NUMERICAL SOLUTION OF DISCRETE-TIME ALGEBRAIC RICCATI EQUATION

Tan K. Nguyen ${ }^{1}$
The National HoChiMinh-City University, HoChiMinh City, Vietnam ${ }^{2}$ and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

In this paper, we present a naturally numerical method for finding the maximal hermitian solution X_{+}of the Discrete-Time Algebraic Riccati Equation (DTARE) based on the convergence of a monotone sequence of hermitian matrices.

MIRAMARE - TRIESTE
August 1999

[^0]
1 Introduction

The paper is concerned with a new representation of the Discrete-Time Riccati Equation (DTARE)

$$
\begin{equation*}
X=Q+A^{*} X A-A^{*} X B\left(R+B^{*} X B\right)^{-1} B^{*} X A \tag{1}
\end{equation*}
$$

where Q and R are hermitian matrices of sizes $n \times n$ and $m \times m$ respectively; the coefficients A and B are $n \times n$ and $n \times m$ respectively; $n \times n$ solution matrices X are to be found for which, of course, $(R+B * X B)$ is invertible, such that the solutions X are called admissible.
It is well known that the maximal hermite matrix plays a key role in the minimal factorization of the realization

$$
\Psi(z)=B^{*}\left(z^{-1} I-A^{*}\right)^{-1} Q(z I-A)^{-1} B+R
$$

In other words, we mention there exists a one-to-one correspondence between the admissible solutions of (1) and the set of all realizations $\Psi(z)$ with all their poles in $\mathcal{D}=\{\lambda: 0<|\lambda|<1\}$ and $\Psi(\infty)=I$, and with the property that

$$
\Psi(z)=\left(\Phi\left(z^{-1}\right)\right)^{*} D \Phi(z)
$$

is a minimal factorization of $\Psi(z)$ for some matrix D, provided that (A, B) is controllable and $\sigma(A) \subset \mathcal{D}$. For more details, see [1], where the existence of the maximal hermite solution X_{+} are also discussed.

Theorem 1.1 Assume that $R>0, Q \geq 0$, and (A, B) is stabilizable (i.e. there exists a matrix K such that $A+B K$ is stable), then X_{+}exists and $X_{+} \geq 0$.

With the new representation of DTARE (1), the existence of its non-negatively-defined matrix is derived somehow relaxing the hypothesis on the stability of (A, B) (Corollary 3.7). Furthermore, it also yields a natural numerical algorithm for finding the solution X_{+}of DTARE (Corollary 3.5).

2 About numerical algorithms

The numerical algorithms for solving the Riccati Equations can be roughly classified in two categories: invariant subspace and iterative methods.

The invariant (or deflating) subspace methods have a large scope of applicability. According to [2] the first invariant subspace method for the Continuous-Time Algebraic Riccati Equation (CTARE) was given in [3]. Extensions were reported in [4] and [5]. Numerical stable method for
computing bases of invariant subspaces via the ordered Schur form was initiated in [6] and [7]. This idea was applied to Riccati equations in [8], [9] and [10]. The most recent improvements were (based on singular value decomposition) [11], [12] as well as a provision of a symmetric representation of the Riccati solution. Also important is [13], where invariant space methods were applied even for "singular" problems.

The iterative methods produce a sequence of self-adjoint matrices that converge to the Riccati solution (without involving the symmetric representations of the Riccati solution). The best known example is, perhaps, Kleinman's algorithm [14] which is, in fact, a Newton-Raphson scheme, that works if $R>0$ and $Q \geq 0$. A more general iterative method for the discrete time case was reported in [15]. Even though the applicability of iterative methods is rather limited, they are still considered for their numerical accuracy.

In this work, we present a new representation of the Discrete-Time Algebraic Riccati Equation, where the iterative entries X_{k}^{ϵ} are positive definite. The representation yields the monotonicity of the sequence $\left\{X_{k}^{\epsilon}\right\}$ in both variables $k \in \mathbb{N}$ and $\epsilon \in J \subset \mathbb{R}$.

3 Main results

We recall two important results of matrix inverse:
Lemma 3.1 (The matrix inverse lemma) With the appropriate conditions on dimensions of matrices X, B, R, where X and R are invertible, we have

$$
\left(X^{-1}+B R^{-1} B^{*}\right)^{-1}=X-X B\left(R+B^{*} X B\right)^{-1} B^{*} X
$$

Proof: See [16] problem 5.28, p. 126 or [17] problem A4, p. 668.

Lemma 3.2 Assume that two matrices W, Z are hermitian and $W \geq Z>0$ then
$W^{-1} \leq Z^{-1}$
Proof: See [18] p. 92.

