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1. Introduction

In a recent paper [1], the exact world-sheet instanton corrected moduli space of the

heterotic conformal field theory on a G = A1 singularity of K3 has been determined

in the Mstr → ∞ limit and found to be given by the Atiyah-Hitchin manifold [2].
This is the same moduli as that of the three-dimensional pure N = 4 theory [3] with
gauge group G = A1. It has been conjectured in [1] that this relation between the

moduli spaces of the conformal field theory and the 3d gauge theories holds for any

G. For G = An, the proposal is verified by the analysis of [4].

The three dimensional N = 4 supersymmetric gauge theories can be studied by a
circle compactification of the four dimensional N = 2 theories [3]. The instantons in
the three dimensional theory correspond to monopoles and dyons in four dimensions.

This situation can also be studied in the field theory limit of a type-II compactifica-

tion on a Calabi-Yau W × S1. In this theory, the charged states of the field theory
are represented by D-brane wrappings on small p-cycles Cp of a local singularity in

W ; in the limit α′ → 0 with V (Cp)/(α′)p/2 fixed, most of the fundamental states and
gravity decouple and one is left with the light spectrum of the field theory. E.g., in

the type-IIB theory, the monopole in four dimensions is a D3-brane wrapped on a

small 3-cycle C3 of a singularity in a local patch of W . The instanton in 3d is the

euclidean wrapping of the D3-brane on C3 × S1.
The gauge coupling g3 of the three-dimensional field gets perturbative contri-

butions at tree level and one-loop as well as possible instanton corrections. The
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instanton correction is of the form e−(I+iσ), where σ is the scalar dual to the photon
and the instanton action I is approximately 2πMr for large r, where M is the mass

of the monopole in four dimensions. In the type-II theory the latter is given by the

volume of the brane wrapping V (C3).

The three dimensional gauge theories enjoy often interesting dualities that equate

the Coulomb branch of a certain theory with the Higgs branch of another [5, 6, 7].

In the type-II string, this duality is interpreted as a T-duality on the S1 which takes

the type-IIB onW ×S1(r) to type-IIA onW ×S1(1/r). IfW is a singularity of small
3-cycles as in the previous discussion, the field theory limit of type-IIA describes a

theory of hypermultiplets parametrizing the volumes of, and RR fields on, the cycles

Ci3. This is the theory that should be naturally identified with the heterotic CFT

in the duality discussed in this paper. The D3 instantons of the type-IIB theory

become euclidean D2-branes wrapped on C3 after the T-duality.

In the heterotic CFT, the expansion is in terms of world-sheet instantons and the

corresponding instanton action of the form e−V (c)/α′ , where c is a 2-cycle in the K3 of
the heterotic compactification on which a euclidean fundamental string is wrapped.

Moreover tree-level and one-loop of the field theory correspond to the α′0 and α′1

contribution to the heterotic string metric, respectively [1]. To obtain the Hyper-

Kähler moduli space of the field theory one takes a similar field theory limit of the

heterotic string with α′ → 0 at fixed V (c)/α′. The moduli space of hypermultiplets
describes the local deformations of an ADE singularity of an ALE space that governs

the local patch of the K3 in this limit.

Although the expansion of the gauge theory and the CFT is morally speaking

around the same point, namely in the limit of large instanton action or large volume

of the 2-cycles c in the heterotic string or C in the type-IIA theory, respectively, it

would be hasty to conclude that the corresponding instanton expansions are exactly

the same. In fact it would be surprising if the wrappings of the D2-brane instantons

of the type-IIA theory would follow the same rule as that of the fundamental world-

sheet instantons of the heterotic CFT. It would be interesting to relate the two

instanton expansions.

In this note we derive the conjecture of ref. [1] by using heterotic/type-II duality

to show that the type-II geometry W associated to the heterotic string the ADE

singularity is the appropriate, known Calabi-Yau singularity of small 3-cycles that

yields the G gauge theory upon type-IIB compactification on W × S1. We will also
consider various generalizations of the conjecture.

