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Abstract

The transverse coherent motion of the two colliding LHC beams is studied by multi-
particle tracking, where the beam-beam force is calculated assuming a Gaussian beam distri-
bution with variable barycentres and rms beam sizes. The simulation yields the coherent and
incoherent oscillation frequencies, the emittance growth of either beam, and evidence for the
existence or lack of Landau damping. The transverse beam sizes change with the fractional part
of the tune as expected from the dynamic beta effect. For head-on collisions, we find that the
π-mode frequency lies outside of the continuum frequency spread if the ratio of the beam-beam
parameters exceeds 0.6, in accordance with predictions [1]. For smaller ratios, the π-mode is
Landau damped. When long range interactions are also included, undamped coherent modes
do still exist outside the continuum, both with and without alternating crossing planes at two
interaction points. However, the simulation shows that separating the tunes of the two beams
can restore the Landau damping.
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1 Introduction
Two colliding beams exert a force on each other which is focusing for opposite

polarities and defocusing for equal polarity, as for the two proton beams at the LHC. It
is predicted from the linearized Vlasov equation that, in the case of one bunch per beam
with equal parameters (intensity, beam size, betatron tune), two dipole coherent modes
of oscillation appear: the σ-mode whose frequency is equal to the unperturbed betatron
tune, and the π-mode with a tune shift of 1.21 to 1.33 times the beam-beam parameter ξ
[2]. The coefficient depends on the beam aspect ratio.

In addition to the coherent modes, there is a continuum spectrum due to the inco-
herent oscillations of individual particles in each beam. The incoherent tune shift ranges
from 0 to ξ for particles at large and small betatron amplitudes. Generally one can expect
Landau damping to occur for oscillation modes whose frequency lies inside this continuum
band. The Landau damping is expected to be least effective for the π-mode since it is far-
thest from the continuum. The beam-beam interaction itself does not lead to instabilities
unless the tune is near a resonance [3]. But the loss of Landau damping can result in an
instability driven by any small impedance component of the vacuum chamber.

Moreover, the beam-beam interaction in the LHC is complicated by a non-zero
crossing angle at the collision points and the large number of bunches. This leads to about
30 long range beam-beam collisions in each interaction region, where the two beams are
not fully separated into different vacuum chambers. These parasitic collisions can also
give rise to coherent modes and create additional tune shifts.

At the LHC-99 beam-beam workshop held at CERN [4], concern was raised regard-
ing the stability of colliding beams with large and equal incoherent tune shifts. It has
been predicted that the frequency of the π-mode moves out of the continuum for a ratio
of beam-beam parameters r > 0.6 [1]. At the same workshop it was suggested as a po-
tential cure to decouple the two beams by making their tunes unequal [5, 6]. So far there
have been no theoretical predictions of the coherent modes in the presence of parasitic
collisions. These open questions motivated our tracking studies.

In this report, we investigate the frequency spectrum of the centroid bunch motion
using a multiparticle tracking code written in C. The simulation model is described in
Section 2. Section 3 presents results for head-on collisions of bunches with equal tunes,
considering both round and flat beams. Here, we compare the obtained tune shifts of
the coherent modes with those predicted by the linearized Vlasov theory, and, for round
beams, we determine the tune shift of the coherent dipole modes and its consequences on
Landau damping and emittance growth as a function of the beam-beam parameter ratio.
The dependence on the nominal betatron tune is explored in Section 4. In Section 5, we
describe simulation results including long range collisions, with and without alternating
crossing planes. Finally, in Section 6 we consider the collision of two beams with unequal
tunes, where the coherent dipole modes disappear.

2 The model
We simulate the collision of two strong proton beams. Our system of normalized

variables is x = X
σoX

, vx = βX′
σoX

, y = Y
σoY

, vy = βY ′
σoY

where σoX = σoY = σ are the
nominal horizontal and vertical rms sizes, and β the betatron function. The prime denotes
the derivative with respect to longitudinal position s, so that e.g., X ′ is the horizontal
trajectory slope.

We represent each of the beams by a set of N macroparticles, whose motion is
followed over n turns, assuming linear betatron motion and a strong beam-beam collision
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at one interaction point (IP). At this IP, each particle in the bunch experiences a deflection
from the field of a counter rotating Gaussian beam with barycentres at (x̄(i), ȳ(i)) and
squared transverse sizes M (i)

xx =< (x(i) − x̄(i))2 >, M (i)
yy =< (y(i) − ȳ(i))2 >. If M (i)

xx > M (i)
yy

the horizontal beam-beam kick is

∆vx(n) =
rpN

(i)
p

γ

β

σ2
Fx(x − x̄(i), y − ȳ(i), M (i)

xx , M (i)
yy ) (1)

with

Fx(x, y, Mxx, Myy) =

√
2π

(Mxx − Myy)
=

W


 x + iy√

2(Mxx − Myy)


 (2)

−
√

2π

(Mxx − Myy)
e
(− x2

2Mxx
− y2

2Myy
)
W


x

√
Myy/Mxx + iy

√
Mxx/Myy√

2(Mxx − Myy)




 ,

where W denotes the complex error function [7] (if M (i)
yy > M (i)

xx substitute x by y on both
sides of the equation, and vice versa). The vertical beam-beam force is described by the
real part of the same expression. In these maps the superindex (i) indicates variables of
the counter-rotating beam.

