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ON THE HETEROTIC/F-THEORY
DUALITY IN EIGHT DIMENSIONS

W. Lerche
CERN, Geneva, Switzerland

Abstract We review quantitative tests on the duality between the heterotic string
on T 2 and F -theory on K3. On the heterotic side, certain threshold
corrections to the effective action can be exactly computed at one-loop
order, and the issue is to reproduce these from geometric quantities
pertaining to the K3 surface. In doing so we learn about certain non-
perturbative interactions of 7-branes.

1. INTRODUCTION

One of the most basic dualities in string theory is the one between the
heterotic string, compactified on the two-torus T 2, and F -theory on K3
[1]; indeed other dualities can be derived from this duality in d = 8. In
fact, the higher the uncompactified space-time dimension is, the simpler
the structure of non-perturbative effects becomes, and related to that,
the less complicated the structure of the moduli space is. As we will
see, in d = 8 the structure is simple enough for exactly computing cer-
tain non-perturbative quantities, but still complicated enough to obtain
functionally non-trivial results.

The point is that certain pieces of the effective action can be computed
exactly at one-loop order in the heterotic formulation. This is the reason
why this model provides an ideal framework for studying non-trivial
brane interactions; in the past, it has been very successfully applied to
study brane interactions in type I and matrix strings (see eg., [2, 3, 4]).
Our aim, on the other hand, is to show how these coupling functions
can be reproduced in F -theory, ie., from K3 geometry. This has also a
direct interpretation in terms of certain Type IIB D-brane interactions,
which gives another motivation for studying this subject.

Usually, when studying interactions between D-branes, one considers
idealized situations where one focuses one a single pair of (possibly stacks
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of) branes. In addition, these branes are usually mutually “local”, i.e.,
they can be simultaneously described at weak coupling, and so treated
with methods of conformal field theory.

However, for making quantitative tests of string dualities involving
highly non-trivial functions, the full global structure of D-brane interac-
tions becomes important as well – that is, the influence of all the other
branes that are usually considered as far away. Some of the branes are
necessarily non-local with respect to each other, which precludes any
conformal field theoretic treatment of the full theory.

Therefore, in order to exactly determine the functional dependence
of the relevant interactions, new non-perturbative methods are called
for. Guided by the exact results that can be obtained in the heterotic
formulation, we will show how these interactions can be described in
geometrical terms. This approach has been presented in refs. [5, 6, 7],
and this is what we will –partially– review from section 3.4 onwards.

However, before we will come to that, we will first review some simple
facts about the structure of the coupling functions under consideration.
Subsequently we will present a brief introduction to the relevant aspects
of F -theory.

2. BPS SATURATED, EXACT HETEROTIC
AMPLITUDES AT ONE-LOOP ORDER

One certainly cannot expect to compute any given piece of the ef-
fective lagrangian exactly. It is in general just very special couplings,
namely typically those which are anomaly-related and to which only
BPS-states contribute, that are amenable to an exact treatment. In the
present situation with 16 supercharges in eight dimensions, the canoni-
cal BPS-saturated amplitudes [8, 9] involve four external gauge bosons
(and/or gravitons that we will not consider here).

Supersymmetry relates parity even (iξ Fn) and parity odd ( θ
2π F ∧

F ∧ ..F ) sectors, and one can conveniently combine the theta-angle and
the coupling constant ξ into one complex coupling, ∆eff . In particular,
when compactifying the heterotic string on T 2, the effective threshold
couplings ∆eff(T,U) ≡ iξ(T,U) + 1

2πθ(T,U) become highly non-trivial
functions depending on the usual torus Kähler and complex structure
moduli, T and U .

As mentioned before, in the heterotic string picture these couplings
are exact at one-loop order; this is simply because there are no in-
stantons that could possibly contribute (apart from the world-sheet
instantons whose effects are captured in the one-loop computation).
The couplings are in fact directly related [8] to the heterotic elliptic
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genus [10], which is given by the Ramond partition function in the
presence of a non-vanishing background gauge field strength, roughly:
Â(F, q) ∼ TrR(−1)J0qL0eF . More precisely, the couplings are typically
given by modular integrals of the form:

Re[∆eff(T,U)]F ∧ ...F ∼
∫

d2τ

τ2
Z(2,2)(T,U, q)Â(F, q)

∣∣∣
8−form

, (1.1)

where Z(2,2) is the partition function of the two-torus T 2:

Z2,2(T,U, q) =
∑

pL,pR

q
1
2
|pL|2 q̄

1
2
|pR|2 ,

with pL = 1√
2T2U2

(m1 +m2Ū +n1T̄ +n2T̄ Ū), pR = 1√
2T2U2

(m1 +m2Ū +

n1T + n2T Ū) (we switched off the Wilson lines here). The evaluation of
modular integrals of type (1.1) is quite an art that has been discussed
at length in [11, 3, 5, 6], but won’t be touched upon here. Essentially,
each of such integrals results in a certain holomorphically factorized,
Borcherds product type of automorphic function:

∆eff(T,U) = ln[Ψ] , where

Ψ = (qT )a(qU )b
∏

(k,l)>0

(
1 − qT

kqU
l
)c(kl)

, (1.2)

for some a, b. Here, qT = e2πiT , qU = e2πiU , the product runs over
k > 0, l ∈ ZZ ∧ k = 0, l > 0 in the chamber T2 ≡ ImT > U2 ≡ ImU ,
and c(n) are the expansion coefficients of a certain nearly holomorphic
and (quasi-)modular form, C(q) ≡ ∑

c(n)qn. The precise form of this
“counting function” C(q) depends on the specific gauge couplings that
are considered.

Specifically, if we switch off all the Wilson lines so that we have E8×E′
8

non-abelian gauge symmetry, we have [3, 6]:

∆E8E′

8
(T,U) = −48 ln[Ψ] , with a = −2 , b = 0 and counting function

C(q) =
1

12

1

η24

[
E2E4 − E6

]2
(q) (1.3)

∆E8E8(T,U) = −24 ln[Ψ] , with a = 8 , b = 12 and counting function

C(q) =
1

12

E4

η24

[
E2

2E4 − 2E2E6 + E2
4

]
(q) ,

where En(q) are the usual Eisenstein series of the corresponding modu-
lar weight. Moreover, for those couplings for which the field strengths
F = {FT , FU} are superpartners of the torus moduli, an extra structure
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[5, 7] emerges: namely these couplings satisfy non-trivial integrability
conditions and so can be obtained as fourth derivatives of the following
holomorphic prepotential:1

G(T,U) ∼
∑

(k,l)>0

c(kl)Li5(qT
kqU

l) , (1.4)

with counting function given by C(q) =
E2

4
η24 (q). Above, the polylogarithm

is defined by Lia(z) =
∑

p>0
zp

pa (a ≥ 1).
An physically interesting feature of these couplings in the T,U sub-

sector is that they have logarithmic singularities, consider for example:

∆
(TTUU)
eff (T,U) ≡ (∂T )2 (∂U )2 G(T,U) (1.5)

=
1

2πi
ln[J(T ) − J(U)] +

1

2πi
ln[Ψ0(T,U)],

where Ψ0(T,U) is some cusp form that stays finite over the whole of
the moduli space. Similar to the analogous situation in four dimensions
[12, 13], the modular invariant J-functions encode the gauge symmetry
enhancements pertaining to the compactification torus T 2: SU(2) for
T = U , SU(2) × SU(2) at T = U = i and SU(3) at T = U = ρ ≡
e2πi/3, and in particular reflect the charge multiplicities of the states
becoming light near the singularities. Specifically, near the SU(2) locus
the coupling behaves like:

∆
(TTUU)
eff (T,U) ∼ ln[

√
α′a] , a ≡ 1√

α′
(T − U) ,

and similar for the other gauge groups. This is the expected behavior of
the one-loop field theory effective action, with cutoff scale given by α′.