2. Field theory limit

Consider the heterotic string compactification on K3 × T 2, where the K3 will be
replaced by the ADE singularity momentarily. In general this is dual to type-IIA

on a K3 fibered Calabi-Yau 3-fold W . If we assume that the bundle factorizes on
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K3×T 2 and the heterotic K3 is elliptically fibered, the four-dimensional duality can
be pushed up to six dimensions, between F-theory on the, now elliptically fibered,

Calabi-Yau W and heterotic string on K3.

Let us first show that the the field theory limit of the heterotic string described

by the CFT on the ADE singularity with a Hyper-Kähler moduli space corresponds

to a — special — field theory limit of the type-IIA theory The heterotic parameters

behave as

ghet → 0, α′het → 0, V (c)

α′het
= const. , (2.1)

where c stand collectively for a 2-cycle in the ADE singularity.

First note that all p-cycles of K3 except for the cycles c of the singularity grow

as α′−p/2 in the limit (2.1). This holds in particular for the two universal classes E
and B of the elliptically fibered K3 with a section, where E is the class of the fiber

and B the class of a section. Consider the singularity from a collision of singular

elliptic fibers at a point s0 of B. The transverse dimensions to the singularity are

described by E and B, which become non-compact in the above limit. Therefore we

are left with the local singularity of a non-compact ALE space.

The four-dimensional compactification above can be considered as a compacti-

fication of the six-dimensional duality between type-IIA on K3 and heterotic string

on T 4 on a base P1 denoted by B. From the relations in [8] one can then easily see

that the four-dimensional coupling constants are related by

1

g24,het
∼ Vhet(B)
g26,het

∼ VII(B), 1

g24,II
∼ VII(B)
g26,II

∼ Vhet(B). (2.2)

Note that B is the base of the elliptically fibered K3 of the heterotic theory and

the K3 fibration of W in the type-IIA theory, respectively. Since Vhet(B) becomes

large, we have a weakly coupled type-IIA theory. To have a weakly coupled heterotic

string, VII(B) becomes large, too.

Moreover the type-IIA string is obtained from wrapping a heterotic 5-brane on

T 2 times the elliptic fiber of K3. For generic volume of T 2 this 4-cycle becomes very

large and therefore α′ → 0 in the type-II theory. However as we will show in the
next section, the limit we have to take is not the naive α′ → 0 limit: to the small
2-cycles ci in K3 correspond small 3-cycles Ci in W with a fixed volume V (Ci)/α

′3/2
II .

Above we have recovered the definition of the field theory limit of the dual

type-II string studied in the geometric engineering approach of type-II strings [9] on

Calabi-Yau singularities. The fact that it is the fiber of the heterotic K3 Z that gets

large (and not just the 4-cycle of the 5-brane wrapping) implies a special limit in the

complex structure of the Calabi-Yau singularity. We will show in the next section

that the special singularities one obtains in this way are precisely those used in [10]

to extend the geometric engineering approach of [9] to describe heterotic moduli

spaces by F-theory limits of Calabi-Yau singularities. The subsequent sections may

be understood without going through the mathematics of the next section.
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3. Dual type-IIA singularities and stable degenerations

A second consequence of the large elliptic fiber of Z is a limit in the complex structure

ofW that is known as a stable degeneration [11, 12, 13]. In particular it was proposed

in [11] that if W is a K3 manifold, one can see the heterotic T 2 in W on the nose in

the limit of the stable degeneration, which in heterotic terms corresponds to a very

large T 2. Since we are interested in the complex structure of W parametrized by the

hypermultiplets of the type-IIA theory, we can consider F-theory compactification

on W dual to heterotic on Z without the extra T 2. The type-IIA theory is related to

F-theory by the extra T 2 compactification which will affect only the Kähler moduli

space of the Calabi-Yau W .

In the following we will describe in some detail general deformations of the stable

degeneration and make contact with the field theory limit of the type-IIA on non-

compact singularities considered in [10]. We will verify the identifications made

in [11] and add also the information about the bundles on the heterotic manifold Z

in this way. This will serve as a starting point for the identification of the type-II

singularity dual to the ADE singularity of the heterotic string in the next section.

