((X�

+)
�1 +BR�1B�)�1A

� Q� +A�(BR�1B�)�1A

= X�

1

and now assume that X�
+ � X�

k
, then

X�

+ = Q� +A�((X�

+)
�1 +BR�1B�)�1A

� Q� +A�((X�

k)
�1 +BR�1B�)�1A

= X�

k+1

Hence X�
+ � X�

k
for all k 2 IN by induction argument. This implies X�

+ � X�
1. The equality

X�
+ = X�

1 is proved and this completes the proof.

5



2

When Q is positive-de�nite and � = 0, the matrix Q� and DTARE (5) concide with Q and

DTARE (1), respectively. Then, the following corollary is considered as a result of Theorem 3.4

Corollary 3.5 Assume that Q, R are positive-de�nite hermite matrices, then the following

matrix sequence (
X1 = Q+A�(BR�1B�)�1A

Xk+1 = Q+A�(X�1

k
+BR�1B�)�1A k � 1

decreasingly converges to the positive-de�nite maximal hermite solution X+ of DTARE (1).

The following theorem mentions the monotonicity with respect to the parameter � of the

maximal solutions X�
+.

Theorem 3.6 X�

k
and X�

+ are non-decreasing functions on J for every k 2 IN .

Proof: The theorem is proved by induction.

Let �1 � �2 for �1, �2 2 J , we have Q
�1 � Q�2 and then

0 � X
�1
1
= Q�1 +A�(BR�1B�)�1A � Q�2 +A�(BR�1B�)�1A = X�

1

Now suppose that 0 < X�1

k
� X�2

k
, Proposition (3.2) is applied to have

0 < X
�1

k+1
= Q�1 +A�((X�1

k
)�1 +BR�1B�)�1A

� Q�2 +A�((X�2

k
)�1 +BR�1B�)�1A

= X
�2

k+1

Hence X�1

k
� X�2

k
for all k 2 IN and the induction argument is completed.

Let k tend to in�nity. Then we have X�1
+ � X�2

+ and complete the proof.

Corollary 3.7 (The existence of non-negative de�nite solution of DTARE (1)) Assume

that Q � 0 and R > 0, then the set of non-negative-de�nite solutions of DTARE (1) is not empty.

Proof: Since Q � 0 then Q� = Q + �I > 0; 8� > 0. Morever, the positive-de�nite maximal

solutions X�
+ exist and are non-decreasing on the interval (0;1).

Hence the limit

X0
+

= lim
�#0+

X�

+

exists. We shall prove that X0+ is a non-negative-de�nite solution of DTARE (1).

From (4)

X�

k+1 = Q� +A�X�

kA�A�X�

kB(R+B�X�

kB)
�1B�X�

kA
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Let k tend to in�nity

X�

+ = Q� +A�X�

+A�A�X�

+B(R+B�X�

+B)
�1B�X�

+A

and then � # 0+

X0
+

= Q� +A�X0
+

A�A�X0
+

B(R+B�X0
+

B)�1B�X0
+

A

Hence X0
+

is a solution of DTARE (1). This solution is non-negative-de�nite hermite matrix

because X�
+ are. Therefore, the set of non-negative-de�nite hermite solutions is not empty.
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