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Abstract

In many future collider and FEL designs intense, short

bunches are accelerated in a linear accelerator. For exam- g—=
ple, in parts of the Linac Coherent Light Source (LCLS)

a bunch with a peak current of 3.4 kA and an rms length

of 30 microns will be accelerated in the SLAC linac. In = L - a
such machines, in order to predict the beam quality atthe [ L
end of acceleration it is essential to know the short range o
wakefields or, equivalently, the high frequency impedanceF
of the accelerating structure. R. Gluckstern[1] has derived
the longitudinal, high-frequency impedance of a periodic
structure, a solution which is valid for a structure with a 2 ANALYTICAL STUDY

small gap-to-period ratio. We use his approach to derive a bedin by brief 7ina Gluck , hod:
more general result, one that is not limited to small gap%.et us begin by briefly summarizing Gluckstern's method:

In addition, we compare our results with numerical resultg|e ,d'V'deS the geometry of Fig. 1 into two regions, the pipe

obtained using a field matching computer program. region ¢ < a) and the cavity regiom > a. The fields
are expanded in terms of Bessel functions in the pipe re-

gion and in term of the cavity eigenfunctions in the cavity
1 INTRODUCTION region with the (perfectly conducting) metallic boundary
condition on the iris surface = a. He obtains a relation

Let us consider the infinitely periodic, cylindrically sym- (Ed- 2.14 in the first of Ref. [1]) between the azimuthal

metric structure depicted in Fig. 1. R. Gluckstern has ddnagnetic field and the axial electric field along= a.

rived the high frequency behavior of the impedance of such€n: by matching the fields in the pipe and cavity regions
a structure, to ordefkg) /2 relative to the leading term, alongr = «a, he obtains an integral equation for the axial

i~ fi _ i 2 —ikz
with k the wave number anglthe gap, as[1] eIgctnc field alpn(_:r = g(normahzed byZy1y/ka“e g
with I the arbitrary driving current)f’(z) (we follow his

notation):

iZ ol [7]7'
Zik) = =L 1+ (14+i)—, /— 1
(k) 7T,mg[ﬂﬂ)a kg , (1) /gd/lff
y4
0

igure 1: Two cells of the geometry under consideration.

o(z,2) + Z Ky(mL+2'—2)| F(2') = —i.

with o = 1. Note thatZ;, is the average impedance per unit meTe )
length (averaged locally over frequency to give a smootlhhe kernels in this equation are those of the cavity region
function, and averaged over a distance in the structure large. and of the pipe regiot,, with the K. term and the
compared to the period), Z, = 1207, anda is the m = 0 term involving K, giving the contribution to the
iris radius. Gluckstern’s result was meant to be valid formpedance of the cell that includes the painand then #
g/L < 1. In this report, following Gluckstern’s method, 0 terms giving the contribution of the other cells. Once we
we will show that Eq. 1 is still valid in the general cagél.  know F'(z) the impedance is simply given by
not small, but witho a function ofg/L. ’

Other authors have investigated the high frequency be- Zi(k) = Zg / dzF(z) . 3)
havior of the same structure. Their results agree in the kaL Jo

leading order termi¢,/mka?), but not in the constant  For our purposes we do not need to know the details of
a in the higher order term. E. Keil, describing the SOthe kernelsi, and K, but only their high frequency be-
called Sessler—Vaynstein optical resonator model of highavior. Gluckstern found that the high frequency behavior

frequency impedance, obtains a constant 0.67[2] and  of the cavity kernels.. is independent of the details of the
S. HelfetS and S. KhelfetS g|‘£e: 8/7T ~ 255[3] G. Stu- Cavity Shape, and iS given by

pakov, considering the limiting case of a structure with in-
finitesimally thin irises ite. g/L = 1), finds that, in this = A+ o

KC b) ! -
caseq ~ 0.46[4]. (22) a/k(z — 2)

*Work supported by Department of Energy contract DE—ACOS—Where@(Z) is the step functhn (0 fO_E A< O an.d 1 for
76SF00515. z > 0). The kernel in the pipe regiok, is given by

(Z - Z/) ’ (4)
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- This equation can be rewritten in the form
. i 1 .
Kp(z> _ ;TZ ezk:z E b_ezb5|z\/a ,

g/L _
(5) / d'GW —v)Fy(v) =1 , (12)
by = (Ka® - >1/2 ., [Sm(by) > 0], ’

with j, the s-th zero of the Bessel functioly. Gluck- with

stern shows that, at high frequencies, the= 0 pipe ker- _

nel, K. »(#' — 2), is equal to the cavity kerne’l{f3 (z,2"), Folw) = Flo)/A (13)
as given in Eq. 4. As for then # 0 terms inK,,