The elliptically fibered manifold W for F-theory compactification in Weierstrass

form is given by

pW = y
2 + x3 + xf + g = 0 , (3.1)

with f and g some functions depending on the coordinates on the base B of the

elliptic fibration π : W → B. To describe the limit in complex structure we are
interested in, we consider families of the F-theory manifold W in a fibration over the

complex plane, similarly as in [13]. Let us write (3.1) in more detail as

pW = y
2 + x3 + x

∑
α

s4−αs̃4+αf (4)α +
∑
α

s6−αs̃6+αf (6)α , (3.2)

where f
(k)
α are constants if W is a K3, but more generally functions on the n − 1

dimensional base B′ of the K3 fibration π′ : W → B′ of the Calabi-Yau n + 1-fold
W. Moreover s and s̃ are homogeneous coordinates on the base P1 of the elliptic

fibration of the K3 fiber.

To perform the limit, we consider families Y of W in a fibration over another P1

parametrized by µ

pY = y
2 + x3 + x

∑
α,β

s4−αs̃4+αµ4−βf (4)α a
(4)
α,β +

∑
α,β

s6−αs̃6+αµ6−βf (6)α a
(6)
α,β ,

where a
(k)
α,β are some complex constants that we will set to 0 or 1 in the following. In

general, the fiber of Y at µ = 0 is a (certain deformation) of the original manifoldW .

However if we restrict the complex structure of Y such that a
(k)
α,β = 0 for α + β > k

4
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the fiber at µ = 0 becomes

pY = y
2 + x3 + xs4

∑
α≤0
s−αs̃4+αf (4)α + s

6
∑
α≤0
s−αs̃6+αf (6)α ,

which has a non-minimal singularity at y = x = s = 0. After a blow up of Y ,

y = ρ3y, x = ρ2x, s = ρs, µ = ρµ ,

we arrive at

pY ′ = y
2 + x3 + x

∑
α,β

s4−αs̃4+αµ4−βρ4−α−βf (4)α +
∑
α,β

s6−αs̃6+αµ6−βρ6−α−βf (6)α .

The singular fiber at µ = 0 is now replaced by a reducible fiber Ŵ with two compo-

nents corresponding to µ = 0 and ρ = 0:

pW1 = p0 + p+ =
(
y2 + x3 + xf

(4)
0 + f

(6)
0

)
+

+

(
x
∑
α<0

s̃4+αρ−αf (4)α +
∑
α<0

s̃6+αρ−αf (6)α

)
,

pW2 = p0 + p− =
(
y2 + x3 + xf

(4)
0 + f

(6)
0

)
+

+

(
x
∑
α>0

s4−αµαf (4)α +
∑
α>0

s6−αµαf (6)α

)
. (3.3)

The two components W1 and W2 intersect over the locus µ = ρ = 0 described by

p0 = 0. According to [11] this intersection is to be identified with the heterotic

manifold Z.

This proposal can be made precise using local mirror symmetry which allows to

also extract the heterotic bundle [10]. As shown there, a type-IIA compactification

on certain non-compact Calabi-Yau singularities W results in a gravity free field

theory with the moduli space of holomorphic stable bundles on a compact Calabi-

Yau Zn defined as a certain hypersurface in W. For appropriate structure group
of the bundle this data can be interpreted as a heterotic compactification in the

point particle limit. From comparison with (3.3), one observes that if we consider

separately a manifoldW1 described by pW1 = 0, it describes precisely a non-compact
Calabi-Yau singularity of the type considered in [10]. The singularity W1 indeed
describes the moduli space of holomorphic stable bundles V on Z : p0 = 0. Moreover

we can use the identifications for the singularity W1 derived in [10] to read off the
moduli of the bundle V on Z.

4. Chains and cycles in Ŵ

Let us show now how the vanishing 2 cycles ci of the heterotic ADE singularity

correspond to shrinking 3-cycles in the dual type-II manifold Ŵ . The latter support

5
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Figure 1: The original K3 and the generic stable deformation.

the D2 instantons of the field theory limit of the type-IIA theory and the monopole

wrappings of the T-dual type-IIB theory that represents the Coulomb branch of the

three-dimensional gauge theory.