Proposition 3.3 Assume X and R are invertible, then DTARE (1)

$$
X=Q+A^{*} X A-A^{*} X B\left(R+B^{*} X B\right)^{-1} B^{*} X A
$$

is equivalent to

$$
\begin{equation*}
X=Q+A^{*}\left(X^{-1}+B R^{-1} B^{*}\right)^{-1} A \tag{2}
\end{equation*}
$$

Proof: We proceed directly:

$$
\begin{aligned}
& Q+A^{*} X A-A^{*} X B\left(R+B^{*} X B\right)^{-1} B^{*} X A \\
= & Q+A^{*}\left[X-X B\left(R+B^{*} X B\right)^{-1} B^{*} X\right] A \quad(\text { from the lemma }(3.1)) \\
= & Q+A^{*}\left(X^{-1}+B R^{-1} B^{*}\right)^{-1} A
\end{aligned}
$$

The proof is completed.

Now we turn to investigate a class of hermitian matrix sequence with one parameter $\epsilon \in J \subset$ IR.

Let us denote $J=\left\{\epsilon \in \mathbb{R}: Q^{\epsilon}:=Q+\epsilon I>0\right\}$ and obviously remark that the set J is not empty. Set

$$
\begin{align*}
X_{1}^{\epsilon} & :=Q^{\epsilon}+A^{*}\left(B R^{-1} B^{*}\right)^{-1} A \tag{3}\\
X_{k+1}^{\epsilon} & :=Q^{\epsilon}+A^{*}\left(\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \quad k \geq 1 \tag{4}
\end{align*}
$$

Theorem 3.4 Assume that Q^{ϵ} and R are positive-definite hermite matrices with a fixed ϵ, then the sequence (3), (4) defines a non-increasing positive-definite hermite matrix, which converges to the maximal hermite solution X_{+}^{ϵ} of DTARE

$$
\begin{equation*}
X=Q^{\epsilon}+A^{*} X A-A^{*} X B\left(R+B^{*} X B\right)^{-1} B^{*} X A \tag{5}
\end{equation*}
$$

Proof: The non-increasing property of X_{k}^{ϵ} is proved by induction.
First notice that $X_{1}^{\epsilon} \geq Q^{\epsilon}>0$ by definition (3) and so $\left(X_{1}^{\epsilon}\right)^{-1}$ is positive-definite. This implies $X_{2}^{\epsilon}=Q^{\epsilon}+A^{*}\left(X_{1}^{-1}+B R^{-1} B^{*}\right)^{-1} A \geq Q^{\epsilon}>0$.
Applying Proposition 3.2 to the case of $W:=\left(X_{1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}$ and $Z:=B R^{-1} B^{*}$, we have

$$
\left(\left(X_{1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} \leq\left(B R^{-1} B^{*}\right)^{-1}
$$

and

$$
X_{2}^{\epsilon}-X_{1}^{\epsilon}=A^{*}\left[\left(\left(X_{1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1}-\left(B R^{-1} B^{*}\right)^{-1}\right] A \leq 0
$$

Hence $X_{1}^{\epsilon} \geq X_{2}^{\epsilon} \geq Q^{\epsilon}>0$.
Now assume that $X_{1}^{\epsilon} \geq X_{2}^{\epsilon} \geq \ldots \geq X_{k}^{\epsilon} \geq Q^{\epsilon}>0$.
With the same argument, we have

$$
X_{k+1}^{\epsilon}=Q^{\epsilon}+A^{*}\left(\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \geq Q^{\epsilon}>0
$$

Then, applying Proposition 3.2 to the case of $W:=X_{k-1}^{\epsilon} ; Z:=X_{k}^{\epsilon}$, we get

$$
\left(X_{k-1}^{\epsilon}\right)^{-1} \leq\left(X_{k}^{\epsilon}\right)^{-1}
$$

This implies $0<\left(X_{k-1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*} \leq\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}$.
Proposition 3.2 is applied again to yield

$$
\left(\left(X_{k-1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} \geq\left(\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1}
$$

and

$$
X_{k+1}^{\epsilon}-X_{k}^{\epsilon}=A^{*}\left[\left(\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1}-\left(\left(X_{k-1}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1}\right] A \leq 0
$$

Hence with a given $\epsilon \in J,\left\{X_{k}^{\epsilon}\right\}$ is a non-increasing, positive-definite sequence in terms of k; thereby completing the induction argument.

We also conclude that the sequence $\left\{X_{k}^{\epsilon}\right\}$ converges to a positive-definite hermite matrix and the limit

$$
X_{\infty}^{\epsilon}=\lim _{k \rightarrow \infty} X_{k}^{\epsilon} \geq Q^{\epsilon}
$$

The fact that X_{∞}^{ϵ} is a solution, DTARE (5) is easily derived when applying Proposition 3.3 to the right-hand side of (4) and then letting k tend to infinity.

