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1 Introduction

The D1/D5 system of type IIB string theory compactified on S1×T 4 (or type IIA on S1×K3)

has been the subject of many investigations since it was introduced by Strominger and Vafa

[1] in their work on the microscopic origin of the entropy of the corresponding black hole

solution in (4+1)-dimensions. This system is amenable to a rather precise analysis because

its dynamics in the limit α′ → 0 is described by a non-abelian gauge theory. This fact

underlies the hope that a correctly understood and calculable theory of Hawking radiation

can emerge for the near extremal 5-dim. black hole. This hope is realized for the emissivity

of the massless modes upto an over all numerical constant which can be fixed by assuming

the AdS/CFT duality [2].

It turns out that the infra-red dynamics of D1/D5 system is described by a 2-dimensional

superconformal sigma model whose target space is the moduli space of Yang-Mills instantons

on T 4 or K3. In this paper we will will restrict ourselves to T 4. This SCFT has a

singularity corresponding to the vanishing size of instantons which corresponds to the origin

of the Higgs branch. The singularity is resolved by turning on any one of the four exactly

marginal operators which correspond to the blow-up modes. In the SCFT with target space

SymQ1Q5(T̃
4) 1, these 4 operators arise from the twisted sector corresponding to a single non-

trivial cycle of length 2 and are denoted by τ0 and τ1 in [3]. Using a global symmetry of the

SCFT these were identified in [3] to be dual to the four supergravity fields: B(+) (self-dual

part of the NS 2-form B) and aC(0) + bC(4) (a linear combination of the Ramond-Ramond

forms C(0) and C(4)). Seiberg and Witten [4] have shown that the singularity of the Higgs

branch corresponds to the decay of the marginally stable bound system of D1/D5 branes to

sub-systems of D1/D5 branes. Turning on any 4 marginal operators evades the singularity

of the Higgs branch, because the marginally stable bound state is now expected to become

a true bound state.

This fact can be argued in various ways and if we assume the AdS/CFT conjecture it

certainly implies the existence of a black hole solution in the bulk where the moduli fields

corresponding to the blowing up modes are non-zero. Such a black hole will be stable against

fragmentation into constituents. In this paper we present such a solution for which B 6= 0

(in particular, B(+)|brane 6= 0). A preliminary version was already reported in [5]. We present

1SymkM denotes the symmetric product Mk/S(k) where S(k) is the permutation group of k elements.
The tilde on T 4 is a reminder that the 4-torus is not necessarily identical to the original T 4 [2].
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a detailed analysis of the charges, both at infinity and at the horizon, to ensure that the

system is indeed D1/D5 and there are no source D3-branes. Given this new solution we

repeat the analysis in [4] and study the motion of a test D1 brane in the background of this

solution. We demonstrate the Liouville potential that binds the D1 brane to a large number

of D1/D5 branes. The coefficient of the Liouville potential is proportional to b2, where b is

the self-dual part of the NS B field at the horizon.

The discussion of the bound state in the context of the microscopic theory can be done

efficiently by approximating the instanton sector of the 5-brane gauge theory by the N = 4,

U(Q1)×U(Q5) gauge theory in 2 dims [6, 7]. We analyse the D-flatness (ADHM) equations

when the Fayet-Iliopoulos (FI) parameters are non-zero, and indicate that the (1, 5) and

(5, 1) strings condense on the hyper-Kahler manifold T ∗CPN−1, where N = Q1Q5. We then

discuss the transverse fluctuations of the brane system (case Q5 = 1) and show that these do

not have flat directions transverse to the brane system. If the FI parameters are non-zero.

This demonstrates a normalizable ground state of the Higgs branch.

As this work was getting completed we became aware of the recent developments in non-

commutative geometry and string theory: [8, 9, 10, 11, 17, 12, 14, 13, 16, 18, 19, 15]. The

presence of the B in the world volume of a collection of D-branes changes the boundary

conditions of the open strings that mediate the interactions of the branes. The effect of

this is that the Yang-Mills (YM) theory in 6-dimensions in T 4 × S1 ×R1 that describes the

collective modes of the D1/D5 system is now replaced by a noncommutative YM theory

(NCYM), with the noncommutativity parameter determined by B, as explained in [9]. The

moduli space to consider should now be that of the self-dual gauge fields in NCYM on the

four-torus: F̂ (−) = 0, where F̂ denotes the NCYM field strength and the superscript (−)

denotes anti-self-dual part, taken with respect to an appropriate (open string) metric. These

conditions once again preserve 8 SUSY’s and can be considered as a deformation of the

original self dual equations.

In case of the YM theory in R4, Nekrasov and Schwarz [20] have shown, by an analysis of

the ADHM equations, that the moduli space of F̂ (−) = 0 is equivalent to a resolution of the

moduli space of the ordinary F (−) = 0 by the B
(+)
ij (Fayet-Iliopoulos) parameters. For the

case of the torus T 4 or K3 we are unaware of a similar precise statement but an educated

guess is the following: The moduli space of F̂
(−)
ij = 0 on the torus is a resolution of the

symmetric product: SymQ1Q5(T̃
4). In applications, for instance, when one constructs the
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orbifold CFT on the symmetric product one implicitly assumes that a certain flux persists

in the squashed 2 cycles. This flux corresponds to turning on the operator τ0 in [3]. We

conjecture that the SCFT obtained by further adding the 3 operators τ1, with arbitrary

values of the corresponding moduli, is the SCFT where target space is the moduli space of

F
(−)
ij = 0.