The linear map from one IP to the next is

(
x(n + 1)
vx(n + 1)

)
=

(
cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

)(
x(n)

vx(n) + ∆vx(n)

)
(3)

An equivalent map is applied in the vertical plane, (y, vy).
In the simulation, the initial coordinates (x, vx, y, vy) for two groups of N macropar-

ticles representing either of the two beams are selected from a Gaussian random distri-
bution in each variable with < x >= < vx >= < y >=< vy >= 0 and < x2 >= < v2

x >=
< y2 >= < v2

y >= 1.
Note that a multiparticle tracking model like this was used by E. Keil for the

study of 2 dimensional flat beams [8] and later by S. Matsumoto and K. Hirata [9],
who found good agreement between simulation results and analytical predictions for the
vertical motion of flat beams.

Typical parameters used in the simulation are fractional betatron tunes of Q =
Qx ≈ Qy = 0.32, the number of protons in beam 1 N (1)

p = 1.05 × 1011, the number of

protons in the 2nd beam N (2)
p = r × N (1)

p , where r lies within (0, 1), γ = E/E0 with
E = 7 TeV, rp the classical radius of the proton, horizontal and vertical rms beam sizes
of σ = 16 · 10−6 m and a beta function βx,y = 0.5 m. These values define the so-called
beam-beam parameters in the two transverse planes via

ξ(i)
x,y =

N (i)
p rpβx, y

2πγσx,y(σx + σy)
(4)

with i = 1 for beam 1, and i = 2 for beam 2. The ratio of the beam-beam parameters,
r = ξ(2)/ξ(1), determines the behaviour of the system [1]. For r = 0 we have the weak-
strong limit, and for r = 1 the strong-strong limit.
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In the case of nearly equal horizontal and vertical squared beam sizes, M (i)
xx ≈ M (i)

yy ,
the expression of Eq. (2) is ill defined. We then use a simpler expression for the force:

Fx(x, y, M (i)
xx , M (i)

yy ) =
2x

(x2 + y2)

[
1 − exp

(
− x2 + y2

M
(i)
xx + M

(i)
yy

)]
. (5)

In order to speed up the calculation, we have also performed a series of simulations using
only this simplified expression. The results for (initially) round beams and equal transverse
tunes are qualitatively and quantitatively the same as obtained using the exact expression
of the force, Eq. (2). This seems to indicate that small variations in the relative transverse
beam sizes do not affect much the properties of the coherent modes.

For the simulation of parasitic (long range) collisions, the same model is employed,
assuming round beams. The two beams collide with a horizontal separation Lx (in units
of σx). There is about 90◦ phase advance between the IP and the long range collision
region. Since the betatron phase advance between the long range collisions on one side of
the interaction region is very small, we lump all npar parasitic collisions into a single one,
to reduce the computing time. This overestimates the effect slightly because the bunches
oscillate with different phases with respect to each other [10]. Because a static dipole kick
would change the closed orbit of the bunch, the static kick from the long range collision
must be subtracted. The beam-beam long range kick used in our simulation code is then

∆vx(n) = + npar

2rpN
(i)
p

γ

β

σ2

{
(x − x(i) − Lx)

R2

[
1 − exp

(
− R2

M
(i)
xx + M

(i)
yy

)]}

− npar

2rpN
(i)
p

γ

β

σ2

{
(−Lx)

R̂2

[
1 − exp

(
− R̂2

M
(i)
xx + M

(i)
yy

)]}
(6)

where

R2 = (x − x(i) − Lx)
2 + (y − y(i))2 (7)

R̂2 = (Lx)
2 + (y − y(i))2. (8)

At the LHC, there are about npar = 16 parasitic encounters on each side of an IP,
with a minimum transverse separation of Lx = 7.5 (in units of σx).

3 Head-on collision with equal betatron tunes
3.1 π- and σ-modes for round beams

First let us consider the strong-strong case, r = 1, and head-on collisions of two
bunches, using the maps (1)+(3) with the beam-beam force F (x, y) of Eq. (2). The sta-
tistical variation in the distribution of particles is sufficiently large to excite the coherent
modes. The transverse squared beam sizes, Mxx and Myy, oscillate around 1 (in units of
σ2) with a maximum deviation of 2 %. Thus the beam stays approximately round.