Now we prove that X_{∞}^{ϵ} is the maximal hermitian solution of DTARE (5).
First, by the maximality of X_{+}^{ϵ} we have $X_{+}^{\epsilon} \geq X_{\infty}^{\epsilon}>0$.
The inverse inequality is derived by induction. At first, we have

$$
\begin{aligned}
X_{+}^{\epsilon} & =Q^{\epsilon}+A^{*} X_{+}^{\epsilon} A-A^{*} X_{+}^{\epsilon} B\left(R+B^{*} X_{+}^{\epsilon} B\right)^{-1} B^{*} X_{+}^{\epsilon} A \\
& =Q^{\epsilon}+A^{*}\left(\left(X_{+}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \\
& \leq Q^{\epsilon}+A^{*}\left(B R^{-1} B^{*}\right)^{-1} A \\
& =X_{1}^{\epsilon}
\end{aligned}
$$

and now assume that $X_{+}^{\epsilon} \leq X_{k}^{\epsilon}$, then

$$
\begin{aligned}
X_{+}^{\epsilon} & =Q^{\epsilon}+A^{*}\left(\left(X_{+}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \\
& \leq Q^{\epsilon}+A^{*}\left(\left(X_{k}^{\epsilon}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \\
& =X_{k+1}^{\epsilon}
\end{aligned}
$$

Hence $X_{+}^{\epsilon} \leq X_{k}^{\epsilon}$ for all $k \in I N$ by induction argument. This implies $X_{+}^{\epsilon} \leq X_{\infty}^{\epsilon}$. The equality $X_{+}^{\epsilon}=X_{\infty}^{\epsilon}$ is proved and this completes the proof.

When Q is positive-definite and $\epsilon=0$, the matrix Q^{ϵ} and DTARE (5) concide with Q and DTARE (1), respectively. Then, the following corollary is considered as a result of Theorem 3.4

Corollary 3.5 Assume that Q, R are positive-definite hermite matrices, then the following matrix sequence

$$
\begin{cases}X_{1} & =Q+A^{*}\left(B R^{-1} B^{*}\right)^{-1} A \\ X_{k+1} & =Q+A^{*}\left(X_{k}^{-1}+B R^{-1} B^{*}\right)^{-1} A \quad k \geq 1\end{cases}
$$

decreasingly converges to the positive-definite maximal hermite solution X_{+}of DTARE (1).
The following theorem mentions the monotonicity with respect to the parameter ϵ of the maximal solutions X_{+}^{ϵ}.

Theorem 3.6 X_{k}^{ϵ} and X_{+}^{ϵ} are non-decreasing functions on J for every $k \in \mathbb{N}$.
Proof: The theorem is proved by induction.
Let $\epsilon_{1} \leq \epsilon_{2}$ for $\epsilon_{1}, \epsilon_{2} \in J$, we have $Q^{\epsilon_{1}} \leq Q^{\epsilon_{2}}$ and then

$$
0 \leq X_{1}^{\epsilon_{1}}=Q^{\epsilon_{1}}+A^{*}\left(B R^{-1} B^{*}\right)^{-1} A \leq Q^{\epsilon_{2}}+A^{*}\left(B R^{-1} B^{*}\right)^{-1} A=X_{1}^{\epsilon}
$$

Now suppose that $0<X_{k}^{\epsilon_{1}} \leq X_{k}^{\epsilon_{2}}$, Proposition (3.2) is applied to have

$$
\begin{aligned}
0<X_{k+1}^{\epsilon_{1}} & =Q^{\epsilon_{1}}+A^{*}\left(\left(X_{k}^{\epsilon_{1}}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \\
& \leq Q^{\epsilon_{2}}+A^{*}\left(\left(X_{k}^{\epsilon_{2}}\right)^{-1}+B R^{-1} B^{*}\right)^{-1} A \\
& =X_{k+1}^{\epsilon_{2}}
\end{aligned}
$$

Hence $X_{k}^{\epsilon_{1}} \leq X_{k}^{\epsilon_{2}}$ for all $k \in I N$ and the induction argument is completed.
Let k tend to infinity. Then we have $X_{+}^{\epsilon_{1}} \leq X_{+}^{\epsilon_{2}}$ and complete the proof.

Corollary 3.7 (The existence of non-negative definite solution of DTARE (1)) Assume that $Q \geq 0$ and $R>0$, then the set of non-negative-definite solutions of DTARE (1) is not empty.