The issue is to reproduce the threshold coupling functions ∆eff(T,U)
in the dual F -theory compactification on K3 (we will actually consider
one-dimensional slices of the moduli space with constant U). For this, we
will first briefly review some of the relevant basic features on F -theory
that we will need.

3. REVIEW OF F -THEORY

3.1 ELLIPTIC FIBRATIONS

F -theory compactifications [1] are by definition compactifications of
the type IIB string with non-zero, and in general non-constant string

1The very existence of a holomorphic prepotential hints at the existence of a yet unknown
superspace formulation of the theory, in which the prepotential would figure as the effective
lagrangian.
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coupling – they are thus intrinsically non-perturbative. F -theory may
also seen as a construction to geometrize (and thereby making manifest)
certain features pertaining to the S-duality of the type IIB string.

To explain this in somewhat more detail, let us first recapitulate the
most important massless bosonic fields of the type IIB string. From the
NS–NS sector, we have the graviton gµν , the antisymmetric 2-form field
B as well as the dilaton φ; the latter, when exponentiated, serves as
the coupling constant of the theory. Moreover, from the R–R sector we
have the p-form tensor fields C(p) with p = 0, 2, 4. It is also convenient
to include the magnetic duals of these fields, B(6), C(6) and C(8) (C(4)

has self-dual field strength). It is useful to combine the dilaton with the
axion into one complex field:

τIIB ≡ C(0) + ie−φ . (1.6)

The S-duality then acts via projective SL(2,ZZ) transformations in the
canonical manner: τIIB → aτIIB+b

cτIIB+d with a, b, c, d ∈ ZZ and ad − bc =
1. Furthermore, it acts via simple matrix multiplication on the other

fields if these are grouped into doublets
(

B(2)

C(2)

)
,
(

B(6)

C(4)

)
(while C(4) stays

invariant).
The simplest F -theory compactifications are the highest dimensional

ones, and simplest of all is the compactification of the type IIB string
on the 2-sphere, IP1.2 However, as the first Chern class does not vanish:
c1(IP

1) = −2, this by itself cannot be a good, supersymmetry preserving
background. The remedy is to add extra 7-branes to the theory, which
sit at arbitrary points zi on the IP1, and otherwise fill the 7+1 non-
compact space-time dimensions. If this is done in the right way, c1(IP

1)
is cancelled, thereby providing a consistent background.
IP1 �IIB(z)

7-brane

z0
Figure 1.1 Encircling the location of a 7-brane in the z-plane leads to a jump
of the perceived type IIB string coupling, τIIB → τIIB + 1.

To explain how this works, consider first a single D7-brane located at
an arbitrary given point z0 on the IP1. A D7-brane carries by definition

2Six and in particular for dimensional compactifications are much more complicated than the
eight dimensional one discussed here, and any discussion of them would be beyond the scope
of this lecture.
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one unit of D7-brane charge, since it is a unit source of C(8). This means
that is it magnetically charged with respect to the dual field C(0), which
enters in the complexified type IIB coupling in (1.6). As a consequence,
encircling the plane location z0 will induce a non-trivial monodromy,
that is, a jump on the coupling – see Fig. 1.1. But this then implies
that in the neighborhood of the D7-brane, we must have a non-constant
string coupling of the form: τIIB(z) = 1

2πi ln[z−z0]; we thus indeed have
a truly non-perturbative situation.

In view of the SL(2,ZZ) action on the string coupling (1.6), it is natural
to interpret it as a modular parameter of a two-torus, T 2, and this is what
then gives a geometrical meaning to the S-duality group [1]. Since, as we
have seen, this modular parameter τIIB = τIIB(z) is not constant over
the IP1 compactification manifold, the shape of the T 2 will accordingly
vary along IP1. The relevant geometrical object will therefore not be the
direct product manifold T 2 × IP1, but rather a fibration of T 2 over IP1 –
see Fig. 1.2.


IP1 
 

 
 )
24  7-branes  extending
      over 7+1 dimensions

)
= K3
total space

singular fibers

generic
smooth fiber

Figure 1.2 Fibration of an elliptic curve over IP1, which in total makes a
K3 surface. At 24 points the fibers and therefore the string coupling become
singular, and this is where the 7-branes are located.

The logarithmic behavior of τIIB(z) in the vicinity of a 7-brane means
that the T 2 fiber is singular at the brane location. It is known from
mathematics that each of such singular fibers contributes 1/12 to the
first Chern class. Therefore we need to put 24 of them in order to have
a consistent type IIB background with c1 = 0. The mathematical data:
“T 2 fibered over IP1 with 24 singular fibers” is now exactly what char-
acterizes the K3 surface;3 indeed it is the only complex two-dimensional
manifold with vanishing first Chern class (apart from T 4).

3More precisely, an “elliptically fibered” K3; we assume here singularities of the simplest
canonical type. See ref. [14] for a physicist’s review of the K3 manifold.
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The K3 manifold that arises in this context is so far just a formal con-
struct, introduced to encode of the behavior of the string coupling in the
presence of 7-branes in an elegant and useful way. One may speculate
about a possible more concrete physical significance, such as a compact-
ification manifold of a yet unknown 12 dimensional “F -theory” [1]. The
existence of such a theory is still unclear, but not really important for
our purposes; all we need the K3 for is to use its intriguing geometric
properties for computing physical quantities (the quartic gauge thresh-
old couplings, ultimately).

In order to do explicit computations, we first of all need a concrete
representation of the K3 surface. Since the families of K3’s in question
are elliptically fibered, the natural starting point is the two-torus T 2. It
can be represented in the well-known “Weierstraß” form:

WT 2 = y2 + x3 + xf + g = 0 , (1.7)

which in turn is invariantly characterized by the J-function:

J =
4(24f)3

4f3 + 27g2
. (1.8)

An elliptically fibered K3 surface can be made out of (1.7) by letting
f → f8(z) and g → g12(z) become polynomials in the IP1 coordinate z, of
the indicated orders. The locations zi of the 7-branes, which correspond
to the locations of the singular fibers where J(τIIB(zi)) → ∞, are then
precisely where the discriminant

∆(z) ≡ 4f8
3(z) + 27g12

2(z)

=:
24∏

i=1

(z − zi) (1.9)

vanishes.

3.2 MONODROMIES AND LOCALITY

Note that the polynomials f8(z) and g12(z) in (1.7) together have
exactly 18 independent free parameters. It is indeed a mathematical fact
that the moduli space of elliptic K3 manifolds is 18 complex-dimensional
and furthermore locally given by

M =
SO(18, 2)

SO(18) × SO(2)
. (1.10)

This just happens to be the same as the moduli space of the heterotic
string on T 2 (which includes the torus moduli T,U besides the 16 Wil-
son lines) ! This coincidence of moduli spaces was one of the primary
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motivations [1] for postulating the duality between F -theory on K3 (or
type IIB on IP1 with 24 7-branes) and the heterotic string on T 2.

