-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by CERN Document Server

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - PS DIVISION

CERN/PS 99-055 (CO)
CERN/SL 99-063 (CO)

The CERN PS/SL Controls Java Application Programming Interface

P. Charrue, J. Cuperus, I. Deloose, F. di Maio, K. Kostro, M. Vanden Eynden
W. Watson *

Abstract

The PS/SL Convergence Project was launched in March 1998. Its objective is to deliver a common controls
infrastructure for the CERN accelerators by year 2001. In the framework of this convergence activity, a project was
launched to develop a Java Application Programming Interface (API) between programs written in the Java language
and the PS and SL accelerator equipment. This Java API was specified and developed in collaboration with TINAF. It
is based on the Java CDEV package that has been extended in order to end up with a CERN/TIJNAF common product.

It implements a detailed model composed of devices organised in named classes that provide a property-based
interface. It supports data subscription and introspection facilities.

The device model is presented and the capabilities of the API are described with syntax examples. The software
architecture is also described.

* Thomas Jefferson National Accelerator Facility, Newport News, Virginia, U.S.A.

Presented at International Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'99), October 4-8, 1999, Trieste, Italy

Geneva, Switzerland
18 October 1999

https://core.ac.uk/display/25269746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THE CERN PS/SL CONTROLS JAVA APPLICATION PROGRAMMING
INTERFACE

P. Charrue, J. Cuperus, I. Deloose, F. Di Maio, K. Kostro, M. Vanden Eynden, CERN, Geneva,
Switzerland
W. Watson, TINAF, Newport News, USA

Abstract monitor), but it may also represent an abstraction of a
control entity (e.g. a ring with associated tune and orbit

The PS/SL Convergence Project was launched mmeasurements). Conceptually, devices hagevice
March 1998. Its objective is to deliver a common controlproperties, which constitute the state of the device. By
infrastructure for the CERN accelerators by year 2001. Igetting the value of a device property the device state can
the framework of this convergence activity, a project walse read. Accordingly, a device can be controlled by
launched to develop a Java Application Programmingetting one of its properties with the required value. For
Interface (API) between programs written in the Javinstance a magnet may have a "current" property. The
language and the PS and SL accelerator equipment. Thistting or setting of this property respectively delivers the
Java APl was specified and developed in collaboratiomctual value of the magnet current or brings the current to
with TINAF. It is based on the Java CDEV [1] packagéhe required level. Although devised independently, this
that has been extended in order to end up with model is very similar to the Java beans model with its
CERN/TJINAF common product. get/set attribute accessors.

It implements a detailed model composed of devices Devices are organised uhevice classeshat describe
organised in named classes that provide a property-baselle device interface namely the available properties and
interface. It supports data subscription and introspectiaheir type. Devices of the same class have the same set of
facilities. properties. Device classes constitute the meta-description

The device model is presented and the capabilities of devices. An example is given in Fig. 1.
the API are described with syntax examples. The software Properties may haveharacteristics such as units,

architecture is also described. resolution, etc. A property's characteristic is either a
single value, common to all members of the same device
1 THE JAVA API PROJECT class, or a reference to another property, which holds the

\éalue. Characteristics may be used to describe the
purpose of a property or to indicate relations between
groperties.

The purpose of the Java API project is to develop
Java package or packages that will provide an interfa
between controls applications written in the Jav
language and the CERN accelerators operated by the PS

or SL divisions. One aspect of this work is to develop a Magnet
language-independent object-oriented model of the

accelerator devices. By moving to this new language in status: int
collaboration, the PS and SL controls groups expect to command: int
eliminate duplication of effort and also to produce a current: double
better product in the process [2]. currentAcq: double

This project is a collaboration between CERN and
TINAF, W.Watson being a member of this project since
its f_Ol_Jndation. At the end of the_specification phase, the 3 THE CAPABILITIES
decision was made to base the implementation on a Java] o
version of the CDEV library provided by TINAF [3]. The Her.e the essential capab|!|t|es_ of the Java API are
Java API in use at CERN is now based on a new versig§scribed. It should be kept in mind that some of these
of the Java CDEV library provided by TINAF and thecapabilities.such as subscription or t.i_rr?e stamping rely on
two laboratories maintain a collaboration on this productth® underlying control system capabilities.