If we Fourier analyse the motion of the barycentre of one bunch, we find two coupling
modes. One is located at Q, the other has a lower frequency. In Fig. 1 we plot the amplitude
frequency spectrum on a logarithmic scale. The horizontal axis gives the tune shift from
the unperturbed tune Q in units of ξ (namely: w = ν−Q

ξ
; for the round beam case ξx =

ξy = ξ = 0.003355, Q = 0.32). For the other beam a similar picture is obtained. Fourier
analysing the distance between the centroids (< x(1) > − < x(2) >,< y(1) > − < y(2) >)
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Figure 1: Frequency spectrum of the bunch centroid motion (over 217 turns, N = 104

macroparticles) for round beams. The horizontal axis gives the tune shift from the unper-
turbed tune Q in units of ξ, i.e. w = ν−Q

ξ
. The vertical axis is the corresponding amplitude

in logarithmic scale. The π- and σ- oscillation modes are clearly visible.

the coherent mode at the unperturbed frequency disappears. On the other hand, when
we Fourier analyse the sum of the centroids (< x(1) > + < x(2) >,< y(1) > + < y(2) >)
the lower mode frequency disappears. We can thus identify the mode at the unperturbed
frequency as the so-called σ-mode, for which the centroids of the bunches oscillate in phase
with equal frequencies and amplitudes. The lower frequency mode is called π-mode. In this
mode the centroids oscillate also with equal frequencies and amplitudes but in opposite
phase. The motion of the bunch centroids is a superposition of these two modes.

Between the π- and the σ-mode in Fig. 1 we can also see the continuum. This
arises as follows. A single particle of beam 1 crossing beam 2 at a distance from its axis
feels a focusing force which leads to a change in its tune. For particles near the centre of
the counter rotating beam this tune shift is equal to −ξ. For particles further away the
focusing force is smaller (due to the non-linearity of the beam-beam force). This creates
an incoherent tune spread which extends from 0 to −ξ.

In our simulations we find the π-mode at a tune shift of −1.1 in units of ξ (and
ξ = 0.003355). The π-mode is thus shifted outside of the continuum. Theoretical studies
based on the Vlasov equation predict a tune shift between these σ- and π-modes equal to
Y ×ξ, with Y the so-called Yokoya factor [2]. For the case where the two beams are round
we expect Y = 1.21. This factor describes the change of the observable tunes caused by
the distortion of the beam distribution due to the beam-beam collision. The tune shift is
derived by means of a linearized Vlasov equation, assuming the unperturbed solution to be
Gaussian. The shift obtained in our simulations is smaller than the theoretical prediction.
The difference is either due to the simplifying assumptions of our model, where the beam-
beam forces are calculated assuming that the beams are of Gaussian shape, or it is caused
by approximations in the theoretical derivation 1).

1) The beam-beam interaction can also excite coherent higher-order multipole modes in phase space.
For the quadrupole mode a tune shift of ∆π = −2 × 1.022 × ξ is predicted. The frequencies of the
higher modes are much closer to the continuum. These modes may thus experience residual Landau
damping. This could explain why, in the simulation, we have not observed any coherent quadrupole
oscillations. Note that the quadrupole-mode continuum ranges from 2Q to 2Q − 2ξ.
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To illustrate the dynamics of the two beams we track N = 105 macroparticles for 217

turns using a one dimensional model (with Fx = 2
(x−x(i))

[1−exp (−(x − x(i))2/2M (i)
xx )]). We

group the macroparticles in histograms to get the density ρ(x, t). To excite the coherent
modes strongly we give an offset to one of the beams of 0.4 (in units of σ). Fig. 2-(top-left)
illustrates the initial Gaussian distribution of the two beams, while the other three figures
depict the distribution for the last three turns. Comparing the left lower picture in Fig. 2
with the initial distribution, on top, reveals that the distribution of the oscillating beam
deviates from a Gaussian, the core participating more strongly in the oscillation.
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Figure 2: Dynamics of the two strong beams (N = 105 macroparticles, Q = 0.32) in a one
dimensional simulation for round beams. Top-left: initial state. Top-right: after 217 − 2
turns, bottom-left: after 217−1 turns, bottom-right: after 217 turns. The core of the beam
oscillates coherently and the tails do not move.

3.2 π- and σ-modes for flat beams
The tune shift of the coherent π-mode depends on the vertical-to-horizontal aspect

ratio at the collision point. We have simulated the collision of two flat beams with σx =
16×σy (which is a rather typical parameter for e+/e− storage rings) and Nb = 1.01×1013

(we artificially increase the number of particles per bunch in order to keep ξ big and have
a big frequency spread). In this case we find a vertical coherent π-mode with a tune shift
of −1.09× ξy (ξy = 0.03691), and a horizontal tune shift of −1.15× ξx (ξx = 0.002466). In
the case of very flat beams the linearized Vlasov theory predicts a tune shift of −1.24×ξy
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for the vertical π-mode and of −1.33 × ξx for the horizontal π-mode. In Fig. 3 we show
the spectrum of the centroid motion of one of the two beams. The horizontal axis is the
distance to the unperturbed tune in units of the corresponding beam-beam parameter 2).
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Figure 3: Frequency spectrum of the vertical (left) and horizontal (right) bunch centroid
motion for flat beams (over 217 turns, N = 104 macroparticles). The tune shift of the
π-mode with respect to the σ-mode is different for each plane.