However, (1.9) tells us that there are indeed 24 plane locations, and
because we have only 18 independent parameters, the locations of the
7-branes cannot be all independent, but must be to some degree cor-
related. Moreover, the heterotic compactification has 16+2=18 U(1)
factors (besides the graviphotons), while we have on the F -theory side
24 7-branes, each of which carries locally a U(1) factor. Therefore the
degrees of freedom of the 24 branes must somehow be restricted globally,
though locally all the branes look the same.

The point is that there are in fact many types of 7-branes, labelled by
their electric and magnetic charges (p, q).4 A D7-brane is by definition a
brane on which a fundamental type IIB string can end, and by convention
carries (p, q) charge of (0, 1). Conversely, a 7-brane on which a D1 string
can end has (p, q) = (1, 0), and the generic (p, q) brane is a 7-brane on
which a (p, q) string [15] can end.

The SL(2,ZZ) S-duality group acts on the charge labels t(p, q) in the
obvious manner, and all the SL(2,ZZ) orbits of a given brane have lo-
cally identical properties. Indeed the monodromy induced by encircling
a (p, q) brane is simply the corresponding SL(2,ZZ) conjugate of the mon-

odromy M(0,1) =
(

1 1
0 1

)
of a single D7-brane, and takes the following

form:

M(p,q) =

(
1 + pq q2

−p2 1 − pq

)
∈ SL(2,ZZ). (1.11)

Global consistency then requires that the total monodromy on the IP1

base must be trivial:
24∏

i=1

M(pi,qi) = 1 , (1.12)

which obviously forbids all 24 branes to simultaneously be of type (0, 1).
A given pair of 7-branes is said to be “mutually local” if their mon-

odromies commute, which is when

p1q2 − p2q1 = k ∈ ZZ (1.13)

vanishes. Then they can be simultaneously treated at weak coupling,
using methods of ordinary conformal field theory. If on the other hand
the intersection number k 6= 0, then the branes are mutually ”non-
local” or “dyonic”, and cannot simultaneously be described at weak

4Mathematically, this label refers to the homology class of the vanishing 1-cycle γ that
characterizes the singular elliptic fiber T 2. That is, γ = pα+qβ, where α, β form a symplectic
basis of H1(T 2,ZZ).
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coupling. In particular, the naive addition of the U(1) gauge groups that
locally live on each brane, is then ill-defined. Since the global consistency
condition (1.12) turns out to admit only a maximum of 18 mutually
commuting monodromies, it is thus clear that we cannot expect to see
more than 18 independent U(1) factors in the full theory, even though
each of the 24 branes carries one of such factors locally. Therefore there
is generically no weak coupling, or CFT description description that
would be valid for the complete system of 24 branes.

3.3 GAUGE SYMMETRIES AND KODAIRA
SINGULARITIES

We have mentioned in the preceding section that the moduli space M
(1.10) of elliptic K3’s is the same as of the heterotic string compactified
on T 2; at generic points in M the gauge symmetry is simply U(1)18.
However, there is much more structure in the theory, in particular at
specific sub-loci of M, extra non-abelian gauge symmetries can appear.
This is familiar for the heterotic string, where for example we can switch
off the Wilson lines and thereby restore the E8 ×E8 gauge symmetry of
the ten dimensional theory. In fact there can appear any combination
of “simply laced” gauge groups (those which are classified by the labels
An, Dn and E6,7,8), as long as the total rank does not exceed 18.

An immediate question is therefore how such gauge symmetries ap-
pear in the F -theory language. For the An ∼ SU(n+1) type of groups,
the answer is well-known and simple: if we place n D7-planes near each
other, then the open strings that are stretched in all possible ways be-
tween them describe massive charged gauge bosons of U(n)/U(1)n – see
Fig. 1.3 a). If the branes collide, these n(n − 1) strings will have zero
masses and so lead to a gauge enhancement, U(1)n → U(n).
 



 
 
 


 
�� � �E6 H2(27; �3) + c:c:

a) b) c)

Figure 1.3 Enlargement of non-abelian gauge symmetries: a) U(n) is gener-
ated by open strings stretched between n D7-branes of type (0, 1); b) if we add
a pair of (1, 1) and (1,−1) branes, then the extra “indirect” trajectories extend
U(n) to SO(2n); c) E8 is generated by colliding E6 and H2 Kodaira 7-planes.

For the other gauge groups the story is not that simple, however.
To understand it, let us rephrase what we just said in terms of K3
geometry. Here each D7-brane corresponds to a singular elliptic fiber
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with type (0, 1) vanishing 1-cycle, located over the same point in the z-
plane. Accordingly, the gauge enhancement corresponds in this language
to the collision of singular fibers. In particular, when all singular fibers
are on top of each other, then the resulting singular fiber will have a
worse singularity than we had before (see Fig. 1.4).

Actually, upon collision not only the elliptic fiber, but also total space,
which is the K3 surface, becomes singular or more singular. To see this,
note that the open string stretched between any D7-branes is nothing
but a projection of a 2-cycle in the K3 - see again Fig. 1.4. This 2-cycle
can be visualized by dragging the (0, 1) cycle in the fiber along the path
of the open string (in other words, the 2-cycle is a fibration of S1 over
a line segment). If the D7-branes collide, then the 2-cycle obviously
shrinks to zero size, and this is precisely what makes the K3 singular.


IP1 
 

A0 A0A0

non-zero
2-cycle in K3

string= projection
of 2-cycle

 K3 is non-singular

IP1 A2
 K3 has A2 singularity

Figure 1.4 One the left we show three singular fibers of type A0. The open
string trajectories are projections of 2-cycles of non-zero volume in the K3.
On the right we have collided the singular fibers to form a singularity of type
A2, which is associated with the simultaneous vanishing of several intersecting
2-cycles in the K3.

There is a mathematical classification [16] of what possible singulari-
ties an elliptic K3 surface can have.5 These are essentially given by the
well-known ADE singularities, however the condition of being elliptic
fibrations gives some little extra structure. The possible elliptic “Ko-
daira” singularities are listed in Table 1; remember, though, that for a
compact K3 surface the total rank that can be achieved is restricted to
be less or equal to 18. The precise manner how the open string trajec-
tories build up the various charged gauge bosons can in general be quite
complicated, and this is an interesting subject that has been studied

5We mean here singularities that can be reached by going a finite distance in moduli space;
there can be other kinds of singularities like decompactification limits.
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in detail in various papers [17]; however it is beyond the scope of this
review.

Type Gauge symmetry 7 − brane content Monodromy
An U(n + 1) An+1 T n+1

Dn+4 SO(2n + 8) An+4BC S2T−n

E6 E6 A5BC2 (ST )2

E7 E7 A6BC2 S
E8 E8 A7BC2 ST
H0 U(1) AC (ST )−1

H1 U(2) A2C S−1

H2 U(3) (AC)2 (ST )−2

Table 1: Kodaira classification of elliptic singularities (n ≥ 0). Phys-
ically, these correspond to 7-planes which support the respective ADE
gauge symmetries on their world-volumina; many of them cannot be
described in term of weak coupling physics. We also indicated their
(non-unique) decomposition in terms of 7-brane building blocks, where
A denotes a 7-brane of type (0, 1), B of type (1,−1) and C of type
(1, 1). Moreover we show their SL(2,ZZ) monodromies in terms of the
usual generators S and T .