Let us start with the illustrative and simpler case of F-theory on a K3 W dual

to heterotic string on T 2. It shares many of the relevant aspects with the case of the

heterotic string on K3 that will be obtained by fibering over an extra P1.

Before the stable degeneration, W is an elliptic fibration over a P1 with 24

singular elliptic fibers located at the zeros of the discriminant ∆ = 4f 3 + 27g2,

where f and g are degree 8 and 12 polynomials in the variable s on the base P1,

respectively. After the stable degeneration, W has split into the two components W1
and W2 described by eq. (3.3), intersecting over the elliptic curve E : p0 = 0. The

base of the elliptic fibrations of the elliptic rational surfaces Wi are two P
1’s that

intersect over a point, µ = ρ = 0. There are 12 points on each P1 above which the

elliptic fibers becomes singular (see figure 1).

There are two basic degenerations of this elliptic fibration. First we can bring

together singular elliptic fibers of a single component, say W1. This introduces a

singularity of small 2-cycles in W1 with a type determined by the classification of

Kodaira. Since the relative location of the singular elliptic fibers is described by p+ in

eq. (3.3), with parameters that translates to that of the heterotic bundle as described

in [10], this corresponds to a degeneration of the gauge bundle in the heterotic string

on T 2.

The second kind of degeneration consists of bringing together a singular fiber

fromW1 with another singular fiber fromW2. This is only possible at the intersection

of the two base P1’s at µ = ρ = 0. Again we obtain a shrinking 2-cycle c in Ŵ .

However note that c intersects E along a 1-cycle γ.

To see the cycle c and the fact that its volume vanishes if and only if the 1-cycle

γ shrinks, consider the local situation in W1 described by choosing

f = f0 + ρf1 = (−3a2) + ρf1 , g = g0 + ρg1 = (2a
3 − ε) + ρg1 , (4.1)

in (3.1). For small ε, the heterotic torus at ρ = 0 has a small W × S1 described by
γ : y2 + x2 = ε .
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Away from ρ = 0 there is still an W × S1, γ(ρ),

E:

ρ0

γ
ρ=0

W1

K1

Figure 2: The 2-chain K1 in W1.

with a radius
√
ε(ρ) depending on the value of

ρ. From the vanishing of the discriminant ∆ =

∆0+ ρ∆1 we see that γ(ρ) shrinks to zero size at

a point ρ0 = −∆0/∆1. We can therefore define
a two 2-chain K(1) in W1 from gluing together

1-cycles γ(ρ) along the interval ρ = [0, ρ0].

Note that the cycle γ = γ(0) in E shrinks iff ∆0 = 0, which implies ρ0 → 0.
Thus precisely if γ shrinks, K(1) shrinks, too. In fact the volume of the 2-chain K(1)

is determined by the integral∫
K(1)
Ω ∼

∫
K(1)

dx dρ

y
=

πε√
3a(af1 + g1)

, (4.2)

where the proportionality constant depends on the normalization of the 2-form Ω.

In the total manifold Ŵ we obtain a vanishing 2-cycle from the two vanishing 2

chains K(α) ⊂ Wα joining along the vanishing cycle γ. Note that we can write the
discriminant of Ŵ as ∆(Ŵ ) = ∆(W1) · ∆(W2), which vanishes to second order at
µ = ρ = 0 due to the first order vanishing of ∆(Wi).

Thus this second kind of degeneration is related to a geometric degeneration of

the heterotic torus E. This does not make too much sense in the case of the torus,

since its degenerations are very limited and in fact at infinite distance in the moduli

space.1 We can also combine the two kind of degenerations and bring together

several singular fibers from W1 and W2 at the intersection. From the above this

should correspond to a degeneration of the bundle on top of the singular heterotic

geometry.