3.3 Landau damping
The case of interest for proton machines is the round beam limit and we will con-

centrate on this case from now on.
In the σ-mode the beams oscillate in phase at the IP without changing their shape.

Participating in the π-mode are mainly particles with small betatron amplitudes, which
are most strongly affected by the movements of the opposing beam. This explains the
large value of the coherent tune shift [1, 2]. In the weak-strong case r → 0 such a mode
does not exist (unlike the discrete σ-mode which exists at any value of the intensity ratio).
Therefore, if one reduces the intensity of one of the beams there must be a point where
the discrete π-mode disappears. If the frequency of the π-mode lies within the incoherent
tune spread its energy can be absorbed by individual particles with similar oscillation
frequencies. This phenomenon is known as Landau damping [12]. As a consequence the
π-mode will disappear and the emittance will grow until the π-mode energy has been
completely absorbed.

Next we study the system for different values of the parameter r. We give an initial
horizontal offset d = +0.2 (in units of σx) to the distribution of one beam. This excites the
coherent dipole modes. The frequency spectrum for an intensity ratio r = 1 is depicted in
Fig. 4, where the amplitudes of both σ- and π-mode are plotted (calculated from the sum
and from the difference of the two beam centroids). The figure shows that the π-mode
is outside the continuum and not damped. The case r = 0.6 is illustrated in Fig. 5,
comparing the π-mode at two consecutive time intervals of 216 turns, demonstrating that
the amplitude of the π-mode decreases in time. Thus, for r = 0.6, we find that the π-mode
frequency lies near the edge of the continuum, and is marginally Landau damped. For the

2) Similar calculations were presented in reference [11] for the collision of e+/e− following the evolution
of 500 macroparticles over 500 turns and obtaining, for a simulation with Qx = 0.25, Qy = 0.3 and
ξy = 0.0306, a vertical tune shift of the π-mode of 1.06 × ξy.
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case r = 0.3 (not shown), the π-mode is well inside the continuum, and it is damped
rapidly. This is in agreement with the prediction of Y. Alexahin stating that in the cases
where the ratio r ≤ 0.6 the π-mode frequency lies within the incoherent tune spread of
the weaker beam [1].
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Figure 4: Frequency spectrum of the centroid motion (over 217 turns, N = 104) for the
case of round beams colliding head-on with an initial offset of d = 0.2 (in units of σx).
The ratio of beam-beam parameters is equal to r = 1. The horizontal axis gives the tune
shift from the unperturbed tune Q in units of ξ, i.e. w = ν−Q

ξ
. The vertical axis is the

corresponding amplitude. The π-mode at −1.1 has not been damped and its amplitude
is constant over this time.

3.4 Emittance growth
The energy of the kick is distributed among different oscillation modes: a coherent

σ-mode, a coherent π-mode and an incoherent spectrum of oscillations. The fraction of
energy which is imparted on the continuum leads to an irreversible emittance growth. We
study, for different values of r, the emittance growth and energy distribution for the case
of round beams with emittances εx = εy, and after a horizontal kick of magnitude d = 0.2
(in units of σx).

Let us express the horizontal and vertical oscillation energy in terms of a generalised
‘emittance’, defined as

εx = < x2 + v2
x > (9)

εy = < y2 + v2
y >,

where the angular brackets denote an average over the bunch distribution. In order to
measure the irreversible emittance growth, we subtract the centroid motion 3)

εI
x =< (x − x)2 + (vx − vx)

2 > (10)

εI
y =< (y − y)2 + (vy − vy)

2 > .

3) If there is no average correlation between position and velocity (i.e., < xvx >= 0 and < yvy >= 0),
and if the dynamic beta beat is small, this definition agrees with the usual definition of emittance
εx = (< (x − x̄)2 >< (vx − v̄x)2 > − < xvx >2)1/2 except for a factor of two.
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Figure 5: Frequency spectrum of the centroid motion at two successive time intervals of
216 turns (N = 104), considering head-on collisions of two round bunches with beam-beam
parameter ratio r = 0.6 and initial offset of d = 0.2 (in units of σx). The π-mode at −0.9 is
Landau damped. Solid line and plus symbols: first time interval; dashed line and crosses:
second interval.

It is shown in Fig. 4 that, for r = 1, the energy is distributed among a σ-oscillation
mode of amplitude A = 0.2, a π-mode of approximate amplitude B ≈ 0.13 (notice the
broad base of the π-mode peak) and the continuum. The fraction of energy absorbed by
the continuum leads to an irreversible emittance growth ∆εI = (ε(1),I

x + ε(1),I
y )/ε0− (ε(2),I

x +

ε(2),I
y )/ε0 − 2 of ∆εI ≈ 0.004; see the lower curve in Fig. 6.