Physically, associated to each of these singularities is something what
we may call a “Kodaira 7-plane”, which may be thought of as superposi-
tion or bound state of ordinary 7-branes. We call these object “planes”
rather than branes to emphasize that their physical properties are in
general quite different from their ordinary brane building blocks. For
example, as will be important later on, some of these planes have fi-
nite order monodromies, which implies that no logarithmic branch cuts
emanate from them. This in turn means that these planes have no net
ZZ-valued D-brane charge, and one may view their finite ZZN monodromy
as a “torsion” generalization of ordinary D-brane charge. Those planes
may also be regarded as non-perturbative ZZN generalizations of orien-
tifold planes (which are associated with ZZ2).

An important physical point is furthermore that for the Kodaira sin-
gularities other than An, the vanishing 1-cycles of the colliding singular
fibers are not all of type (0, 1). This means that all other 7-planes apart
from those of type An, involve 7-brane building blocks of different (p, q)
types. In fact one can build all the possible 7-planes out of just three
kinds of building blocks [17], which are indicated in Table 1 as well.

These building blocks are non-local with respect to each other, and
according to our previous considerations, this implies that the 7-planes
are generically strongly coupled and cannot be described by ordinary
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CFT methods; it is likely that there isn’t any lagrangian description
of their world-volumina theories. The exceptions include of course the
planes of type An, and to some extent also Dn+4; the latter can be
described on a sub-locus of the moduli space where one puts the (1, 1)
and (1,−1) branes on top of each other; the resulting object behaves like
an orientifold plane, which can indeed be dealt with in terms of standard
CFT [18].

3.4 CONSTANT COUPLING SLICES OF
THE MODULI SPACE

For our purpose of computing effective interactions induced by the
7-branes, the mutual non-localities of the 24 (p, q) branes are very in-
convenient. However, what we can do to simplify matters is to restrict to
slices of the moduli space where the 24 branes combine into composites
that have commuting net monodromies.

Particularly simple are the sub-cases where the monodromies not only
commute, but are also of finite order. These correspond to theories
where the 7-brane charge is cancelled locally, such that the type IIB
string coupling τIIB is constant over the IP1 base. Remembering from
(1.8) that the coupling is determined by

J(τIIB(z)) =
4(24f8(z))3

4f8(z)3 + 27g12(z)2
!≡ const., (1.14)

we see that requiring z-independence yields three (partially overlapping)
possibilities for splitting up the 24 branes [18, 19]:

i) g12 = 0 → J = 1728 → τIIB = i: group into eight H1-planes (after
fixing three points due to SL(2,C) invariance, this gives five independent
moduli)
ii) f8 = 0 → J = 0 → τIIB = ρ ≡ e2πi/3: group into into twelve
H0-planes (nine independent moduli)
iii) f8 = h4

2, g12 =const.h4
3 → τIIB =arbitrary constant: group into

four D4-planes (one independent modulus; this branch intersects branches
ii) and iii)).

Upon further specialization, one can have some or all of the Hn branes
combine into planes with larger gauge symmetries; the possibilities are
summarized in Table 2.
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Kodaira type → H0 H1 H2 D4 E6 E7 E8

Composition H0 H1 H0
2 H0

3,H1
2 H0

4 H1
3 H0

5

Torsion Charge ZZ6 ZZ4 ZZ3 ZZ2 ZZ3 ZZ4 ZZ6

τIIB ρ i ρ any ρ i ρ

Table 2: List of 7-planes with finite order monodromies in the z-plane,
which do not carry net (ZZ-valued) D-brane charge. They may be viewed
as non-perturbative ZZN generalizations of orientifold planes. We also list
their composition in terms of basic Hk building blocks, as well as the
associated constant type IIB string coupling, τIIB.

What we will do, in order to further simplify the problem, is to con-
sider just one-dimensional slices of these moduli spaces, obtained by
grouping the Hk planes into four planes in total. As we will see, the cor-
responding geometries will be then pretty easy to deal with. Explicitly,
we will consider from now on the singular K3 surfaces defined by the
equations W (x, y, z;λ) = 0, where:

(E8
2H0

2) : W = y2 + x3 + z5(z − 1)(z − λ)
(E7

2H1
2) : W = y2 + x3 + xz3(z − 1)(z − λ) (1.15)

(E6
2H2

2) : W = y2 + x3 + z4(z − 1)2(z − λ)2

(D4
2D4

2) : W = y2 + x3 + z3(z − 1)3(z − λ)3 .

The first one yields E8×E′
8 gauge symmetry, and thus will correspond to

the heterotic model with switched-off Wilson lines of section 2. The other
cases correspond to similar models with certain Wilson lines switched
on; we include them here because we can uniformly treat all these models
in the same way.
 � �G’’ gauge fields 
Hk � planez = 1 Hk � planez = �(�)E8�k � planez = 0 E8�k � planez =1! !!�1!�1

Figure 1.5 7-plane configuration of the first three models in (1.15), which de-
scribes K3 surfaces with elliptic (E8−k ×Hk)2 singularities. We have indicated

the monodromies given by ω = e2πi/N , and also exhibited multiplets of (mutu-
ally non-local) open strings that run between the Hk planes. For λ(τ ) → 1 the
Hk planes merge into a single plane, the strings between them then giving rise
to massless charged gauge fields that enhance the non-abelian gauge group.

Each of the surfaces in (1.15) has two pairs of singular fibers of the
indicated types over the z–plane. As convention we have chosen to
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put 7–planes of types E8, E7, E6,D4 at z = 0,∞, and planes of types
H0,H1,H2,D4 at z = 1, λ, respectively (see Fig. 1.5). Note that the
Kodaira singularity types of these two sets are “dual” to each other,
in that the monodromies of the E8−k planes and of the Hk planes are
inverses of each other; they belong to ZZN , N = 2, 3, 4, 6, respectively.

In the one-dimensional sub-moduli spaces, two interesting things can
happen. First, a (E8−k)– and a Hk–plane can collide, to yield an “Ē8”
singularity of the local form y2 + x3 + z6 = 0. As we will see, this corre-
sponds to the decompactification limit on the heterotic side. Secondly,
two Hk–planes can collide to produce a 7–plane associated with some
extra non-abelian gauge symmetry G′′, and precisely which one can be
inferred from Table 2. In other words, the generic non-abelian gauge
symmetry is (E8−k ×Ak)

2, which can be enhanced to (E8−k)
2 ×G′′, for

G′′ = A2,D4, E6, respectively (for colliding D4 planes there is no further
gauge enhancement, as this also corresponds to the decompactification
limit).

4. GEOMETRIC DETERMINATION OF THE
THRESHOLD COUPLINGS

4.1 CHERN-SIMONS COUPLINGS ON
KODAIRA 7-PLANES

The issue is to compute the functions ∆eff (1.1) via 7-brane interac-
tions. Effective interactions in 8d space-time are generated by super-
imposing world-volume actions, and also by integrating out exchanges
between the 7–branes. While in general very complicated, the interac-
tions are in the present context reasonably tractable because of their spe-
cial anomaly related, parity-odd structure. They arise from the Chern-
Simons terms on the world-volumina of the 7-branes, via the exchange
of RR antisymmetric tensor fields C(p).

For a single D-brane with (p, q) = (0, 1), the relevant tree level cou-
plings look [20] (for trivial normal bundle):

L(CS)
D7 = C ∧ e−2iF ∧

√
Â(R)

∣∣∣
8−form

, (1.16)

where C ≡ ⊕4
k=0C

(2k) is the formal sum over all RR forms, and Â(R) is
the Dirac genus. The couplings for general (p, q) branes can be obtained
by applying SL(2,ZZ) transformations on the fields in (1.16).