The paper is organized as follows: We first construct in Section 2, the supergravity

solution that corresponds to the D1/D5 system in the presence of non-zero B and the

Liouville potential felt by a probe D1 brane. In Section 3, we discuss the N = 4,

U(Q1) × U(Q5) gauge theory in 2 dimensions when the Fayet-Iliopoulos (FI) parameters

are non-zero and discuss the transverse fluctuations of the brane system (case Q5 = 1). We

conclude with a proposal for the sigma model on the moduli space of NCYM instantons.

2 D1/D5 System with B-field

In this section we will construct a solution [5] to type IIB supergravity compactified on T 4

which represents the D1/D5 system with a NS B-field in the internal T 4 directions. We will

obtain this solution from brane systems without a B-field by a series of T-dualities and use

it to study various properties of this system discussed in the Introduction.

We will denote the T 4 directions as x6,7,8,9. We begin with a IIB supergravity

solution corresponding to two sets of orthogonal D3-branes extending along x5,6,7 and x5,8,9

respectively. The common direction, x5, is assumed non-compact for the moment. The first

set of D3-branes, which wraps the T 4 in x6 and x7 directions, is “smeared” (see, e.g. [22])

over the remaining T 4 directions, x8 and x9. The other set of D3-branes, which wraps x8

and x9 directions, is smeared over x6 and x7. This solution [23] is given by the following

metric, dilaton and self-dual 5-form RR field strength:

ds2 = (f1f5)
−1/2(−dt2 + (dx5)2) + (f1f5)

1/2(dr2 + r2dΩ2
3)

+

(
f1

f5

)1/2

(dx6)2 + (dx7)2) +

(
f5

f1

)1/2

((dx8)2 + (dx9)2),

e2φ = 1,

F (5) = K(3) ∧ dx6 ∧ dx7 + K̃(3) ∧ dx8 ∧ dx9,
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where

K(3) = (−df−1
5 ∧ dt ∧ dx5 + α′µ1ε3),

K̃(3) = (−df−1
1 ∧ dt ∧ dx5 + α′µ5ε3).

Here ε3 is the volume form of the 3-sphere and the harmonic functions f1 and f5 are given

by

f1,5 = 1 +
µ1,5

2

(
α′

r2

)
, (2.1)

where µ1,5 are dimensionless numbers related to the numbers of D3-branes in the two sets.

We have used here a notation which is appropriate to the D1/D5 solution with a B-field that

we are ultimately interested in. For the sake of completeness, we also give here the type IIB

low-energy action to which the above is a solution:

SIIB =
1

2κ2

∫
d10x

√−G
{
e−2φ

(
R + 4(∇φ)2 − 1

2.3!
(H (3))2

)
− 1

2.3!
(F (3))2

− 1

4.5!
(F (5))2

}
+

1

4κ2

∫
C(4) ∧ F (3) ∧H (3), (2.2)

where (H(3))2 = H
(3)
MNPH

(3)MNP, (F (n))2 = F
(n)
M1···Mn

F (n)M1···Mn and, using the standard form

notation,

H(3) = dB
(2)
NS, F (3) = dC(2), F (5) = dC(4) − 1

2
C(2) ∧H (3) +

1

2
B(2) ∧ F (3). (2.3)

The self-duality constraint, ∗F (5) = F (5), is imposed at the level of the equations of motion.

Also, κ2 = 8πG10, where G10 = 8π6g2α′4 is the 10-dimensional Newton’s constant (in the

convention that the dilaton, φ, vanishes asymptotically).

The desired D1/D5 solution is obtained from the above solution by the following series

of T-duality transformations: A rotation in the x6 - x8 plane by an angle ϕ, followed by a

T-duality in the (new) direction x8, followed by a rotation in the x7 - x9 plane by an angle

ψ, which is finally followed by a T-duality in the (new) direction x9. We have used the

T-duality rules for RR field strength in the form given in [25], adapted to our conventions

(self-dual 5-form RR field strength). We present below the solution obtained in this way:

ds2 = (f1f5)
−1/2(−dt2 + (dx5)2) + (f1f5)

1/2(dr2 + r2dΩ2
3)

+(f1f5)
1/2
{
Z−1
ϕ ((dx6)2 + (dx8)2) + Z−1

ψ ((dx7)2 + (dx9)2)
}
, (2.4)
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e2φ = f1f5/ZϕZψ, (2.5)

B
(2)
NS = (Z−1

ϕ sinϕ cosϕ(f1 − f5) + b68)dx
6 ∧ dx8

+(Z−1
ψ sinψ cosψ(f1 − f5) + b79)dx

7 ∧ dx9, (2.6)

F (3) = cosϕ cosψK̃(3) + sinϕ sinψK(3), (2.7)

F (5) = Z−1
ϕ (−f5 cosϕ sinψK(3) + f1 cosψ sinϕK̃(3)) ∧ dx6 ∧ dx8

+Z−1
ψ (−f5 cosψ sinϕK(3) + f1 cosϕ sinψK̃(3)) ∧ dx7 ∧ dx9, (2.8)

Zϕ,ψ = 1 +
µϕ,ψ
2

(
α′

r2

)
, µϕ = µ1 sin2 ϕ+ µ5 cos2 ϕ, µψ = µ1 sin2 ψ + µ5 cos2 ψ.(2.9)

Here b68 and b79 are arbitrary constants which we have added at the end by a T-duality

transformation that shifts the NS B-field by a constant. Note that for ϕ = ψ = 0 and

b68 = b79 = 0, the above solution reduces to the well-known solution for D1/D5 system

without B-field.