For r ≤ 0.6 the frequency of the π-mode lies in the continuum and is Landau
damped. The emittance grows until this mode has completely been absorbed. Examples
are the two upper curves in Fig. 6. In this case, the final emittance growth is larger:
∆εI ≈ 0.01.

The beam response to a kick has also been studied, for the case r = 1, using the
Vlasov equation [1]. After a horizontal kick of magnitude d (in units of σx) the horizontal
emittances of the perturbed beams are predicted to be [1]:

ε(1)
x

ε0
+

ε(2)
x

ε0
= 2 +

d2

2
(0.5 + 0.32 + 0.18) (11)

The first term in the brackets describes the fraction of energy carried by the σ-mode, the
second represents the energy of the π-mode, and the last is the fraction which is imparted
on the continuum leading to an irreversible emittance growth. In our two dimensional
model, this energy is distributed between the two planes. Therefore we expect a total
emittance

ε(1)
x + ε(1)

y

ε0
+

ε(2)
x + ε(2)

y

ε0
= 2 +

d2

2
(0.5 + 0.32 + 0.18) (12)

where ε0 = (εx + εy) = 4. The σ-mode of centroid oscillation, with amplitude A, carries an

energy A2 = ε0× d2

2
×0.5 . The π-mode with amplitude B has an energy B2 = ε0× d2

2
×0.32

and the relative irreversible growth of emittance is ∆εI = d2

2
× 0.18. For d = 0.2 then

A = 0.2, B = 0.16 and ∆εI = 0.0036. This is in very good agreement with the amplitudes
shown in Fig. 4 and with the emittance growth shown in the lower curve of Fig. 6.
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For the case where r ≤ 0.6 the energy of the π-mode is transfered to the continuum.
The expected emittance growth is then ∆εI = d2

2
× (0.18 + 0.32) = 0.01, which is also in

agreement with the results shown in Fig. 6.
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Figure 6: Irreversible emittance growth ∆εI (vertical axis) as a function of time (horizontal
axis, time in turns) for three different ratios of beam-beam parameters, r = 0.3, r = 0.6
and r = 1. The beams are perturbed by an initial offset of d = 0.2 (in units of σ). If r ≤ 0.6
the frequency of the π-mode lies in the continuum and the mode is Landau damped. The
emittance will grow until all its energy has been absorbed. For r = 1 the π-mode is not
Landau damped, and carries part of the energy of the kick. The emittance growth is then
smaller.

4 Tune shift dependence on the working point
For the LHC, three working points are proposed where the calculated tune footprint

can be lodged: point 1 (Qx = 0.31, Qy = 0.32), point 2 (Qx = 0.23, Qy = 0.24) and
point 3 (Qx = 0.38, Qy = 0.39) [13]. In all these points there is a difference of order 0.01
between the vertical and horizontal tune. We will first ignore this in our calculations and
track only the dependence on the working point tune with Qx = Qy. Later we will present
results for separated tunes.

4.1 Dynamic beta effect
Tab. 1 lists the tune shift between the coherent π-mode and the σ-mode in units of

ξ0 for different nominal tunes, obtained by tracking over 217 turns with an initial beam-
beam parameter of ξ0 = 0.003355. In all cases, the continuum extended from 0 to roughly
ξ0, with the π-mode outside of it. Since we observed that the transverse size decreases
as the fractional part of the tune approaches the half integer and increases when it gets
closer to the integer from above, we include in the table the ratio of the average (over 217

turns) measured beam size to the initial value (Mxx + M yy)/2 = σ2/σ2
0.

We attribute the variation in the beam size with tune to the dynamic beta effect,
which is the simplest phenomenon in the strong-strong picture including static distortions.
This effect can be analysed by modelling the beam-beam interaction as a linear defocusing
lens which alters the β seen by the particle [14]. Assuming a linearized beam-beam force
the perturbed steady-state remains Gaussian, and only the rms beam size changes. In a
linear approximation the map experienced by a particle near the centre of the counter-
rotating beam is

9



Q ∆π/ξ0 σ2/σ2
0

0.01 −1.135 1.1887
0.05 −1.112 1.0335
0.10 −1.11 1.0148
0.24 −1.108 1.0007
0.32 −1.108 0.9952
0.39 −1.108 0.9874
0.49 −1.102 0.8581

Table 1: Tune split between the π- and σ-mode in units of ξ0 and ratio of the beam size
to the initial value σ2/σ2

0 = (Mxx + M yy)/2 for different nominal tunes.