However, due to the generic mutual non-locality of the 24 (p, q) 7-
branes that we simultaneously have in the theory, it is a priori not clear
how to add up these terms and how to determine what effective inter-
actions they induce. But as discussed above, we can simply restrict
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to sub-moduli spaces where the 24 branes combine into 7-planes that
are all mutually local, ie., have commuting monodromies. Then all the
contributions can simply be added up.

In order to do so, we will first need to know what the relevant couplings
on the world-volumina on the various kinds of 7-planes are, in analogy
to the couplings on a single D7-brane (1.16). Because of the mutual
locality, the anomalous couplings can in fact be very easily determined.
Specifically, recall that a D4-plane can be viewed as being composed out
of four D7-branes plus one orientifold plane, which are all mutually local.

Since a direct CFT computation gives L(CS)
O7 = −4C ∧

√
L̂(R)|8−form

[21, 22, 23], where L̂(R) is the Hirzebruch genus, we thus have:

L(CS)
D4

= C ∧
[
tr(e−2iF ) ∧

√
Â(R) − 4

√
L̂(R)

] ∣∣∣
8−form

= C(4)∧
(

1
2R2 − 2trF 2

)
(1.17)

+C(0)∧
(

2
3trF 4 − 1

12trF 2trR2 + 1
192 (trR2)2 + 1

48 trR4
)

Summing over all four world-volumina indeed exactly reproduces the
(eight dimensional remainder of the) Green-Schwarz term of the het-
erotic string, L(GS) = C(6)∧ 2(R2−trFSO(32)

2)+C(2)∧X8(FSO(32), R).
The same logic must be valid for the H0 and H1-planes and their

composites. Even though these planes are associated with strong cou-
pling and may not have a well-defined lagrangian description of their
world-volume theories, the WZ coupling terms are topological and in-
dependent of the coupling, and must make sense at least for anomaly
cancelling reasons. Therefore, we can conclude for the basic building
blocks:

L(CS)
H0

=
1

3
L(CS)
D4

, L(CS)
H1

=
1

2
L(CS)
D4

, (1.18)

where the gauge field traces follow implicitly from the decomposition
SO(8) → U(1) or U(2), respectively.

4.2 GEOMETRIC INTERACTIONS ON ZZN

CURVES

What we are interested in are the non-trivial interactions between
the planes, which should ultimately reproduce the coupling functions
∆eff(T,U = const) of section 2. The primary perturbative contributions
will arise from massless C(p) tensor field exchange between individual
planes. The effective interaction will thus depend on the distances be-
tween the various 7-planes in the z-plane.
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More specifically, the closed string exchange that contributes to the
maximal number of wedge products of field strengths is in the odd RR
sector, and is proportional to the Green’s function ∆ of a scalar field on
the z-plane:
〈
C(p)

m1...mp
(z1), C

(8−p)
n1...n8−p

(z2)
〉

RR−

∼ ǫm1...mpn1...n8−p∆(z1, z2) , (1.19)

where, as z1 → z2:

∆(z1, z2) = ln(z1 − z2) + finite . (1.20)

However, in order to obtain functionally exact results, we need to know
the full Green’s functions that probe the global structure of the z-plane,
and not just their leading singular behavior. This is in general a com-
plicated problem, but in our setup, where we consider only planes with
finite order monodromies, there is a natural geometric answer [5, 6].

z

Figure 1.6 Lift of the z–plane to a covering Riemann surface. Shown is here
the situation with two E6 and two H2 planes, which correspond to ZZ3 twist
fields and anti-twist fields, respectively, located at the branch points of a genus
two curve Σ2. We also show an open string trajectory that contributes to the
coupling trFSU(3)

2trFSU(3)′
2 (transforming as (3, 3̄) under SU(3)×SU(3)′⊂E6)

and which corresponds to a 1/3–period on Σ2.

By definition, monodromies of finite order means that the geometry
of the singular K3’s can be described by a finite covering of the z-plane
and so effectively reduces to the one of Riemann surfaces. The four 7-
planes then correspond to the branch points of these curves (cf. Fig. 1.6).
More specifically, for the four models in (1.15) one finds the following
ZZN -symmetric curves

ΣN−1 : xN = z−1(z − 1)(z − λ) (1.21)

of genus g = N − 1, where N = 6, 4, 3, 2, respectively. The requisite
Green’s functions should therefore simply be given by appropriate scalar
Green’s functions on these covering spaces [24].
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The canonical Green’s function of a scalar field on a Riemann surface
is known to be given by the logarithm of the “prime form”

∆Σ
prime
form

(z1, z2) = ln
∣∣∣

θδ[
∫ z2
z1

~w|Ω]
√

ξ(z1)
√

ξ(z2)

∣∣∣−π[Im

∫ z2

z1

~w]·(ImΩ)−1·[Im
∫ z2

z1

~w] ,

(1.22)

where
√

ξ(z) ≡
√

∂
∂zi

(θδ[~z|Ω]) · wi(z) is a some 1/2-differential whose

purpose is to cancel spurious zeros of the numerator theta-function
(where δ denotes an arbitrary odd characteristic). Indeed, the only
singularity of the prime form is at coincident points, ie., ∆Σ(z1 → z2) ∼
ln[ z2−z1√

dz1
√

dz2
]+ finite terms. By construction, the finite terms implement

the requisite global properties of the Green’s functions.
Due to the high degree of symmetry of our ZZN curves ΣN−1, much

of the information in (1.22) is in fact redundant for our examples. By
explicit computation one can show that the prime form Green’s function,
when evaluated between any two of the branch points, can always be
written in the following generic form:

∆
ΣN−1
prime
form

(z1, z2) = ln [λα1(1 − λ)α2(λ′)3] , (1.23)

where z1,2 ∈ {0, 1, λ,∞}, z1 6= z2 and the numerical coefficients αi de-
pend on the particular choice of z1 and z2.

However, it turns out [6] that these canonical Green’s functions on
ΣN−1 to not capture the full story. They capture only the exchange of
C fields, but miss certain additional instanton contributions. Namely,
loops of (p, q) strings in the z-plane will be closed in general only on
the covering surface ΣN−1, so that such strings effectively wrap the
Riemann surfaces. Wrapping entire world-sheets of such strings will
thus in general generate extra instanton contributions

These extra contributions can be viewed as modifications of the canon-
ical Green’s functions (1.23) into “effective” Green’s functions. Indeed,
a Green’s function is in general ambiguous up to the addition of a finite
piece, and it is this ambiguous piece to which we can formally attribute
those extra non-singular, non-perturbative corrections. Denoting the
extra piece by δ, we can thus write the threshold coupling functions
generically as follows:

∆eff(λ) = ∆
ΣN−1
prime
form

(λ) + δ(λ) (1.24)

We will describe further below how to exactly compute the extra contri-
butions δ(λ).

For the time being, note that the above picture applies most directly
to couplings that mix the gauge field strengths of two different 7-planes,
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which means that they have the form 〈C(4), C(4)〉 ×trFG
2∧trFG′

2. How-
ever, as one can check on the heterotic side, there are moduli-dependent
corrections also to other eight-form terms in the effective action, eg., to
(trFG

2)2, which pertain to a single gauge group factor living on a single
brane.


�
 � �2
E6 E6H2 H2 z

Figure 1.7 Interactions probing the ZZ3 torsion piece of D-brane charge. A
string junction is shown that contributes to (trFSU(3)

2)2, transforming as a
singlet under SU(3)×SU(3)′⊂E6. We also show how it lifts to a cycle on the
covering curve. The junction gives rise to a logarithmic singularity when the
planes collide, even though it does not seem to couple locally to the right H2

plane.