Having discussed this toy example, let us consider the case of heterotic string on

a non-trivial Calabi-Yau Zn, n > 1, in particular for Z = K3. The new ingredient is

that we can now have geometric singularities of Z at finite distance in the moduli,

in particular ADE singularities of ALE spaces. Let us fiber the eight-dimensional

picture in figure 1 over an extra P1, parametrized by t. The local structure of the

3-fold geometry Ŵ for small 2-cycles ci in Z is similar as in eq. (4.1) with an extra

dependence on the base P1:

f = f0(t) + ρ f1(t), g = g0(t) + ρ g1(t). (4.3)

Similarly we can split the discriminant of the elliptic fibration as ∆ = ∆0(t) +

ρ ∆1(t). Near a G singularity of the K3, the zeros of ∆0 are described by

∆0 =

δ∏
i

(t− ti(ak)) = tδ + · · · , (4.4)

1However note that in this limit we have U =∞ = T so we can interpreted the SU(2) gauge sym-
metry of the type-IIA string on the vanishing 2-cycle as the heterotic gauge symmetry enhancement

at T = U in the limit T →∞.
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where ak, k = 1, . . . , rk G denote the deformations of the singularity and δ is a

certain integer that counts the number of simple singular fibers needed to produce

the G singularity in the elliptic fibration.2 Classically, the G singularity is recovered

in the limit, where the perturbations ak become zero.

Moving away from ρ = 0 to describe the 3-fold Ŵ , the zeros ti of the discriminant

∆ depend on ρ:

∆ = ∆0 + ρ ∆1 =

δ∏
i

(t− ti(ak, ρ)) . (4.5)

Note that for each pair of ti(ak, ρ), we can define a 2-cycle cij(ρ) by stringing together

1-cycles in E along the interval [ti(ak, ρ), tj(ak, ρ)], very similar as we did in the

construction of the 2-chains K(α). Moreover the 2-cycle cij(ρ) attaches to a 2-cycle

cij of the K3 Z for ρ = 0. In addition it shrinks to zero size at a point ρ = ρij where

ti(ak, ρij) = tj(ak, ρij). (4.6)

Very similar as in the previous case we can now build 3-chainsK
(α)
ij by gluing together

the 2-spheres cij(ρ) along the interval [0, ρij].

Finally note that for very similar reasons as for the 2-chains constructed before,

the volume of the 3-chain K
(α)
ij vanishes precisely if the 2-cycle cij shrinks and in

particular all 3-chains shrink near the singularity of the heterotic K3 Z

ak → 0 ⇒ ρij → 0 . (4.7)

One can calculate also the volume of the individual 3-chainsK
(α)
ij similarly as in (4.2).

We have therefore succeeded to establish a 1-1 correspondence between the small

2-cycles cij of the resolved ADE singularity and small 3-cycles Cij = K
(1)
ij ∪K(2)ij of a

singularity reached in the complex structure of the type-II compactification manifold

Ŵ . The lattice H3(Ŵ ) inherits the ADE structure from the lattice H2(Z). Note that

the cycles Cij intersect each other according to the ADE Dynkin diagram. This fits

with the physics expectations that the instanton corrections to the three-dimensional

gauge theory represented by type-IIB on Ŵ arise from the monopoles and dyons, as

opposed to the wrappings of purely electric cycles.

The singularity of the type-II manifold Ŵ is precisely the one which is known to

produce the G gauge theory in three dimensions in a type-IIB compactification on

Ŵ×S1 [9]. Note that we needed the extra S1 to translate from the heterotic type-IIA
dual that describes the “Higgs branch” of hypermultiplets, to the Coulomb branch of

the G gauge theory of the type-IIB field theory limit, which corresponds to the dual

theory in the sense of [5, 6]. Let us also identify the states dual to the monopoles

2E.g. δ = N for SU(N) and more generally δ = rkG+ 1+ ν, where ν is the number of trivalent

vertices in the Dynkin diagram of G. See ref. [14].
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from D3-branes wrapped on Cij . In the T-dual type IIA theory they become D4-

branes wrapped on Cij ×S1. In the heterotic theory they become 5-branes wrapped
on cij × T 3.
Let us consider now possible generalizations of the above picture by moving

additional singular elliptic fibers into the heterotic singularity. As discussed in the

eight-dimensional picture, if we let collide fibers at some point ρ = ρ′ of the base of
the elliptic surface Wi, this corresponds to a degeneration of the heterotic bundle.