(
cos (2πQ) β sin (2πQ)

− 1
β

sin (2πQ) cos (2πQ)

)(
1 0

−4πξ
β

1

)
=


 cos (2πQ̂) β̂ sin (2πQ̂)

− 1
β̂

sin (2πQ̂) cos (2πQ̂)


 , (13)

where ξ includes the perturbed sizes of the counter-rotating beam: ξ = Nprpβ/(4πγσ2) =
ξ0σ

2
0/σ

2. Notice that the perturbed sizes scale with the perturbed beta-functions as
σ2/σ2

0 = β̂/β, since we assume that the beam emittances are unchanged by the beam-
beam interaction. The new beta function, β̂, and the equilibrium rms beam size, can be
found self-consistently as a function of the unperturbed parameters [14]:

β

β̂
=

√√√√1 −
(

2πξ0

sin (2πQ)

)2

− 2πξ0 cot (2πQ). (14)

Integrating the beam-beam force over the Gaussian distribution, the effective beam-beam
force is one half that experienced by a single particle near the beam centre [15]. We
evaluate then the dynamic beta effect replacing in Eq. (14) ξ0 by Ξ = ξ0/2.

In Fig. 7 we plot the size-ratio σ2/σ2
0 of Tab. 1 (points) obtained from tracking

and the theoretical prediction (line). The agreement is excellent. Note that when the
fractional part of the tune approaches the half integer from below, β and the rms beam
size σ decrease, an effect which has been experimentally observed in e−/e+ collisions at
CESR [16]. For machines such as LEP with a large beam-beam parameter this effect has
a strong influence on the optics and beam-dynamics [17].

Regardless of the dynamic beta effect, the tune shift of the π-mode appears to
decrease as the fractional part of the tune increases.

4.2 Different vertical and horizontal tune
Next we track for different vertical and horizontal tune. We keep Qx constant at 0.31

and vary Qy. We do not find any special resonance effect when Qx and Qy approach each
other4). The reduction of the vertical size for increasing fractional tune is again consistent
with the dynamic beta effect; see Tab. 2.

4) In the case of flat beams, and scanning for different vertical tunes, it was found in [11] that the vertical
size increases very strongly when (Qx ± Qy)mod k ≈ 0 and when 2Qymod k ≈ 0. The first of these
resonances may be explained by an exchange of horizontal and vertical emittances, i.e. coupling.
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Figure 7: Comparison of the tracking results with the theoretical dynamic beta effect.
Vertical axis: beam size ratio σ2/σ2

0 , horizontal axis fractional tune. Points: data of Table 1
obtained from tracking; curve: σ2/σ2

0 = β̂/β dynamic beta theoretical prediction according
to Eq. (14). When the fractional part of the tune approaches the half integer from below,
β and the rms beam size σ decrease.

Qy ∆πy/ξ0 M yy/1.0
0.24 −1.104 1.0010
0.28 −1.103 0.9982
0.30 −1.102 0.9971
0.32 −1.101 0.9950
0.34 −1.1 0.9934
0.36 −1.099 0.9916
0.39 −1.098 0.9877

Table 2: Tune split between the vertical π- and σ-mode in units of ξ0 and ratio of the
beam vertical size to the initial value for different vertical tunes and Qx = 0.31.

5 Long range collisions with equal-tunes
We have repeated the calculations of Section 3.1, where the beam stayed nearly

round, using the approximate formula (5). We obtained the same results with much shorter
computing time. From now on, we will employ this simplified formula to reduce the CPU
time. We choose equal vertical and horizontal tune (Qx = Qy = 0.32).

5.1 Horizontal crossing (no head-on collisions)
Since the transverse distance between two bunches in the long range collision is

larger than the rms beam size, the effects will be similar to the coherent interaction
of rigid point like bunches. The contribution of parasitic crossings to the tune shift of
coherent oscillation modes is then expected to be

∆νπ = 2 × (incoherent tune shift) (15)

∆νσ = 0. (16)

Moreover the incoherent tune shift for beam separations larger than ≈ 1.5 σ has different
signs for the two planes.
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Fig. 8 shows the horizontal and vertical spectrum of centroid oscillation of one
bunch subject to long range collisions with a horizontal separation of Lx = 7.5 (in units
of σx). The horizontal axis gives the tune shift from the unperturbed tune Q in units of ξ:
w = ν−Q

ξ
. In the horizontal plane, the incoherent spectrum has positive tune shifts, and

the coherent dipole π-mode is visible at twice the incoherent tune shift. In the vertical
plane, the incoherent spectrum has negative tune shifts and again the coherent π-mode
is shifted twice as much.
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Figure 8: Spectrum of the vertical (left) and horizontal (right) centroid motion for long
range collision with horizontal separation Lx = 7.5 (in units of σx) and no head-on collision
(217 turns, N = 103 macroparticles). The tune shift due to long range collisions has
opposite sign in the two transverse planes. The coherent π-mode is at twice the incoherent
tune shift.

