
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - PS DIVISION

CERN/PS 99-053 (CO)
CERN/SL 99-062 (CO)

A Directory Service for the CERN PS/SL Java Programming Interface

P. Charrue, J. Cuperus, F. di Maio, K. Kostro
W. Watson *

Abstract

The CERN PS and SL accelerator control groups developed a common application programming interface (API) in
Java [1]. Part of this API is a directory service that provides information about the underlying hardware and software.
With this information it is possible to write generic programs that do general actions on lists of devices without hard
coding of device names. And, starting from a device name, full details about related devices, the device itself and its
class and properties, can be obtained, including the meaning of bits and bit patterns in status words. The interface
definition is independent of any implementation but a reference implementation is provided using Java Database
Connectivity (JDBC) against a set of tables in a relational database. Data from very different systems can be brought
together and presented in a uniform way to the user. The full potential of the directory service is reached when it is
used in software components (Java Beans).

* Thomas Jefferson National Accelerator Facility, Newport News, Virginia, U.S.A.

Presented at International Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS'99), October 4-8, 1999, Trieste, Italy

Geneva, Switzerland
18 October 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25269744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A DIRECTORY SERVICE FOR THE CERN PS/SL JAVA PROGRAMMING
INTERFACE

P. Charrue, J.Cuperus, F. Di Maio, K. Kostro, CERN, Geneva, Switzerland;
W. Watson, TJNAF, Newport News, USA

Abstract
The CERN PS and SL accelerator control groups
developed a common application programming interface
(API) in Java [1]. Part of this API is a directory service
that provides information about the underlying hardware
and software. With this information it is possible to write
generic programs that do general actions on lists of
devices without hard coding of device names. And,
starting from a device name, full details about related
devices, the device itself and its class and properties, can
be obtained, including the meaning of bits and
bitpatterns in status words. The interface definition is
independent of any implementation but a reference
implementation is provided using Java Database
Connectivity (JDBC) against a set of tables in a
relational database. Data from very different systems can
be brought together and presented in a uniform way to
the user. The full potential of the directory service is
reached when it is used in software components (Java
Beans).

1 INTRODUCTION
The Java programmer (the user) sees the accelerator
devices through an input/output service [1] that is object
oriented in the sense that it calls methods for device
classes but it has a narrow interface, meaning that there
is a single interface for all classes. Such an interface is
well adapted to generic programming but it is not
possible to do introspection through it in the Java sense.
Anyway, the user should have access to more
information about the details of accelerator devices, the
properties of their classes, and the relations between
devices, than would be possible by introspection of Java
classes. To bring this information to the user, the

directory service was made (fig.1).

 This service consists of an interface definition that is
independent of any implementation plus an
implementation that is adapted to the available data. We
will first describe the capabilities of the interface.

2 THE DIRECTORY INTERFACE
The directory interface is shown on fig.2.

Before doing anything else, the user must get a reference
to the DirectoryService singleton object with:

dir = DirServiceImplementation.getService();

After this, the user sees only the interface, not the
implementation. Having not yet acquired any specific
DirectoryItem objects, the user starts with a call to
DirectoryService like:

object = dir.getSomething(myString);

where myString is an identifier or a query, and object is
a name, or a DirectoryItem object, or an array of these.
The form of a valid query is implementation dependent.
In our implementation, it is a SQL query against the
underlying relational tables: “devicename like ‘BR3%’ ”
or: “classname=’POW’ and accelerator=’PSB’ ”. Where
this dependence is undesirable, avoid queries in favour of

Application Program

CDEV

I/O Service

Directory
Service

Accelerator Devices

Figure 1 : I/O service and directory service

Database

Figure 2: The directory service interface consists
of two main parts: the DirectoryService class that
can return a DirectoryItem object when given an
Identifier and the DirectoryItem interface, and 7
interfaces that extend it, that return detailed
information about the object

DirectoryService
{abstract}

<<interface>>
DirectoryItem

equals()
getDescription()
getInfo()
getInfoLines()
getInfoWidth()
getName()
getServiceName()
toString();

<<interface>>
DeviceClass

<<interface>>
DeviceProperty

<<interface>>
BitPatternDefinition

<<interface>>
DeviceMessage

more specific identifiers. Suppose now that the user gets
a DirectoryItem object like:

DeviceData dd = dir.getDeviceData(“BR1.QNO”);

The user can now get detailed information from this
object with calls like:

DeviceClass class = dd.getDeviceClass().

2.1 DirectoryItem Interfaces

Once the user has obtained a reference to a
DirectoryItem object from the DirectoryService interface,
he can get further information about these objects
through the interfaces that extend the DirectoryItem
interface:

• DirectoryItem: defines some basic methods,
extended by all following interfaces. The getInfo
method returns a text object with summary
information for browsers, help facilities, and bean
editors.

• DeviceClass: to get all properties for the class or an
ordered named subset of the properties. Classes may
be organised with multiple inheritance and abstract
classes.

• DeviceProperty: to get the attributes (type, dim, ...)
and characteristics (min, max, format, units, ...) of
the property. The characteristics may return either a
value or a property for obtaining the value through
the device access interface.

• DeviceData: to get values for accelerator device
variables. Some of these variables are mandatory
(such as the device class) and others are specific for
the implementation. Dependence on other devices is
obtainable through ‘role’ queries.