Gluckstern points out, that those withh > 0 oscil- kL
late rapidly at highk, and therefore do not contribute to A= =
the average impedance. The sum over negativgives

a ia 9/
4 u F
— + T J, dv F(v)

(14)

Note that Eq. 12, withf(v) the unknown, contains only

K,(v) = Z f{p(mK + 2 —2) one parametey = g/L. The equation for the impedance,
oo ©) Eq. 3, becomes
6
27 1(9 ¢s)v
_ Zb s WA/ dv Fo(v) . (15)

withv = (2/ — 2)/L, 8 = kL, ¢5 = bsL/a. Noting that Finally, the solution to this equation is an impedance of the
up to orderk—'/2, (§ — ¢) can be replaced )2 L/2ka?,  form Eq. 1, with
this becomes

~ -1
Ko = s [i ) a() = ¥ [/O dvFO(v)} , (16)
iL oii2vL/2ka? a2 a resul-t that can be verified by substitution.
ka2 (1 — L ij?L) -(7) We find that for smalty, oo = 1+Gy(0) /m/7+O(v*/?),
‘ and fory = 1, a = g = —Go(0)/7 ~ 0.4648. The
The first term in square brackets can be summedumerical solution of Eq. 12 givesin general (see Fig. 2).
S 1/42 = 1/4; the second term can be approximated by polynomial fitin,/~

anintegraly->7, f(js) ~ (1/7) [;° f(z)dz, for k — oco.
Thus, we obtain a(y) =1l-ay/y—(1-2m)y , 17)
T 2L iven by the dashes in Fig. 2, agrees to within 1.5% with
__r [ 2L s given by g.2, ag
Ky (v) L L+ ka2 Golw)| @ the numerical result. Note that(0) is in agreement with
with the result of Gluckstern, ang(1) with that of Stupakov.
1.0 | | | |
1
Golv) = f/ [ — - P]
0.8
©)
S [# ! } ()
—lvn-v Vn 0.6

3

where( is the Riemann zeta functiog((l/2) = Go(0) =

—1.460). Note that it is the second term in the brackets of 0-4

Eq. 7 that Gluckstern has let go to zero, which will account

for the difference in his final result and ours. 0.2
The original integral equation, Eq. 2, thus becomes

Q/L )(I) 0.0 - L L L o |
G —v)F(v ’
\/— 0.0 0.2 0.4 0.6 0.8 1.0
i 9L u 7= g/L

— f d'UIF('UI) = _L s (10)

0 g Figure 2: The coefficient(). The dashed curve gives the

with analytical fit, Eq. 17. The plotting symbols are numerical

_ 20(—v) results discussed in the next section.
Gv) = + Go(v) . (11)
v —U

1726



Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

3 NUMERICAL COMPARISON 104

To confirm these results numerically we have used a field
matching computer program working in the frequency 103
domain[5] (see also Ref. [6]). For the geometry of Fig. 1

and for a givenk, this program matches the tangentia@ 102
fields atr = a, and then performs normalizing integrals. >
The result is an infinite dimensional matrix equation that”,

is truncated and inverted to obtaify, (k). In order to bet- 10!
ter study the asymptotic behavior, the program calculates

the impedance along a path slightly shifted off the real 100
axis, which has the effect of averaging and smoothing out

the many narrow impedance spikes otherwise found at high
frequencies. (Note that to obtain the short—range Wakeﬁe|d10711072
from this impedance, after performing the inverse Fourier
transform, the result must also be multiplied by the fac-

tor exp[Im(k)s], with s the distance between drﬁving and Figure 3: The real ;) and imaginary K1) parts of the
test particles.) As example geometry we consider that %pedance for the dimensions of the average NLC cell, as

a typical cell of the NLC accelerating structure known agained by field matching (solid lines). The dashes repre-
the damped, detuned structure (DDS)[7]. One S'mp“f'éent Eq. 1 withy = 0.52.

cation in our model, however, is that the irises are not
rounded, unlike those in the real structure. The dimensions
area = 4.924 mm, g = 6.89 mm, andL = 8.75 mm 4 CONCLUSIONS

(note that for the average, high—frequency impedance nei- i )
ther the cavity radius, nor the coupling manifolds that We have extended R. Gluckstern’s analytical result for the

couple through slots at= b in the DDS, play a role). high—frequency, longitudinal impedance of a periodic ac-
The numerical results, giving the reaky) and imag- celerating structure, a result valid for small gaps, to one

inary (X1) parts of the impedanc&;, whenIm(k) — valid for all gap to period ratios. We have, in addition,
0.5 mm~, are given in Fig. 1 (the solid curves). We nota?erformed numerical calculations and obtained results that
that this impedance is indeed a relatively smooth functioR®"firm the analytical result to an accuracy-of0%.

of Re(k) (on the real axisR; would be a collection of

many infinitesimally—narrow spikes). We should point out, 5 REFERENCES
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