5.2 Head-on collisions and horizontal crossing
Next we study the combined effect of head-on and long range interactions. We

consider two closely spaced bunches per beam, and two interaction regions. We denote
the bunches in beam 1 as a and b, and those in beam 2 as c and d. First two bunches
collide head-on (for instance a-c). We then apply a phase advance of 90◦ to reach the
long range collision region. There the bunch pairs (a-d) and (b-c) are collided with a
horizontal separation of Lx and a beam-beam parameter npar times stronger than for the
single-bunch long range collision to take into account the additive effect of npar parasitic
collisions. Subsequently, we advance the phase of the beams to reach the other interaction
region, where now bunches b and d are collided head-on (b-d). This is followed by another
phase advance of 90◦ to the long range collision point, where again long range collisions
of the pairs (a-d) and (b-c) are applied. In this new collision scheme the two bunches of
each beam are coupled with both bunches in the opposing beam. Therefore, we expect to
find 4 coherent modes in each plane. Note that in this scheme each bunch only performs
half of the head-on collisions (one, instead of the two corresponding to the two IPs) and
half of the parasitic crossings (we only consider npar long range collisions after the IP), to
save computing time and reduce the complexity (later on we will consider a case where
each bunch has two head-on collisions and double number of long range interactions).

Fig. 9 shows the spectrum of amplitudes of one bunch, in the vertical (left) and
horizontal (right) plane. Clearly visible are the lines of the 4 coherent modes. Three of
these are outside of the continuum.
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Figure 9: Spectrum of the vertical (left) and horizontal (right) motion of a bunch centroid
(217 turns, N = 103macroparticles) for the case of head-on collision and horizontal crossing
with separation Lx = 7.5 (in units of σ). The two bunches of one beam are coupled with
the two bunches in the opposing beam and thus we find 4 coherent modes in each plane.

5.3 Head-on collisions with alternating crossing
Since the tune shifts from long range collisions have opposite signs in the two trans-

verse planes, for the LHC an alternating crossing scheme was proposed [18], where the
beams are separated in orthogonal planes at the two main IPs. This reduces the overall in-
coherent tune shift and tune spread by compensation between the IPs. As a consequence,
the frequency shifts of the coherent modes are reduced.

We collide the 2 × 2 bunches as before, except that in the second long range in-
teraction region the bunches collide vertically with the separation Ly = 7.5 (in units of
σy). Now the two planes of oscillation are equivalent and the coherent modes are shifted
closer to the continuum. In the case of collisions of equally strong beams, we again find
3 coherent modes outside the continuum, as illustrated in Fig. 10. The figure on the left
shows the result obtained with the round beam approximation, for comparison, the figure
on the right shows the one obtained using the complete expression of the force in Eq. (2).
This seems to indicate that small variations in the relative transverse beam sizes do not
affect much the properties of the coherent modes.

For completeness, we consider here the case of head-on and long range collisions
with alternating crossing when each bunch has two head-on collisions (one at each IP).
Notice that now the incoherent tune shift is twice the beam-beam parameter. We also
include the parasitic collisions before the IPs. The effective number of parasitic crossings
per side of each IP is npar. The kick is the same on both sides of the IP because the
betatron phase advance of 180◦ compensates for the opposite direction of the beam-beam
separation and therefore the long range collisions before and after the IP add up. We
lump all the 2 × npar parasitic collisions in a a kick 90◦ after the IP. The spectrum of the
motion of one bunch is illustrated in Fig. 11. We still have coherent modes outside the
continuum, although the two modes with bigger tune shift seem to merge.
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Figure 10: Spectrum in the case of head-on and long range collisions with alternating
crossing (217 turns, N = 103 macroparticles). Left: using the round beam approxima-
tion; right: using the complete expression for the force. The two planes of oscillation are
equivalent and the coherent modes are shifted closer to the continuum. We still find 3
coherent modes outside the continuum which can not be Landau damped.
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Figure 11: Spectrum in the case of head-on and long range collisions with alternating
crossing (217 turns, N = 104 macroparticles) when each bunch collides head-on at the
two interaction points, and has long range collisions with 2 × npar bunches after each IP.
The horizontal axis is in units of the new incoherent tune shift 2 × ξ: w = ν−Q

2ξ
.
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6 Collision of bunches with unequal tunes
6.1 Head-on collisions

At the LHC-99 workshop, it was pointed out by A. Hofmann that the coherent
frequency shifts can be reduced by separating the tunes of the two beams [6, 19]. The
case of equal tunes for both beams is well known and leads to a σ-mode, with the beams
oscillating in phase, and a π-mode, with an out of phase oscillation. In most storage rings
the unperturbed betatron tunes are the same for both beams. But if the two unperturbed
tunes can be made different, the beams are decoupled and oscillate on their own. In the
LHC, with two independent rings, this could be easily realized.