2.1 Charges

In this subsection we will discuss the various charge densities 2 associated with the RR fields.

The electric charge densities are given by

Qelec =
1

2κ2

∮
∗F (n),

and the magnetic charge densities by

Qmag =
1

2κ2

∮
F (n).

The integrals above are evaluated at asymptotic distances in the 4-dimensional noncompact

space. Note that for arbitrary ϕ and ψ values, F (3) and F (5) have non-trivial r-dependence

which is different from the asymptotic dependence 1/r3. This means, in particular, that the

numerical values of the charges computed in the asymptotically flat geometry are different

from those computed in the near horizon AdS geometry. We shall give below expressions for

charges in both cases. The charges in the near horizon geometry have been distinguished

from those in the asymptotically flat geometry by a superscript (h).

2These are densities rather than the total charges, as explained below (2.13).
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The RR field strength F (3) gives rise to D1-brane and D5-brane charges while F (5) gives

rise to two types of D3-brane electric and magnetic charges. For our solution these charge

densities are, in an obvious notation,

Q1 = β(µ1 cosϕ cosψ + µ5 sinϕ sinψ), (2.10)

Q5 = β(µ5 cosϕ cosψ + µ1 sinϕ sinψ), (2.11)

Q3 ≡ Q568
3 = β(µ5 cosϕ sinψ − µ1 cosψ sinϕ), (2.12)

Q′
3 ≡ Q579

3 = β(µ5 cosψ sinϕ− µ1 cosϕ sinψ), (2.13)

where β = α′Ω3/(2κ
2) and Ω3 = 2π2 is the volume of a unit 3-sphere. Here Q1 is the

charge ‘density’ of D1-branes obtained by dividing in addition by the asymptotic volume of

the torus T 4 and Q3, Q
′
3 are D3-brane charge densities obtained by dividing in addition by

appropriate T 2 volumes.

In the near horizon geometry, the corresponding expressions for the charge densities are,

Q
(h)
1 = β

µ1µ5

µϕµψ
(µ5 cosϕ cosψ + µ1 sinϕ sinψ), (2.14)

Q
(h)
5 = Q5, (2.15)

Q
(h)
3 ≡ Q

568(h)
3 = β

µ1µ5

µψ
sin(ψ − ϕ), (2.16)

Q
(h)′
3 ≡ Q

579(h)
3 = β

µ1µ5

µϕ
sin(ϕ− ψ). (2.17)

As expected, only the D5-brane charge density is the same in the two cases.

2.2 Source Branes and Mass

We now require that our solution should correspond to only D1- and D5-brane sources. That

is, we want the D3-brane charges to be induced purely by our nonzero B-field, and not by

any source D3-branes3.

There are two contributions to the D3-brane charge induced by the B-field. One comes

from the bulk Chern-Simons term in (2.2),

1

4κ2

∫
C(4) ∧ F (3) ∧H, (2.18)

3Note that the full space of supergravity solutions generated by the T-duality group O(4, 4) will have
arbitrary number of source D1-,D3- and D5-branes. We will choose below parameters of our T-duality
transformations in such a way that we have a ‘pure D1/D5 system’.
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and the other from the coupling

Q5

∫
C(4) ∧ B (2.19)

in the Chern-Simons part of the D5-brane would volume action,

ρ(5)Tr
∫ ∑

n

e2πα
′F+B ∧ C(n). (2.20)

Here ρ(5) is the charge density of a D5-brane and the trace is over the non-abelian gauge

group U(n5), n5 being the number of D5-branes.

The coupling in (2.18) contributes a δ-function term (with support at the location of the

D5-brane in the 4 noncompact dimensions) in the local D3-brane charge density, proportional

to the value of the B-field at the horizon. On the other hand, the contribution of (2.19) to the

D3-brane charge is proportional to the difference of the asymptotic and the horizon values

of B. It can be shown that the sum of these two contributions is an induced D3-brane charge

proportional to the asymptotic value of the B field, thus leading to (2.22) below.

Similarly to the above, there are also contributions to the total D1-brane charge which

are induced by the B-field. Apart from the bulk Chern-Simons term (2.19), there is also a

contribution from the D5-brane

Chern-Simons action which is given by

Q5

∫
1

2!
B ∧B ∧ C(2). (2.21)

In this case also the two contributions add up to finally give induced D1-brane charge which

depends only on the asymptotic value of B, leading to (2.26) below.

Let us now discuss the two cases of the asymptotically flat and the near horizon geometry

separately. In other words, we will consider first the case of the full supergravity solution

(2.4) and then the case in which we take the near-horizon limit in the spirit of [26] and treat

it as an independent solution of IIB supergravity in its own right.