Proof: Since $Q \geq 0$ then $Q^{\epsilon}=Q+\epsilon I>0, \forall \epsilon>0$. Morever, the positive-definite maximal solutions X_{+}^{ϵ} exist and are non-decreasing on the interval $(0, \infty)$.

Hence the limit

$$
X^{0^{+}}=\lim _{\epsilon \downarrow 0^{+}} X_{+}^{\epsilon}
$$

exists. We shall prove that $X^{0^{+}}$is a non-negative-definite solution of DTARE (1).
From (4)

$$
X_{k+1}^{\epsilon}=Q^{\epsilon}+A^{*} X_{k}^{\epsilon} A-A^{*} X_{k}^{\epsilon} B\left(R+B^{*} X_{k}^{\epsilon} B\right)^{-1} B^{*} X_{k}^{\epsilon} A
$$

Let k tend to infinity

$$
X_{+}^{\epsilon}=Q^{\epsilon}+A^{*} X_{+}^{\epsilon} A-A^{*} X_{+}^{\epsilon} B\left(R+B^{*} X_{+}^{\epsilon} B\right)^{-1} B^{*} X_{+}^{\epsilon} A
$$

and then $\epsilon \downarrow 0^{+}$

$$
X^{0^{+}}=Q^{\epsilon}+A^{*} X^{0^{+}} A-A^{*} X^{0^{+}} B\left(R+B^{*} X^{0^{+}} B\right)^{-1} B^{*} X^{0^{+}} A
$$

Hence $X^{0^{+}}$is a solution of DTARE (1). This solution is non-negative-definite hermite matrix because X_{+}^{ϵ} are. Therefore, the set of non-negative-definite hermite solutions is not empty.

4 Acknowledgements

Many thanks are due to Prof. Nguyen Cang for inspiring and questioning this project.
This work was supported by the National Hochiminh-City University, the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, the United Nations Educational, Scientific and Cultural Organization, and the International Atomic Energy Agency.

References

[1] P. Lancaster and L. Rodman, Solution of the continuous and discrete time algebraic Riccati equations: A Review, in: S. Bittanti, A. Laub, J.C. Willems (Eds.), The Riccati Equation, Springer-Verlag, 1991.
[2] J.C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Automat. Contr., 16 (1971) 621-634.
[3] A.G.J. MarFarlane, An eigenvector solution of the optimal linear regulator problem, J. Electron Contr., 14 (1963) 496-501.
[4] J.E. Potter, Matrix quadratic solutions, SIAM J. Appl. Math., 14 (1966) 496-501.
[5] K. Martensson, On the matrix Riccati equation, Inform. Sci., 3 (1971) 17-49.
[6] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, UK, 1965.
[7] A. Ruhe, An algorithm for numerical determination of the structure of a general matrix, BIT, 10 (1970) 196-216.
[8] A. Laub, A Schur method for solving algebraic Riccati equations, MIT Lab. Inf. Decision Syst., Cambridge, MA, Tech. Rep. LIDS-R-859, Oct. 1978.
[9] A. Laub, A Schur method for solving algebraic Riccati equation, IEEE Trans. Autom. Contr., 24 (1979) 913-921.
[10] T. Pappas, A. Laub and N. R. Sandell, On the numerical solution of the discrete algebraic Riccati equation, IEEE Trans. Automat. Contr., 25 (1980) 631-641.
[11] L.-F. Wei and F.-B Yeh, A modified Schur method for solving algebraic Riccati equations, Syst. Contr. Lett., 16 (1991) 295-297.
[12] A. Laub and P. Gahinet, Numerical Improvments for Solving Riccati Equations, IEEE Trans. Automat. Contr., 42(9) (1997) 1303-1308.
[13] V. Ionescu, C. Oara and M. Weiss, IEEE Trans. Automat. Contr., 42(8) (1997) 1085-1097.
[14] D.L. Kleinman, On an Iterative technique for Riccati equation computations, IEEE Trans. Automat. Contr., 13 (1968) 114-115.
[15] A. Stoorvogel and A. Weeren, The discrete-time Riccati equation related to H^{∞} control problems, in: Proc. 1992 Amer. Contr. Conf., Amer. Automat. Contr. Council, Evanston, IL, 1992, 1128-1132.
[16] S. Barnett, Matrices methods and applications, Oxford Applied Mathematics and Computer Science Series, 1990.
[17] K. Ogata, Discrete-time Control Systems, Prentice Hall International Inc., 1995.
[18] R. Bellman, Introduction to Matrix Analysis, SIAM Society for Industrial and Applied Mathematics, Philadelphia.

[^0]: ${ }^{1}$ E-mail: nktan@mathdep.hcmuns.edu.vn
 ${ }^{2} 227$ Nguyen Van Cu, Q5, HCMC, Vietnam.