3.1 /O Methods

Figure 1: Sample Properties for a Magnet device

2 THE DEVICE/PROPERTY MODEL

The Java API depends on a device-oriented view of t
control system. In this view the system consists of nam
devices.A device may represent a physical device in the
control system (such as a magnet or a beam position

The 1/0 methods of the device objects implement the
zﬁllowing capabilities:
- getor set a propertygét, sex,
activate or stop the monitoring of a property
(monitorOn, monitorOjf

- execute a named operation accepting inputetwork as well as information about the process, like the

parameters and returning resulier{q cycle description for a cyclical accelerator.
- get or set the reference value of a property As a result, a device is usually linked totiming
(getReference, setReference system Consequently, I/O operations may require some

timing system specific parameters such agde typeor

The CDEV’sData and DataEntry objects are used to anevent identifier. It must also be possible to have the
exchange data. Mata object is a container for one or execution of an 1/0O operation synchronised with a timing
many DataEntry objects that encapsulate data andystems event.
implement conversion methods from the internal data For this purpose, @evice object can be associated
representation to any supported data type (nhumenwith a DeviceContextobject that can be used to specify
values, strings and array$§)ataEntry objects also have a such parameters. The following code fragment illustrates
tag String so that aData object can be composed of how to specify a timing-event as well as a cycle-type that

manyDataEntryobjects with different tags. will control the monitoring of a device.

When an error is detected in the interface library or is DeviceContext ctxt = new DeviceContext();
reported by the underlying control systenDeviceError ctxt.setCycleType(“*CPS.PARTY.PROTON");
object is returned. AeviceError object encapsulates a ctxt.setTimingEvent (“END_CYCLE");

message, a category and a numeric code. It is also a dev.setContext(ctxt);
java.lang.Exceptiombject that can be thrown.

3.2 Synchronous and Asynchronous MethodsS-4 Acquisitions

In addition to values, acquisitions can includénae-
stamp, a Java double (64 bits float) giving the acquisition
time in seconds since the usual Posix origin, angcte-
stamp, a Java long integer (64 bits) used to identify every
executed machine cycle.

All these data are enclosed in the sdba¢a object. In
addition to theDataEntry object(s) returning the value,
there can bdataEntry objects tagged “timeStamp” and
“cycleStamp”.

Synchronous methodsblock the user thread until the
I/0 is completed. They takPata objects as parameters
and returnDeviceError objet on failure. The following
code fragment is an example of a synchronges$
invocation.

Device dev = new Device("BTP.DVT10");

Data = new Data();

DeviceError err;

err = dev.get(“CurrentAcq”, data);

if (err 1= null) throw err; // simplest usage 3.5 Device and Device Class Discovery

double acqCurrent = data.getDoubleValue(); o]
In most cases the application program knows which

Asynchronous methodsdo_not block the user threa_d_ properties are supported by a device class, what is the
and a separate thread _W|II execute a user-specifig@tive type of the property, etc. But there is a class of
method when the 1/O is completed. Asynchronougyograms like generic displays and browsers, which need
methods are based on the Java event model and §i&jice class information to construct their 1/0 requests.
essential to exploit the power of Java. They require fhjs information is made available through the directory
class implementing thdeviceListenerinterface as a geryice, which also fulfils the role of naming service and
parameter. The DevicelListener interface defines a geyice querying engine.

deviceChanged method, which allows receiving |nformation about devices includes their parameters,
DeviceEventobjects. ADeviceEvenbbject provides the e timing system they belong to and their relation to
information about the completion of an I/O operationyher devices. Information about the device classes
including theData or DeviceError theDeviceand all the ncjydes properties and their attributes and characteristics.
/O parameters. This information is provided by means of dedicated

The following code fragment illustrates theclasses, such asDeviceData DeviceClass and
implementation of a class to receive a magnet’s current. DevicePropertywhich are described in [4].

class MagCurrentHandler implements DeviceListener {

void deviceChanged (DeviceEvent event) { 4 THE SOFTWARE ARCHITECTURE
String devName = event.getDevice.getName();
double acq_current = 4.1 The core CDEV part

event.getValue().getDoubleValue();
Many CDEV concepts map directly the CERN
requirements: the device concept, asynchronous I1/O,
3.3 Timing System Support connectivity to different control systems and support for
publish/subscribe. As a result, the project team decided to
Many parts of the CERN accelerators are controlled hyse the CDEV’s Java development for the CERN Java
a timing system, which sends events on a dedicateg| implementation.