(i) Asymptotically flat geometry

Here, the absence of any D3-brane sources is ensured by demanding that

Q3 = B
(∞)
79 Q5, Q′

3 = B
(∞)
68 Q5, (2.22)
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where

B
(∞)
79 = b79, B

(∞)
68 = b68, (2.23)

are the asymptotic values of the two nonzero components of the B-field. Eqns. (2.22) are

satisfied if we set

b68 =
µ5 sinϕ cosψ − µ1 cosϕ sinψ

µ5 cosϕ cosψ + µ1 sinϕ sinψ
, (2.24)

b79 =
µ5 cosϕ sinψ − µ1 sinϕ cosψ

µ5 cosϕ cosψ + µ1 sinϕ sinψ
. (2.25)

Furthermore, if Q1s denotes the D1-brane charge which arises from source D1-branes, then,

using (2.2) and (2.21) it can be shown that

Q1s = Q1 −B
(∞)
68 B

(∞)
79 Q5. (2.26)

From (2.10)-(2.13) and (2.22)-(2.26) we then get

Q1s = β2µ1µ5

Q5

. (2.27)

Mass

The supergravity solution that we have is 1
4

BPS. The mass of this 1
4

BPS solution [27],

which coincides with its ADM mass, is given in terms of the appropriate charge densities by

M2 = (Q1 +Q5)
2 + (Q3 −Q′

3)
2 (2.28)

Note that, as expected, the mass given by (2.28) equals the ADM mass of

the intersecting D3-brane solution from which the present solution was obtained by T-

duality, i.e.

M = β(µ1 + µ5). (2.29)

We wish to study M as a function of the moduli, keeping Q1s and Q5 fixed. This last

requirement, together with (2.24) and (2.25), determines µ1, µ5, ϕ and ψ as functions of the

two moduli b68 and b79:

tan(ϕ± ψ) =
b68 ± b79

1∓ b68b79 ∓Q1s/Q5

, (2.30)

βµ1 =
Q5

2

{
(1 + b68b79 +Q1s/Q5) sec(ϕ− ψ)
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−(1− b68b79 −Q1s/Q5) sec(ϕ+ ψ)
}
, (2.31)

βµ5 =
Q5

2

{
(1 + bb′ +Q1s/Q5) sec(ϕ− ψ)

+(1− b68b79 −Q1s/Q5) sec(ϕ+ ψ)
}
. (2.32)

For arbitrary b68 and b79, µ1 and µ5 given by the above equations will not satisfy any

quantization conditions, unlike, e.g., for b68 = b79 = 0 for which µ5 = 2gsn5 and

µ1 =
2gsn1

VT 4/(2π)4α′2
, where n1 and n5 are integers. This should not unduly worry us since for

the system under discussion only Q1s and Q5 have a direct physical interpretation in terms

of brane sources, and it is only on these that appropriate quantization conditions must be

imposed.

We now wish to extremize (2.28) with respect to both b68 and b79. This requires

b68 = −b79 = ±
√
Q1s/Q5 − 1, (2.33)

and then the mass at the fixed point is given by

M2 = 4Q1sQ5. (2.34)

For fixed asymptotic volume of T 4, Eqns. (2.33) can be seen to fix the B-moduli at the

minimum in terms of the ratio of D1- and D5-brane source charges. For a different value for

this ratio, the mass is minimized for appropriately different values of the B-moduli. Stated

differently, for a fixed value of the B-moduli, unless the charge-ratio is given by (2.33), the

system will be unstable and decay to a system which satisfies (2.33).

Hence, once the B-moduli are fixed at the values in (2.33), the system forms a true bound

state of the constituent branes 4.

(ii) Near horizon geometry

In this case, absence of D3-brane sources is ensured if we set

Q
(h)
3 = B

(h)
79 Q5, Q

(h)′
3 = B

(h)
68 Q5, (2.35)

4It is interesting to consider the case when the fragmentation happens keeping the ratio of Q1s/Q5 fixed.
Eqn. (2.34) would predict zero binding energy and fragmentation at no cost. However, such an eventuality
will be prevented for mutually prime Q1s, Q5. This is in accord with [28, 4, 29] which indicate singularities
associated with points in the moduli space where Q1s and Q5 have common factors.
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where

B
(h)
68 =

µ1 − µ5

µϕ
sinϕ cosϕ+ b68, (2.36)

B
(h)
79 =

µ1 − µ5

µψ
sinψ cosψ + b79, (2.37)

are the horizon values of the two nonzero components of the B-field. Eqns. (2.35) are

satisfied for precisely the same values of b68 and b79 as in (2.24) and (2.25). Moreover, we

see that in this case
B

(h)
68

µψ
= −B

(h)
79

µϕ
, (2.38)

which is the self-duality condition on the B-field in the near horizon geometry. We also note

that the volume of T 4 at the horizon is given by

V
(h)
T 4 =

µ1µ5

µϕµψ
=
Q

(h)
1

Q5
. (2.39)

The D1-brane charge that arises from source D1-branes in this case is given by

Q
(h)
1s = Q

(h)
1 − B

(h)
68 B

(h)
79 Q5. (2.40)

From (2.14)-(2.17) and (2.35) we get

Q
(h)
1s = Q1s (2.41)

where Q1s is given by (2.27). Thus we see that not only do the parameters b68 and b79

have the same values here as in the asymptotically flat case, even the source D1-branes are

identical, despite the total D1-brane charges being very different in the two cases.