Moving this point into the ADE singularity, ρ′ → 0, we expect that in general the
gauge bundle is not trivial on the singularity. This would correspond to theories with

non-perturbative heterotic dynamics, such as the extra gauge symmetry enhancement

discussed in [10].

Let us first consider a simpler case, where it is easier to find the answer. In the

six-dimensional compactification we can also consider moving in additional singular

elliptic fibers into the singularity using the t direction. In this way we can keep the

singularity of the elliptic surfaceWi, and thus the bundle, fixed on the singularity. In

particular, if we choose a totally trivial gauge bundle there are 24 small instantons lo-

cated at points t = ti of the base of Z. The case where some of these positions coincide

with the location of the ADE singularity has been studied in great detail in [15, 13].

With some effort one can show that after moving in such points there are new 3-cycles

in Ŵ that correspond to adding matter in the gauge theory following the rules of

geometric engineering of type-II strings. Note that we can only get matter that can

be obtained from adjoint breaking of a higher rank gauge group [16] in this way. We

will take a shortcut here that uses the results on three-dimensional mirror symmetry

described in [6, 7], which will lead us also to a natural conjecture for new three-

dimensional dualities. Specifically, ref. [7] established a series of three-dimensional

dualities using geometric engineering of type-II on geometric singularities, which is

precisely the situation that we consider. It was shown that if the type-IIB theory

on a Calabi-Yau W describes a U(N) theory with Nf = k fundamentals, than the

type-IIA theory on the same manifold describes the Higgs branch of a dual theory

with gauge group U(1) · U(2) · · ·U(N − 1) · U(N)k−2N+1 · U(N − 1) · · ·U(2) · U(1).
On the other hand [15, 13] this is precisely the gauge theory of k small instantons

on a SU(N) singularity of K3! Thus we see that by considering the field theory limit

of the heterotic theory with small instantons on the K3 singularity it essentially fol-

lows from the results in [7] that the heterotic moduli of the AN−1 singularity with k
instantons is the same as that of the three-dimensional SU(N) theory with Nf = k.

3

3It is worth noticing that this result is consistent with a proposal for mirror symmetry of F-

theory formulated in [17] and derived and refined in [10]. In particular it states that if F-theory

on a 3-fold W̃ describes the Coulomb branch of k small heterotic instantons on a G singularity of

K3, than the mirror W̃ ∗ is dual to a heterotic theory on the Higgs branch describing a large G
instanton with instanton number k. After a T 3 compactification, the two theories are related by

the three-dimensional duality as above.
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It is natural to wonder whether this relation is true more generally, also in

those cases, where three-dimensional dualities have not yet been established or even

formulated. The prediction would be that the theory dual to the three-dimensional

gauge theory with gauge group G and k matter multiplets is the gauge theory with

gauge group G̃, where G̃ is the extra local gauge group that appears if k small

heterotic instantons collide with a G singularity of K3.

Let us now come back to the case where we move singular fibers of the elliptic

surface W1 into the ADE singularity. We have in the moment no good understand-

ing of what the three-dimensional theories associated to such a degeneration may

be, however there is also a plausible candidate for this case from the geometric engi-

neering of type-II strings. Note first that if we take the base to be P1 ×P1, we can
interpret any of the two P1’s as the base of the heterotic K3. Accordingly we have

two heterotic theories that are related by heterotic-heterotic duality [18]. An exten-

sion of this duality for singular K3’s and bundle singularities exists and has been

described in [10]. In the previous case we have considered having a G singularity in

the K3 with base P1 parametrized by t. Of course nothing changes if we consider

instead only a singularity G′ in the heterotic theory with base the other P1(s, s̃).
If we now consider a manifold where the G and G′ singularities collide, we have in
some sense a collision of two gauge theories with groups G and G′. This reminds very
much of the structure of the conformal field theories engineered from type-II strings

in [19]. In this case one has a gauge group G =
∏
SU(k ni), with ni the Dynkin

indices of a gauge group G′ and bi-fundamentals in each group factors connected by
a link in the Dynkin diagram. The coupling constants of the gauge theory are in fact

related to the Coulomb parameter of a G′ gauge theory which is however broken to a
trivial U(1)rkG