A new version of the CDEV’s Java implementationbut did not require new server tasks in the front-end
was designed and has been provided by TINAF. It offecomputers. It is also worth mentioning that JNI
a better connectivity to local control systems, an extendewnnections to C libraries that are not thread-safe impose
support for property based /0 and it allows extensiothe usage of semaphores that reduce parallelism.
with a directory service. The public interface has also The 3-tier architecture shall also be used in the future.
been reviewed in order, for instance, to introduce evefithis comes from two major constraints: a) it became clear
listeners and error objects that have been mentionéuht the Java code running in the client’s virtual machine
above. must be reduced in order to cope with performance

The software architecture is illustrated in Fig.2. Thdimitation on some platforms, b) the equipment server
core CDEV part includes the interfaces that define thisks are running on real-time systems where resources
capabilities, which are implemented by the directorgre limited. The current CDEV Java distribution includes

service and by the I/O services. an 1/O service that can communicate with EPICS and all

other CDEV C++ supported systems in a 3-tier

CDEV architecture. At CERN, a dedicated PS/SL convergence

sub-project is working on a new middleware architecture.
Directory 10 For now, prototypes have been made using home-made

Service Service protocols, RMI or CORBA.
. . . 5 CONCLUSIONS
Configuration Equipment

Data Server The primary goal of the Java API project was to deliver

a common APl for PS and SL controls as a major

Figure 2: Software Architecture component of a common architecture. The results of this

. . project are 1) a common model, 2) a common API| based

4.2 The directory service on CDEV, 3) a common configuration management

The directory service, described in detail in [4] is ad@cility. These products are a good base for a common
addition to the original CDEV implementation, whichSoftware architecture and will certainly evolve.
adds all capabilities that rely on configuration data, such 1€ collaboration with TINAF is very valuable in this
as the discovery of devices and device classes. ocess and up to now a strong collaboration is
directory service is used at CERN but it is still possible tg'@intained. CERN and TINAF use the same CDEV
use CDEV without such a service. version. Each site had to introduce local extensions but by

The CERN 1/O services also use the directory servicg®ntinuous communications and regular merges, we
to set up their device calls. This includes getting tht@yed on the same track. |
network parameters of the devices and checking whetherS0Me Java applications that use this API have already
the properties are implemented for the device and whigen delivered to operators. In the process of producing

their attributes are. Java application, we have now two aspects to cover. The
first one is to have an enhanced communication
4.3 The 1/O services infrastructure that will allow reducing the weight of the

An 1/0 ice impl ts th i ith th client part. The second one is to provide programmers
n service 1mplements the connection wi Suith high-level components that will facilitate the

underlying control system. There can be many varlangroduction of application software. There is hope for

Ia}gdsgl;/\(/)iccélsstlnct devices may be served by two distin haring such components with TINAF and other CDEV

. . . ._users
There are two possible architectures for implementing

an 1/O service. In a 2-tier architecture, the Java process

has a direct connection to the front-end server tasks. Ina 6 REFERENCES)

3-tier architecture, the Java process connects to a middld Jie Chen, Graham Heyes, Walt Akers, Danjin Wu and

tier server that communicates with local equipment William Watson Ill, "CDEV: An Object-Oriented

servers. Class Library for Developing Device Control
The 2-tier architecture is simpler to implement and is éﬂpl'cat'OBSS’A I;rocet:)edlzrégsN Ofa 1@A5LEP§7S 95,

the more efficient one for synchronous I/O (blockin |§ago, ~>.A. October29-Nov. 3, o POl

calls). The first CERN implementations of the API ar 2] http://hpslweb.cern.ch/pssl/projects/javapi/javapi.html

. . . CERN PS/SL Java API Project home page.
based on this architecture: a JNI connection to C/C]http://www.jlab.or\gl)/cdev/- CJDEV homef)pgge
libraries is used for communicating with the sz J. Cuperus, P. Charrue, F. Di Maio, K. Kostro and W.
accelerator devices while a Java RPC package (SUN \atson, “A Directory Service for the CERN PS/SL
protocol) is used for the SL accelerator devices. The first java Programming Interface”, this Conference.

solution is not “pure Java” (native libraries are required)