We give an offset of ±0.1 (in units of σx) to each beam in order to excite the os-
cillations for the head-on case with beam 1 at a tune Q(1) = 0.32 and beam 2 at a tune
Q(2) = 0.31. Figure 12 shows that the continuum of beam 2 extends from 0.31−ξ = 0.3066
to 0.31. One of the two coupling modes is now inside the incoherent spread and Landau
damping of this mode is restored. The continuum of beam 2 absorbs the energy of the
lower-frequency coupling mode. At the same time, the amplitudes of the incoherent oscilla-
tion modes increase. The same will happen with beam 1 and its continuum, which extends
from (0.32 − ξ) = 0.3166 to 0.32. Now we do not find any narrow peak corresponding to
a coherent mode and we only observe a finite emittance growth.
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Figure 12: Beam 2 (left) and beam 1 (right) spectrum of centroid oscillation for head-on
collisions with unequal tunes (Q(1) = 0.32, Q(2) = 0.31) and initial offset ±0.1 (σx), (217

turns, N = 103 macroparticles). Along the horizontal axis we plot the tune and along
the vertical axis the corresponding amplitude. The new coupling modes are inside the
continuum and are Landau damped.

The new frequencies of the coherent modes can be understood with a simple model.
Two resonances determine the response of two beams with frequencies Q(1) and Q(2) to
an external excitation. The frequencies of these resonances are [6, 19]

Q2
a,b =

(Q(1))2 + (Q(2))2

2
+

(−ξ)(Q(1) + Q(2))

2
(17)

± 1

2

√
((Q(1))2 − (Q(2))2)2 + 2(−ξ)(Q(1) + Q(2))(Q(1) − Q(2))2 + (−ξ)2(Q(1) + Q(2))2.

As the unperturbed tunes move apart, the tunes Qa and Qb of the two modes are more and
more associated with the two individual beams respectively. If the tunes are very different
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the beams are completely decoupled. For instance for Q(1) = 0.32 and Q(2) = 0.31 the
new modes are at Qa = 0.3186 and Qb = 0.3080 (Qa inside the continuum of beam 1 and
Qb inside the continuum of beam 2).

6.2 Long range collisions
We next consider the collision of 2 bunches with Q(1) = 0.32 against 2 bunches with

Q(2) = 0.31, colliding head-on (no initial offset) at two IPs and including horizontal long
range interactions in the same way as in Section 5.2. Again the horizontal and vertical
spectra exhibit different tune shifts. As we have seen before, the head-on collisions give
rise to coherent modes which lie in the continuum and are Landau damped. However,
Fig. 13 (top), demonstrates that the long range collisions shift two of the coherent modes
outside the continuum. Because the other two modes remain inside the continuum, they
are Landau damped and not visible.

Choosing sufficiently different tunes for the two beams, for example Q(1) = 0.32
(working point 1) and Q(2) = 0.24 (working point 2), the two remaining coherent modes
also merge with the continuum; see Fig. 13 (bottom).
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Figure 13: Spectrum of the vertical (left) and horizontal (right) motion of one of the
bunches with Q(1) = 0.32 with head-on collision and horizontal crossing (217 turns, N =
103 macroparticles). Above, when the tune of beam 2 is Q(2) = 0.31 the long range
collisions shift two of the coherent modes outside the continuum. Below, when Q(2) = 0.24
(working point 2) the tunes are sufficiently unequal and all the coherent modes merge
the continuum and are Landau damped.
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If we include alternating crossing, as in Section 5.3, even the coherent modes of the
case Q(1) = 0.32 and Q(2) = 0.31 are brought back into the continuum and are Landau
damped. In Fig. 14 we plot the spectrum of the bunch with Q = 0.32, for the case of
alternating crossing.
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Figure 14: Spectrum of the centroid motion of one of the bunches with Q(1) = 0.32 with
head-on collision and alternating crossing when beam 2 has a tune Q(2) = 0.31. Landau
damping is restored for the 4 coherent modes.

7 Conclusions
Using a simplified multiparticle simulation, we have studied the coupled coherent

beam-beam modes at the LHC.
For the case of head-on collisions and a finite initial transverse offset, the energy

partition between the continuum, the σ- and the π-mode is found to be in agreement
with theoretical predictions [1]. We have also confirmed another prediction [1] that, for
a ratio of beam-beam parameters 0 < r ≤ 0.6, the π-mode lies within the continuum
and that it is Landau damped. Its energy is transferred to the continuum, leading to an
irreversible finite emittance growth. For equal beam-beam parameter of the two beams,
we find a π-mode tune shift of −1.1 in units of ξ, sufficiently large to place it outside
of the continuum and to lose Landau damping. We observe a decrease of the beam size
with increasing fractional tune, which is explained by the dynamic beta effect. The tune
shift of the π-mode is reduced as the fractional tune increases and, therefore, the π-mode
moves closer to the continuum.

In the case of two equally strong beams with head-on and long range collisions,
coherent modes exist outside of the continuum, even with alternating crossing at two IPs.
In general, these modes are not Landau damped. However, if the betatron tunes of the two
beams are sufficiently different, the frequencies of the coherent modes are shifted towards
the continuum and Landau damping can be restored.
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