In the usually considered situation with CFT description, where one
focuses on pairs of D- or orientifold-branes [21, 22, 23], such terms arise
from integrating out C(0)−C(8) exchange between the two branes, each
equipped with couplings like L(CS) = Q7 ·C(8) + . . .+C(0)∧Y8(F ), where
Y8(F ) is some 8-form polynomial. This obviously induces a location-
dependent correction to the quartic gauge field coupling of the form
Q7〈C(0), C(8)〉trY8(FG).

However, in the present context, the 7-brane charge is cancelled lo-
cally on every plane so that Q7 ≡ 0; indeed there is no C(8) term in
(1.17). This means that naive C(0)−C(8) exchange cannot contribute to
these couplings. But how do these (possibly singular) moduli-dependent
corrections, which we explicitly see on the heterotic side, then arise ?
More specifically, how can a given brane that carries the field strength
FG “feel” the presence of the other brane, while no string ends on that
other brane ?

The point is that despite our 7-planes do not have net ZZ-valued 7-
brane charge (no logarithmic monodromy), there is still a remnant left,
which is reflected by the finite order ZZN monodromies. It is this “tor-
sion” piece of the D-brane charge that must be responsible for the req-
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uisite long-range interactions [25]. This can be seen by analyzing the
interactions in terms of string junctions [17]. Similar to what is familiar
from orientifold planes, what one finds are string trajectories that loop
around other planes, rather than coupling to them via the local Chern-
Simons terms in (1.17); this is exemplified in Fig. 1.7 for the E6 model.
It thus seems natural to view these interactions as analogous to those of
“Alice strings” [26], which do have long-range interactions but no locally
defined charge density.

At any rate, what we learn by studying these couplings is that there
can be non-trivial interactions between 7-branes that should be attributed
the global properties of the multi-valued z-plane (which is best repre-
sented by the curves ΣN−1), rather than solely to local WZ couplings.

5. SOLUTION VIA THE MIRROR MAP

5.1 FLAT COORDINATES AND MODULI
SPACES

The singular K3 surfaces in (1.15) all depend on one geometric mod-
ulus, λ. On the other hand, the heterotic models we consider depend
on two moduli T,U (besides the Wilson lines that we keep frozen and
so neglect). In order to compare the geometrical interactions, which de-
pend on the parameter λ in (1.23), with the heterotic one-loop results,
we therefore –first of all– need to know what the map between these
moduli is.

The point is that the heterotic moduli are the canonical moduli of a
conformal field theory. From general reasoning [27, 28] we know that the
moduli space has a flat structure and that the canonical CFT moduli
are the corresponding flat coordinates. Therefore, we need to determine
what the flat coordinate τ is that is associated with the geometric mod-
ulus λ. A general way of constructing the flat coordinate is to write
τ(λ) in terms of the ratio of certain period integrals (which are them-
selves solutions of certain linear differential equations, as we will discuss
below).

Specifically, the relevant periods pertaining to the singular K3 sur-
faces W (x, y, z;λ) = 0 in (1.15) are obtained by integrating the unique

holomorphic two-form Ω
(2,0)
K3 ,

̟i =

∫

γi

Ω
(2,0)
K3 ≡

∫

γi

dxdz

∂yW (x, y, z;λ)
(1.25)

over a suitable integral basis of 2-cycles γi. We have seen before that
these singular K3’s are closely related to Riemann surfaces ΣN−1, and
indeed by redefining variables: x = vz2(1−1/N)(z − 1)2/N (z − λ)2/N ,
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the period integrals (1.25) factorize into
∫ dv√

v3+1

∫ dz
z1−1/N (z−1)1/N (z−λ)1/N .

The integral over v being a constant normalization that we neglect, the
K3 period integrals thus turn into period integrals (now over 1-cycles)
pertaining to the ZZN curves (1.21):

̟i =

∫
dz

z1−1/N (z − 1)1/N (z − λ)1/N
≡
∫

γi

Ω
(1,0)
ΣN−1

(1.26)

These integrals are of canonical hypergeometric type and so given by
linear combinations of

̟0(λ) =

∫ λ

0
Ω

(1,0)
ΣN−1

= (−1)−2/Nπ csc( π
N ) 2F1(

1
N , 1

N , 1;λ) (1.27)

̟1(λ) =

∫ 1

0
Ω

(1,0)
ΣN−1

= λ−1/N (−1)−2/Nπ csc( π
N ) 2F1(

1
N , 1

N , 1; 1
λ) .

The flat coordinate is then given, as usual, by the ratio of the periods:

τ(λ) =
̟1(λ)

̟0(λ)
(1.28)

= s(0, 0, 1− 2
N ;λ) .


 � � 
E8 � planez = 0 E8 � planez =1H0 � planez = 1 H0 � planez = �(�)
cusp A

 A

 B

 C

cusp C

conifold B

IF� �  ! �(�)
Figure 1.8 On the left we see a picture of the moduli space of the heterotic
compactification with E8 ×E8 gauge symmetry, given by a fundamental region
IF = IFΓ ∪ (S · IFΓ) ⊂ IH+. The Hauptmodul λ(τ ) maps this region to the
7-plane geometry shown in the right part of the figure. The cusps and orbifold
point correspond to the various ways the mobile H0 plane can hit the three
other planes.

In (1.28), s(a, b, c) denotes a triangle function that maps the complex
plane into a fundamental region IF ⊂ IH+, while its entries a, b, c indicate
the angles of IF. We depict a typical such fundamental region in Fig. 1.8.
The two zero’s mean that there are generically two cusps (corresponding
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to the decompactification limits λ → 0,∞), and in addition there is one
orbifold point associated with gauge enhancement, λ → 1 (however, for
N = 2 there are three cusps, which reflects that any two colliding D4

singularities correspond to decompactification).
By the theory of triangle functions, the inverse maps given by the

“Hauptmoduls” λ(τ), can then be concisely written in terms of standard
modular functions. These, together with the modular subgroups under
which λ is invariant, are listed in Table 3.

N mod. subgroup Hauptmodul λ(τ = T ) τIIB = U

6 ΓP (2) (
√
−J(τ) +

√
1 − J(τ))−2 ρ

4 Γ0(2) − 1
64( η(τ)

η(2τ) )
24 i

3 Γ0(3) − 1
27( η(τ)

η(3τ) )
12 ρ

2 Γ0(4) − 1
16( η(τ)

η(4τ) )
8 undet.

Table 3: Modular subgroups of which λ(τ) is a modular function for the
K3 families in (1.15), and the values of the constant string coupling τIIB.
They agree with the duality groups of the corresponding dual heterotic
string compactifications. (The modular subgroup ΓP (2) ⊂ SL(2,ZZ) has
been discussed in ref. [29]).

If we now identify

T = τ (1.29)

U = τIIB ≡ const.