Mass

The 1
4

BPS mass formula in terms of the various charge densities in this case is

M (h)

V
(h)
T 4

2

=

Q(h)
1

V
(h)
T 4

+Q5

2

+

 Q
(h)
3√

g77g99
− Q

(h)′
3√
g66g88

2

. (2.42)

Using (2.35)-(2.41) it can be easily seen that

(
M (h)

)2
= V

(h)
T 4 (4Q1sQ5) . (2.43)
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Apart from the extra factor of the T 4 volume in the near horizon geometry, this is exactly the

same as (2.34). The extra volume factor correctly takes into account the difference in the 6-

dimensional Newton’s constant between the asymptotically flat and near horizon geometries

because of the difference in the T 4 volume in the two cases. We have already seen that the

B-field is automatically self-dual in the near horizon geometry and that the volume of T 4

satisfies the condition given by (2.39) and (2.40). We now see that the mass of the bound

state is already at the fixed point value. Thus the solution we have here provides an explicit

demonstration of the attractor mechanism of [30].

2.3 Motion of a separated D1-brane

In this subsection we will discuss the fragmentation of the D1/D5 system in which a single

D1-brane splits off. As mentioned above, the presence of a B-field leads to a bound state.

Therefore, if we consider the motion of the single D1-brane in the background geometry of

the remaining branes, we should find an attractive potential. This problem was addressed in

[4] who argued that the potential is of the Liouville form in the near-horizon geometry. We

will use our supergravity solution to find the attractive potential in the full geometry which

will include the above result in the near-horizon limit.

Let us assume that the remaining D1/D5 system is given by the parameters Q1, Q5. The

motion of the separated D1-brane can then be described by the following DBI action, coupled

to the supergravity solution (2.4)-(2.9)

S1 = − 1

2πgα′

∫
d2σ

(
e−φ

√
−det(ĝ + 2πα′B̂)− C(2)

)
(2.44)

where

ĝαβ = gµν∂αx
µ∂βx

ν , B̂αβ = Bµν∂αx
µ∂βx

ν (2.45)

represent the pull-backs of the metric and the B-field onto the D1-brane world-sheet. We

will consider a radially moving D1-brane, given by

x0 = σ0 ≡ τ, x5 = σ1 ≡ σ, r = r(τ) (2.46)

It is easy to find S1 explicitly for small B-moduli 5, (small angles φ, ψ):

S1 =
1

gα′

∫
dτ
(
φψf−1

5

)
+ o(v2) (2.47)

5For radial motion, B̂ vanishes, but the effect of non-zero B shows up in the presence of non-zero angles
φ, ψ which leads to non-zero C(2).
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As we have argued above, the minimum-energy bound state requires the condition (2.33),

which in turn means φ = −ψ. For small B-moduli, therefore, the coefficient of f−1
5 is

−φ2 = −b2, where b = b68 = −b79.
Thus the separated D1-brane feels an attractive potential

V (r) =
1

gα′
b2(1 +

µ5α
′

2r2
)−1 (2.48)

The near-horizon limit is given by the functional form r2 which, in terms of the scalar field

φ = ln r on the throat, is of the Liouville form e2φ.

It is remarkable that the separated D1-brane feels a static potential which is the hall-

mark of a non-BPS situation, whereas normally one expects a Dp-Dq system with p − q

mod 4 = 0 to be BPS. It appears even more remarkable if one recalls that the supergravity

solution with the B-field, which shows the non-zero binding energy, is obtained simply by

a series of T-duality transformations. Appearance of non-zero binding energy as a result of

T-duality has been noted before (see, e.g., [24]). See also related remarks in [9].

3 Gauge Theory Description of the D1-D5 Bound

State

In this section we discuss the microscopic theory of the D1−D5 system. The moduli space

of instantons of the 5-brane gauge theory with gauge group U(Q5) and instanton number

Q1 is the resolved SymQ1Q5(T̃
4). 6. In the limit of small instanton size one can approximate

this description by directly constructing the gauge theory corresponding to the system of Q1

D1-branes and Q5 D5-branes [6], [7]. This description provides a good physical picture of

the dynamics of the

brane system. The brane configuration is as follows. The D1-branes are wrapped on the

circle S1 along the direction x5 and the D5-branes are wrapped on the 5-torus S1×T 4. The

coordinates of T 4 are denoted by xi, i = 6, 7, 8, 9. The radius R of S1 is chosen so that

R� √
α′ and V4 ∼ α′2.

The above configuration of branes interact via open strings that are attached to the

branes. Denote these by (1, 1), (5, 5), (1, 5) and (5, 1). The low energy dynamics of this

6We have here dropped the subscript ‘s’ on the source D1-brane charge (which corresponds now to the
instanton number) and, furthermore, by abuse of notation, Q5 and Q1 are now representing the corresponding
numbers of branes rather than appropriate charge densities as in the previous section.
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system is described by a U(Q1)× U(Q5), N = 4 gauge theory in the 2 dimensions common

to the 2 branes i.e. (t, x5). We also allow for a non-zero θ angle corresponding to the relative

U(1) that acts on the hypermultiplets.