′
factor in the region where we observe the G gauge theory. However

it is also possible to to move towards the origin of the Coulomb branch of G and

G′ at the same time. One obtains in this limit an exotic gravity free theory with
string like degrees of freedom [19]. The compactification of this theory on S1 seems

to be a good candidate for the three-dimensional theories related to a collision of a

singularity in W1 with an ADE singularity in Z.

5. Heterotic CFT on Calabi-Yau 3-fold singularities and Ka-

zama-Suzuki models in two dimensions

By the same arguments as in the previous section we can construct more generally

a correspondence between m + 1-chains in the stable degeneration of a Calabi-Yau

m + 1-fold Wm+1 and m cycles in the intersection of its two components which is

an elliptic m-dimensional Calabi-Yau manifold. For the case m = 3 we obtain a

correspondence between the heterotic CFT on the isolated singularity

y2 +H(x, s, t) = 0 , (5.1)
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and type-II strings on a Calabi-Yau 4-fold with a corresponding singularity of one

dimension higher described locally by a similar equation with H replaced by H+w2.

Here H = 0 describes the ADE surface singularities

H = sn + t2 + x2 An−1 , H = s3 + st3 + x2 E7 ,

H = sn + st2 + x2 Dn+1 , H = s3 + t5 + x2 E8 ,

H = sn + t4 + x2 E6 . (5.2)

The field theory limit of type-IIA theory on these singularities has been identified

in [20] as a Kazama-Suzuki model based on a coset that depends on the choice of a RR

background on 4-cycles. The RR fields of type-IIA map to gauge fields of the hetrotic

string. We conclude that the heterotic CFT on the 3-fold singularity with appropriate

gauge field background is on the same moduli as the corresponding Kazama-Suzuki

model. A simple consistency check on this equivalence is the following one. Using

linear sigma models it was argued in [1] that the heterotic CFT should be smooth on

a singular Calabi-Yau n-fold for any n as long as the gauge fields are trivial on the

singularity. For trivial RR-fields one obtains a massive Kazama-Suzuki model with

no light degrees of freedom. This matches the non-singular behavior of the heterotic

theory advocated in [1]. It would be interesting to compare in detail the moduli

spaces for the more interesting case with non-trivial background fields, in particular

when the heterotic string is compactified on the (2, 2) theory.

6. Discussion

The equivalence of the moduli space of the heterotic CFT on ADE singularities

and the moduli space of three dimensional gauge theories, or the dual monopole

moduli spaces, is an interesting tool to study several aspects. E.g., the metric of the

Atiyah-Hitchin manifold is known [2] and one can extract the world-sheet instanton

expansion of the heterotic CFT, similarly as one obtains the world-sheet instantons

of the type-II string from mirror symmetry. By an appropriate reparametrization, we

expect to reproduce the D2 instanton expansion of the type-IIA string on Ŵ . This

allows to analyze a new class of brane wrappings. It is interesting to note in this

context that it is easy to verify that the Atiyah-Hitchin metric is compatible with

the claim in [3] that in the gauge theory variables there is only a single instanton

contribution; this is a first non-trivial compatibility check. Reversing the logic it

would also be very interesting to study metrics on monopole moduli spaces from

the CFT approach. Similarly it would be interesting to study the relation between

instanton corrections to the metric of the heterotic 3-fold and the two-dimensional

Kazama-Suzuki models.

Note added: While preparing this note for publication, two related papers ap-

peared on the subject. Ref. [21] gives an independent derivation of the conjecture
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of ref. [1] using M-theory. Ref. [22] treats the special case G = A1 case, already

analyzed in [1], using a “new” variant of geometric engineering for heterotic strings.

In fact this is the same geometric engineering used in this paper4 and derived and

studied in detail by local mirror symmetry in [10, 19, 9].
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