(where the constant type IIB coupling τIIB is as listed in Table 3), then
the above modular subgroups indeed exactly match the modular sub-
groups that arise on the heterotic side by switching on the corresponding
Wilson lines.6

Moreover we can use the map λ(T ) to compare the leading singulari-
ties in the geometric Green’s function (1.24) with the heterotic one-loop
results. Note that (1.23) carries the leading logarithmic behavior of the
full Green’s function when two of the Hn planes collide for λ → 1. In
particular, for the E8 model we get:

∆eff(T )
λ→1∼ ln[λ(T )] ∼ ln[J(T )] , (1.30)

which captures precisely the singularity of the coupling ∆
(TTUU)
eff (T, ρ)

in (1.5) (where we need to set J(U) → J(ρ) ≡ 0). One can check

6The functional map between T, U (with U not being frozen) and the z-plane geometry has
been determined for the E8 × E8 model in refs. [30, 5].
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that similarly for the other models, there is perfect agreement with the
singularities in the perturbative results on the heterotic side. This yields
a first quantitative, though still superficial test of the duality.

5.2 STRING GEODESICS AND BPS MASSES

Remember that the elliptic K3 manifold that appears in F -theory is
primarily an elegant tool to encode the relevant open string geometry
of non-perturbative type IIB compactifications, and as such should have
no particular physical significance in itself (unless the fictitious twelve
dimensional F theory turns out to exist). Therefore, we should be able to
give the geometrical quantities that we have discussed above a physical
meaning that makes sense more directly in the type IIB compactification
on IP1.

Indeed the periods and flat coordinates have a direct interpretation
in terms of open strings. Recall [15] that the tension of a (p, q) string
(in the canonical metric) is

Tp,q =
1√

ImτIIB
|p + qτIIB| , (1.31)

so that the mass of a string stretched along a line C is
∫
C Tp,qds. The

line element has been determined in [31, 18] and is given by ds2 =
ImτIIB|η(τIIB)|2∏24

i=1(z − zi)
−1/12dz|2. For the geometries we consider

(with four 7-planes and constant type IIB coupling τIIB), the mass of
a string stretched between any two planes (at branch points z1 and z2)
then simplifies to:

mp,q
2 =

∫ z2

z1

| (p + qτIIB(z))η2(τIIB(z))
︸ ︷︷ ︸

const.

z1/N−1(z − 1)−1/N (z − λ)−1/Ndz|2

= |p + qτIIB|2|η2(τIIB)|2
∫ z2

z1

∣∣∣Ω(1,0)
ΣN−1

∣∣∣
2

,

which coincides up to a numerical prefactor with the period integral
(1.26) (strictly speaking, period integrals are over closed homology cy-
cles, while here the open strings are stretched along half-cycles. The
difference is just in the normalization). In fact only ratios of periods
have an invariant meaning, whence we have to divide (1.31) by the fun-
damental period ̟0. To see that this provides the correct normalization,
consider in the E8×E8 model the mass of open strings stretched between
the two H0 planes. It is proportional to

mp,q
2 ∼ |p + qτIIB|2

∣∣∣∣∣∣

∫ λ
1 Ω

(1,0)
Σ5∫ λ

0 Ω
(1,0)
Σ5

∣∣∣∣∣∣

2
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= |p + qρ|2
∣∣∣∣
τ − ρ

τ − ρ̄

∣∣∣∣
2

. (1.32)

With the identification (1.29): τIIB ≡ ρ, τ = T , this exactly repro-
duces the known heterotic mass formula for the SU(3)/U(1)2 gauge
bosons that become massless as the planes collide (as λ → 1 or T → ρ).
The open strings that correspond to these gauge bosons are sketched in
Figs. 1.5 and 1.6; they have (p, q) charges given by ±(1, 0), ±(0, 1) and
±(1,−1), respectively, for which (1.32) implies that they all have the
same mass.

One can check that the BPS masses of stretched strings match also in
the other examples those of the corresponding winding and momentum
states in the heterotic string compactifications on T 2; a detailed analysis
has been presented in ref. [32].

5.3 MIRROR MAP ACTING BETWEEN
OPEN AND CLOSED STRING SECTORS

Note that in the previous section, we tacitly used a different language
as before: namely we used the concept of stretched open strings, while
previously we had discussed C-field exchange between 7-planes, which
is primarily a closed string concept. Indeed the mass of stretched open
strings is best parametrized by the flat coordinate T , on the other hand
closed string interactions between 7-planes depend on their physical lo-
cations in the z-plane, and thus are more naturally parametrized by the
geometrical modulus λ(T ).

z1 z2
Figure 1.9 Dual interpretations of the same string diagram, obtained by
time-slicing the world-sheet in two orthogonal ways: either in terms of tree
level closed string exchange between the planes, leading to a contribution
< C, C >∼ ln[z1−z2]. Or as one-loop diagram involving stretched open strings,
leading to

∑
Qi

4 ln[mi]. The functional relationship between these expressions
is essentially governed by the mirror map, τ ↔ λ(τ ).

That a given physical string process can have different interpretations
in terms of open or closed strings is of course a well-known, basic fact of
string perturbation theory – see Fig. 1.9. To see this better in the present
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context, let us recapitulate the origin of the logarithmic singularity that
arises in the effective action when two H0 planes collide in the E8 × E8

model. It can be seen to arise in following two dual ways:
i) It either arises as leading one-loop effect involving open strings stretched
between the planes:

∆eff ∼
∑

states
i

Qi
4 ln[mi] , (1.33)

which gives, using (1.32):

∆eff ∼ 3 ln

[
T − ρ

T − ρ̄

]

. (1.34)

The numerical factor arises due to the 3 sets of charged SU(3)/U(1)2

gauge bosons which have the same mass.
ii) Alternatively, the singularity arises –as discussed before– from mass-
less closed string C-field exchange between the planes, namely as small-
distance singularity of a Green’s function:

∆eff ∼ 〈C(4)C(4)〉 ∼ ln[z1 − z2] ∼ ln[1 − λ(T )] ∼ ln[J(T )]. (1.35)

The J-function then expands near the singularity as

J(T ≃ ρ) = const.

(
T − ρ

T − ρ̄

)3

+ . . . , (1.36)

where the power indeed reproduces the same prefactor as in (1.34). Thus
the J-function (which pertains to the geometry of the z-plane) “knows”
about the open string states of the theory, and effectively sums up many
contributions in a duality invariant way.

The insight that we can abstract from this is that the map τ ↔
λ between flat and geometric coordinates of the moduli space can be
physically interpreted in terms of a map between the natural open and
closed string moduli. From the view point of K3 period integrals, the
map τ ↔ λ can also be viewed as mirror map [33] on K3.7 However,
in the F -theory setup the whole of K3 is not really physical, and we
should not consider closed two-cycles but rather their projection on the
z-plane, which gives open string geodesics. In this sense, the rôle of the
K3 mirror map in the physical type IIB compactification on IP1 is then
played by a map between open and closed string sectors.

7While for higher dimensional Calabi-Yau d-folds the mirror map acts between different
manifolds and their moduli spaces, torus and K3 are “self-mirror” and accordingly the mirror
map acts within the same moduli space [34].
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5.4 PICARD FUCHS EQUATIONS, AND
THEIR SYMMETRIC SQUARE

We have seen in the preceding sections that a lot can be learned by
simply focussing on the leading singularities in the moduli space of the
effective theory. However, for the sake of performing really non-trivial
quantitative tests of the heterotic/F-theory duality, we should try harder
in order to reproduce the exact functional form of the couplings ∆eff(T )
from K3 geometry. The hope is, of course, to learn something new about
how to do exact non-perturbative computations in D-brane physics.