The field content is summarized as follows:

(i) (1, 1) Strings :

The fields corresponding to the massless excitations of the (1, 1) strings are obtained

from the dimensional reduction of U(Q1), N = 1 SYM in 10-dim. The bosonic fields

can be organized as vector and hyper multiplets of N = 2 theory in 4-dim. in the

adjoint representation. of U(Q1):

vector multiplets : A
(1)
0 , A

(1)
5 , Ym m = 1, 2, 3, 4

hyper multiplets : Yi, i = 6, 7, 8, 9.

In the above description we have neglected the winding modes of the (1, 1) strings on

the torus T 4.

(ii) (5, 5) Strings :

The massless modes of the (5, 5) open strings are obtained in a similar way except that

the gauge group is U(Q5) and we neglect the KK modes corresponding to the torus

T 4.

vector multiplets : A
(5)
0 , A

(5)
5 , Xm m = 1, 2, 3, 4

hyper multiplets : Xi, i = 6, 7, 8, 9.

(iii) (1, 5) and (5, 1) Strings :

The fields corresponding to the massless excitations of the (1, 5) and (5, 1) open strings

can be organized as doublets of the SU(2)R symmetry of the gauge theory. SU(2)R

is the diagonal subgroup of SO(4)I ' SU(2) × SU(2) which acts on the coordinates

xi = 6, 7, 8, 9.

hyper multiplets : χa′a =
(
χ1
a′a
χ2
a′a

)
=
(
Aa′a
Ba′a

)
(3.1)

Aa′b and Ba′b transform in the bi-fundamental representation of U(Q1)× U(Q5). The

U(1) × U(1) subgroup is important. One combination leaves the hypermultiplet
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invariant. The other combination is active and (Aa′a, Ba′a) have U(1) charges (+1,−1).

χ is a chiral spinor of SO(4)I with convention Γ6789 χ = −χ.

In the above discussion, the fields Yi and Xi along the torus directions are assumed to be

compact. However it is not obvious how to compactify the range of χ so that the integration

over this field in the path integral is finite.

3.1 The Potential Terms

The potential energy density of the vector and hyper multiplets is a sum of 4 positive terms,

V = V1 + V2 + V3 + V4 (3.2)

V1 = − 1

4g2
1

∑
m,n

trU(Q1)[Ym, Yn]
2 − 1

4g2
5

∑
m,n

trU(Q5)[Xm, Xn]
2 (3.3)

V2 = − 1

2g2
1

∑
i,m

trU(Q1)[Yi, Ym]2 − 1

2g2
5

∑
i,m

[Xi, Xm]2 (3.4)

V3 =
1

4

∑
m

trU(Q1)(χXm − Ymχ)(Xmχ
† − χ†Ym)2 (3.5)

V4 =
1

4
trU(Q1)(χiΓ

T
ijχ

+ + i[Yi, Yj]
+ − ζ+

ij

11

Q1
)2

+
1

4
trU(Q5)(χ

+iΓijχ+ i[Xi, Xj]
+ − ζ+

ij

11

Q5
)2 (3.6)

The potential energy V4 comes from a combination of F and D terms of the higher dim.

gauge theory. Γij = i
2
[Γi,Γj ] are spinor rotation matrices. The notation a+

ij denotes the

self-dual part of the anti-symmetric tensor aij .

In V4 we have included the Fayet-Iliopoulos (FI) terms ζ+
ij , which form a triplet under

SU(2)R. Their inclusion is consistent with N = 4 SUSY. The FI terms can be identified

with the self dual part of Bij, the anti-symmetry tensor of the NS sector of the closed string

theory. This identification at this stage rests on the fact that (i) ζ+
ij and B+

ij have identical

transformation properties under SU(4)I and (ii) at the origin of the Higgs branch where

χ = X = Y = 0, V4 ∼ ζ+
ij ζ

+
ij . This signals a tachyonic mode from the view point of string

perturbation theory. The tachyon mass is easily computed and this implies the relation

ζ+
ij ζ

+
ij ∼ B+

ijB
+
ij .
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3.2 D-Flatness Equations and the Moduli Space

The supersymmetric ground state (semi-classical) is characterized by the 2-sets of D-flatness

equations which are obtained by setting V4 = 0. They are best written in terms of the

SU(2)R doublet fields N
(1)
a′b′ and N

(5)
ab :

N (1) =

(
N

(1)
1

N
(1)
2

)
=
(
Y9 + iY8

Y7 + iY6

)

N (5) =

(
N

(5)
1

N
(5)
2

)
=
(
X9 + iX8

X7 + iX9

)
(3.7)

We also define ζ = ζ+
69 and ζc = ζ+

67 + iζ+
68. With these definitions the 2 sets of D-flatness

conditions become:

(AA+ −B+B)a′b′ + [N
(1)
1 , N

(1)†
1 ]a′b′ − [N

(1)
2 , N

(1)†
2 ]a′b′ =

ζ

Q1

δa′b′ (3.8a)

(AB)a′b′ + [N
(1)
1 , N

(1)†
2 ]a′b′ =

ζc
Q1
δa′b′ (3.8b)

(A+A− BB+)ab + [N
(5)
1 , N

(5)†
1 ]ab − [N

(5)
2 , N

(5)†
2 ]ab =

ζ

Q5

δab (3.8c)

(A+B+)ab + [N
(5)
1 , N

(5)†
2 ]ab =

ζc
Q5

δab (3.8d)

The hypermultiplet moduli space is a solution of the above equations modulo the gauge

group U(Q1) × U(Q5). A detailed discussion of the procedure was given in [7]. Here we

summarize.