More specifically, the issue is to eventually determine the extra con-
tributions δ(λ) to the geometric Green’s functions in (1.24). Having
a priori no good clue from first principles how to do this, the results
of the previous section, together with experience with four dimensional
compactifications with N = 2 supersymmetry [35, 36, 37], suggest that
somehow mirror symmetry should be a useful tool. It was indeed shown
in refs. [6, 7] how mirror symmetry can be formally used to do such
computations, although a satisfying physical insight why it works has
not yet been achieved. We will therefore only briefly sketch the findings
of these works, and refer the interested reader to them for more details.

The starting point is the observation that threshold couplings of sim-
ilar structure appear also in four dimensional, N = 2 supersymmetric
compactifications of type II strings on Calabi-Yau threefolds. More pre-
cisely, these coupling functions multiply operators of the form TrFG

2 (in
contrast to quartic operators in d = 8), and can be written in the form

∆
(4d)
eff ∼ ln [λα1(1 − λ)α2(λ′)3] + γ(λ) , (1.37)

which looks similar to (1.24). By analyzing [6, 7] the known results of
mirror symmetry computations [36, 37] in d = 4, it is found that the
“extra” term γ(λ) in (1.37) appears also in the dilaton flat coordinate.
That is, it is nothing but the remainder of the dilaton in the large dilaton
limit: S = − ln[y] + γ, where y ∼ e−S + ... is a geometric coordinate of
the underlying CY threefold moduli space.

The dilaton S is a period associated with the CY threefold, and like all
period integrals, it satisfies a system of linear differential equations. The
idea [6, 7] is thus to first isolate a differential equation that is satisfied
by γ(λ) in d = 4, and then to see how to generalize it such as to obtain
a differential equation for δ(λ) in d = 8. Furthermore, this differential
equation may then be translated back into geometry, and this then would
hopefully give us a clue about what the relevant quantum geometry is
that underlies those quartic gauge couplings in eight dimensions.
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The starting point is, once again, the families of singular K3 surfaces
in (1.15). As we have seen above, associated with them are the period
integrals (1.25), which evaluate to the hypergeometric functions given
in (1.27). Generally, period integrals satisfy the “Picard-Fuchs” linear
differential equations [38], and for our examples (1.15) these read: LN ·
̟i(z) = 0, where

LN(z) = θz
2 − z (θz + 1

2N )(θz + 1
2 − 1

2N ) . (1.38)

Here we have made for convenience a change of variables: z ≡ −4λ/(1−
λ)2; moreover, θz ≡ z ∂

∂z .
The four-dimensional theories are obtained by compactifying the type

II strings on CY threefolds of special type, namely they are fibrations
[36, 39] of the K3 surfaces (1.15) over IP1. The size of the IP1 yields then
an additional modulus, whose associated flat coordinate is precisely the
dilaton S (in the dual, heterotic language; from the type II point of view,
it is simply another geometric modulus). The K3-fibered threefolds are
then associated with enlarged PF systems of the form:

LN(z, y) = θz(θz − 2θy) − z (θz + 1
2N )(θz + 1

2 − 1
2N )

L2(y) = θy
2 − 2y (2θy + 1)θy . (1.39)

Since we are interested in the perturbative, one-loop contributions on
the heterotic side (which capture the full story in d = 8, in contrast
to d = 4), we need to consider only the weak coupling limit, which
corresponds to the limit of large base space: y ∼ e−S → 0. Though
we might now be tempted to drop all the θy ≡ y∂y terms in the PF
system, we better note that the θy term in LN (z, y) can a non-vanishing
contribution, namely in particular when it hits the logarithmic piece of
the dilaton period, S = − ln[y] + γ. As a result one finds that the piece
γ that we want to compute satisfies in the limit y → 0 the following
inhomogenous differential equation:

LN · (γ ̟0)(z) = ̟0(z) . (1.40)

We now apply the inverse of this strategy to our eight dimensional
problem. Since we know from the perturbative heterotic calculation of
section 2 what the exact answer for δ must be (e.g., (1.3)), we can work
backwards and see what inhomogenous differential equation the extra
contribution δ(λ) obeys. What we find after some tedious computations
is that it satisfies:

L⊗2
N · (δ ̟0

2)(z) = ̟0
2(z) , (1.41)
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whose homogenous operator

L⊗2
N (z) = θz

3 − z (θz + 1 − 1
N )(θz + 1

2 )(θz + 1
N ) , (1.42)

is the “symmetric square” [40, 41] of the K3 Picard-Fuchs operator
(1.38). This means that its solution space is given by the symmetric
square of the solution space of LN (z), i.e.,

L⊗2
N · (̟0

2,̟0̟1,̟1
2) = 0. (1.43)

Even though the inhomogenous PF equation (1.41) concisely captures
the extra corrections in the eight-dimensional threshold terms, the con-
siderations leading to this equation have been rather formal and it would
be clearly desirable to get a better understanding of what it mathemat-
ically and physically means.

Note that in the four dimensional situation, the PF operator LN (z),
which figures as homogenous piece in (1.40), is by construction associ-
ated with the K3 fiber of the threefold. By analogy, the homogenous
piece of equation (1.41) should then tell us something about the geom-
etry that is relevant in the eight dimensional situation. Observing that
the solution space (1.43) is given by products of the K3 periods, it is
clear what the natural geometrical object is: it must be the symmet-
ric square Sym2(K3) = (K3 × K3)/ZZ2. Being a hyperkähler manifold
[42], its periods (not subject to world-sheet instanton corrections) indeed
enjoy the factorization property exhibited by (1.43).K3 K3 K3 !=ZZ2 �IP1 IP1

d=4 d=8

Figure 1.10 Formal similarity of the four and eight-dimensional string com-
pactifications: the underlying quantum geometry that underlies the quadratic
or quartic gauge couplings appears to be given by three- or five-folds, which are
fibrations of K3 or its symmetric square, respectively. The perturbative com-
putations on the heterotic side are supposdly reproduced by the mirror maps
on these manifolds in the limit where the base IP1’s are large.

The occurrence of such symmetric products is familiar in D-brane
physics. The geometrical structure that is relevant to us is however
not just the symmetric square of K3, but rather a fibration of it, in



28

the limit of large base space – this is precisely what the content of the
inhomogenous PF equation (1.41) is. It is however not at all obvious to
us why this particular structure of a hyperkähler-fibered five-fold would
underlie the non-perturbative quantum geometry of the quartic gauge
couplings in eight dimensions.8

The situation is, in this respect, somewhat similar to N = 2 SYM
theory in four dimensions, where the Riemann surfaces underlying the
effective lagrangian were found in [43], and at the time the geometry
appeared to be merely a convenient mathematical tool for encoding ap-
propriate physical data. It was only quite some time later when the
geometry was given a deep physical interpretation.9 In the same spirit,
one may speculate that the five-folds that seem to emerge here may
ultimately have an interpretation in terms of a yet unknown dual for-
mulation of the theory, or, perhaps more likely, in terms of sigma-models
describing the relevant 7-brane interactions that lead to the requisite F 4

terms in the effective action.

6. CONCLUSION

Summarizing, we have seen that the postulated duality between the
heterotic string compactified on T 2 and F -theory on K3 (which is de-
fined to be type IIB strings on IP1 with 24 (p, q) 7-branes) passes nu-
merous tests. In particular, highly non-trivial quartic gauge threshold
coupling functions, which are one-loop exact on the heterotic side, can
be reproduced from geometrical data pertaining to K3 surfaces. Still,
a better physical understanding of the issues discussed in the previous
paragraphs would be highly desirable.

Acknowledgments

I thank Stephan Stieberger and Nick Warner for the collaboration on this subject,

and moreover the organizers of the School for a very pleasant stay.
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