If we take the trace parts of Eqns. (3.8) we get the same set of 3 equations as the D-

flatness equations for a U(1) theory with Q1Q5 hypermultiplets, with U(1) charge assignment

(+1,−1) for (Aa′b, B
T
a′b). Thus,

∑
a′b

(Aa′bA
∗
a′b − BT

a′bB
T∗
a′b) = ζ (3.9a)

∑
a′b
Aa′bB

T
a′b = ζc (3.9b)

For a given point on the surface defined by Eqns. (3.9) the traceless parts of (3.8) lead to

3Q2
1 + 3Q2

5 − 6 constraints on among 4Q2
1 + 4Q2

5 − 8 degrees of freedom corresponding to

the traceless parts of the adjoint hypermultiplets N (1) and N (5). Using Q2
1 + Q2

5 − 2 gauge

conditions corresponding to SU(Q1)× SU(Q5) we have (3Q2
1 + 3Q2

5 − 6) + (Q2
1 +Q2

5 − 2) =
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4Q2
1 + 4Q2

5 − 8 conditions for the (4Q2
1 + 4Q2

5 − 8) degrees of freedom in the traceless parts

of N (1) and N (5). The 8 degrees of freedom corresponding to trXi and trYi, i = 6, 7, 8, 9

correspond for the centre-of-mass of the D5 and D1 branes respectively.

The Eqns.(3.9) for Q1Q5 hypermultiplets have been recently discussed in the context of

instantons in non-commutative gauge theory [20, 9]. They define M = T ∗CPQ1Q5−1, the

cotangent bundle of the complex hyper-Kähler manifold CPQ1Q5−1. The FI parameters ζ+
ij

can be identified with the moduli of the hyper-Kähler metrics on M . For example, in the

case of Q1Q5 = 2, M is the Eguchi-Hanson space. When the FI parameters go to zero, it

reduces to the singular space, C2/Z2. Similarly, we can show that when the FI terms go to

zero, M defined by the equations (3.12) and (3.13) becomes the singular space (appendix A)

M0 = C2 × C2

w
× C2

w2
× · · · C2

wN−1
. (3.10)

The singularity of M0 corresponds to the cycle of length N of the permutation group

SN . Associated with this singularity is a chiral primary operator with dimension (h, h̄) =

(N−1
2
, N−1

2
).This result has appeared before in [4] using a different approach. In order to

recover the singularity structure corresponding to all the other cycles and the corresponding

chiral primaries, we may have to consider D-terms (similar to equations (3.12) (3.13) with FI

parameters equal to zero ) corresponding to effective U(1) theories describing the splitting

processes [21] (Q1, Q5) → (Q′
1, Q

′
5) + (Q′′

1, Q
′′
5).

We would like to mention that all the chiral primaries have been obtained using the

symmetric product description of the instanton moduli space on T 4. [3]

3.3 The Bound State in the Higgs Phase

Having discussed the moduli space that characterizes the SUSY ground state we can discuss

the fluctuations of the transverse vector multiplet scalars Xm and Ym, m = 1, 2, 3, 4. In the

Higgs phase since 〈Xm〉 = 〈Ym〉 = 0 and χ = χ lies on the surface defined by Eqn. (3.9).

The relevant action of fluctuations in the path integral is,

S =
∑
m

∫
dtdx5(trU(Q5)∂αXm∂

αXm + trU(Q1)∂αYm∂
αYm) +

∫
dtdx5(V2 + V3) (3.11)

We restrict the discussion to the case when Q5 = 1 and Q1 is arbitrary. In this case the

matrix Xm is a real number which we denote by xm.
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χ is a complex column vector with components (Aa′ , Ba′), a′ = 1, ..., Q1. Since we are

looking at the fluctuations of the Ym only to quadratic order in the path integral, the integrals

over the different Ym decouple from each other and we can treat each of them separately.

Let us discuss the fluctuation Y1 and set (Y1)a′b′ = δa′b′y1a′ . Then the potential V3, (3.5)

becomes

V3 =
∑
a′

(|Aa′ |2 + |Ba′ |2)(y1a′ − x1)
2 (3.12)

We will prove that |Aa′|2 + |Ba′ |2 can never vanish if the FI terms are non-zero. In order to

do this let us analyze the complex D-term equation (3.9)

Aa′Bb′ + [N
(1)
1 , N

(1)†
2 ]a′b′ =

ζc
Q1

δa′b′ (3.13)

We can use the complex gauge group GL(C,Q1) to diagonalize the complex matrix N
(1)
1 [31].

Then, the above equation becomes

Aa′Bb′ + (na′ − nb′)(N
(1)†
2 )a′b′ =

ζc
Q1

δa′b′ (3.14)

For a′ 6= b′, this determines the non-diagonal components of N
(1)
2

(N
(1)†
2 )a′b′ = − Aa′Bb′

na′ − nb′
(3.15)

For a = b, we get the equations

Aa′Ba′ =
ζc
Q1

, a′ = 1, .., Q1 (3.16)

which imply that

|Aa′ ||Ba′| = |ζc|
Q1

(3.17)

with the consequence that |Aa′ | and |Ba′| are non-zero for all a′ = 1, .., Q1. This implies that

(|Aa′ |2 + |Ba′ |2) > 0), and hence the fluctuation (y1a′ −x1) is massive. If we change variables

y1a′ → y1a′ +x1, then x1 is the only flat direction. This corresponds to the global translation

of the 5-brane in the x1 direction.

A similar analysis can be done for all the remaining directions m = 2, 3, 4 with identical

conclusions. This shows that a non-zero FI term implies a true bound state of the Q5 = 1,

Q1 = N system. This result was previously presented in [5]. If FI = 0, then there is no
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such guarantee and the system can easily fragment, due to the presence of flat directions in

(Ym)a′b′ .

What the above result says is that when the FI parameters are non-zero the zero mode of

the fields (Ym)a′b′ is massive. If we regard the zero mode as a collective coordinate then the

Hamiltonian of the zero mode has a quadratic potential which agrees with the near horizon

limit of the Liouville potential derived in section 2.3.

The general case with an arbitrary number ofQ1 and Q5 branes seems significantly harder

to prove but we are optimistic.

4 SCFT on the Moduli Space of Non-Commutative

Gauge Theory

Here we briefly explore the possible connection of this work with Non-commutative geometry.

As has been discussed by several authors, the presence of a non-zero BNS in the near horizon

geometry of a D-brane system wrapped on a torus, will modify the boundary conditions of

the open strings along the brane directions. Then, the brane world volume Yang-Mills theory

is substituted by a Yang-Mills theory on the non-commutative torus.

In the D1/D5 system, the configurations which break one half of the supersymmetries of

the 5-brane theory are self-dual connections of this NCYM theory. The moduli space of these

connections with the BNS turned on, will then define a conformally invariant sigma-model.

The N = 4 symmetric product SCFT with c = 6Q1Q5 has been constructed in some

detail and its 20 dim. moduli space can be explicitly constructed in terms of operators of

the SCFT [3]. Of the four operators corresponding to the blowup modes of the orbifold

singularity, 3 correspond to B
(+)
ij , the self dual part of the Bij in the NS sector of the closed

string theory and the remaining one corresponds to the θ parameter.

We wish to propose that this new sigma-model, coming from the noncommutative Yang-

Mills theory, is at some point in the moduli space of the symmetric product SCFT, deformed

by the addition of the four marginal deformations corresponding to the moduli B+
ij and

aC0 + bC4.

After this work was completed we became aware of [32] which has some overlap with this

work.
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A Derivation of (3.10)

We now study the limiting case of M = T ∗CPQ1Q5−1 as ζ → 0. However this seems

presently hard to do and hence we set ζ = 0 in Eqn. (3.9), and explicitly demonstrate that

these equations describe the symmetric product of (Q1Q5 − 1) copies of C2 = C × C where

C denotes the complex plane.

In the following we will, for convenience, use the symbol N for Q1Q5.

Since we are dealing with N U(1) hyper multiplets, it is convenient to denote the

hypermultiplets by Aa, B
+
a , a = 1, · · · , N . Then Eqns. (3.9) become (we have set ζ = 0),

N∑
a=1

(|Aa|2 − |Ba|2) = 0 (A.1a)

N∑
a=1

AaBa = 0 (A.1b)

The hypermultiplets constitute 2N complex, or equivalently 4N real variables. These

variables are not invariant under the U(1) (A has U(1) charge 1 and B has charge −1).

Using (A.1a) and dividing by U(1) leaves us with 4N − 2 real, or 2N − 1 complex variables

which can be parametrized by the 2(N−1)+N = 3N−2 (complex) gauge invariant variables

Pa = AaBa, a = 1, · · · , N

Ma = AaBN , a = 1, · · · , N − 1 (A.2)

Na = BaAN , a = 1, · · · , N − 1

subject to the N − 1 obvious conditions

PaPN = MaNa, a = 1, · · · , N − 1
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Let us now use the complex equation (A.1b), which translates to

N∑
a

Pa = 0

The N constraints involving the 3N − 2 variables P,M,N can be solved in terms of (N − 1)

pairs of complex numbers (ηi, ξi), i = 1, · · · , (N − 1)

Pa = waPN , wN = 1, PN =
N−1∏
i=1

(ηiξi)
1/2

Ma =
√
waNηa

N−1∏
j 6=a

(ηjξj)
1/2 (A.3)

Na =
√
waNξa

N−1∏
j 6=a

(ηjξj)
1/2

This solution is characterized by a point in (N − 1) copies of C2. However there are

identifications which can be characterized in terms of the cycles of the symmetric group

SN . For example consider the action of the largest cycle corresponding to the diagonal

action (ξa, ηa) → ei2πa/N (ξa, ηa) ≡ wa(ξa, ηa) where wN = 1.

It is clear that such a transformation leaves the gauge invariant coordinates Pa, Ma and

Na invariant. Hence the (N − 1) copies of C2 have to be quotiented as follows:

C2 × C2

w
× C2

w2
× · · · C2

wN−1
(A.4)
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