• DeviceGroup: to get the composition (title, devices,
properties) for the named device group.

• GroupList: to get the DeviceGroups that make up
the named list. A generic program can acquire a
GroupList to get the set of devices it has to work on.

• DeviceMessage: to get the attributes (category,
number, severity) and text parts (label, short text,
long text) of the message. All kinds of messages,
including error messages, labels, and help
information, are possible.

• BitPatternDefinition: to get the meaning of bits, or
groups of bits, in a binary word. The data for each
bit, or bit pattern, are in the form of a
DeviceMessage. In its simplest form, this reduces to
a correspondence between integers and strings but
considerably more complex patterns are possible.

2.2 Exceptions

Provisions must be made in case something goes wrong.
Almost every call can throw a DataNotFoundException
with subclasses:
- BadConnectionException,

- BadQueryException,
- NoSuchDataException,
- TooManyValuesException.

Handling exceptions in the application program is a lot
of work but, as explained later, the application program
will access the directory service mainly through
components. It is these components that will do most of
the exception handling and recovery.

3 IMPLEMENTATION WITH JDBC
Access to the implementation is through the singleton
object of DirServiceImplementation. This object
delegates all database access to the appropriate
implementations of the DirectoryItem interfaces. Several
sets of implementations of the DirectoryItem interfaces
can coexist for different parts of the installation. Few
installations will have complete data for all methods of
the interface. In case of missing data, a suitable default
value must be returned or else the NoSuchDataException
must be thrown. Caching of certain data in hash tables is
optional and objects returned by two identical queries
must contain the same information but are not

necessarily the same objects.

For the CERN accelerators, there is a single
implementation, based on relational database access
through JDBC (fig.3). A group of 10 database tables,
dedicated to the directory service, covers all the data.
Updating these tables from source data is done with
scripts using transactions so that all data remain
available to JDBC at all times in a coherent form. The
source data, and the scripts, are different for the
accelerators of the PS injector complex and those of the
SL complex but the directory service provides a unified
view of those two sites. A large part of the source data
existed already, before the directory service project
started (see [2] for the PS complex), but some data

Directory Service Interface

Directory Service Implementation

JDBC

PS
update
script

Dedicated
tables in a
relational
database

PS
source
data

SL
update
script

SL
source
data

Figure 3: Directory Service Implementation

Figure 4: A simple data
browser

structures were modified and forms were used to fill
missing data by hand.

4 APPLICATION COMPONENTS
The application programmer will normally work with
components (Java beans) and will not see the directory
service directly. The data in the directory service can be
used to initialise, or configure, the components. An
example is a component that displays I/O values for
selected devices and properties. All configuration data
can come from a DeviceGroup object. Scale factors,
formats, units, min and max values, can be automatically
extracted from the directory service.

Well designed components are extremely important and
their easy implementation is the main reason for using
the Java language. The close collaboration between
components and the directory service needs to be stressed
but only the DirQuery bean, which is directly related to
the directory service, will be described here.

4.1 DirQuery Bean

The application programmer may occasionally want to
see the directory service more directly while still
working exclusively with components. An example is the
simple data browser shown in fig.4. For these purposes,
the DirQuery bean was made (fig.5).

The DirQuery objects receive one main DataEvent and,
for some queries, an auxiliary DataEvent. The real input
parameters for the query are:

dataEvent.getData().toString;

The main event will start a directory service query with
these parameters and according to the query type. The
possible query types are given by final int variables with
names like:

CLASSNAME_DEVICENAMES
CLASSNAME_PROPERTIES . . .

The first part of the name indicates the input and the
second part the output. Twenty query types cover most of
the directory service.

Title:
xxx.eps
Creator:
xwpick Version 2.21 Rev: 20/04/95 - by Evgeni Chernyaev
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

5 BEAN CUSTOMISERS
A graphical design tool will introspect your bean and use
its default so called customiser to present the designer
with a GUI editor. The designer can use this customiser
to set the configurable parameters of the bean to his
needs. This customiser will look different in each design
tool and will give only minimal help to the designer.

An accelerator control system will have a limited set of
highly specialised beans and it is worthwhile to make a
dedicated customiser for each of them, even if this may
mean more work than designing the bean in the first
place. This dedicated customiser can make heavy use of
the directory interface for presenting the user on demand
with valid options and useful context information.

6 CONCLUSIONS
The Directory Service is an essential complement to the
Java equipment access API and permits generic
programming. The full potential of the Java API is
realised when used in Java beans for accelerator control
systems, both in the hidden inner workings of these
beans and in dedicated customisers. In that case, the user
can concentrate on what he wants to obtain without
bothering with the details of the interfaces or the brand
of the design tool. Further effort should go into
producing an effective set of such beans and their
customisers.

REFERENCES

[1] F.Di Maio, P.Charrue, J.Cuperus, I.Deloose,
K.Kostro, M.VandenEynden, W.Watson, The CERN
PS/SL Application Programming Interface, this
conference.

[2] J.Cuperus, M.Lelaizant, Integration of a Relational
Database in the CERN PS Control System,
ICALEPCS-97, November 1997, IHEP, Beijing,
China.

DirQuery

receiveData1(:DataEvent)
receiveData2(:DataEvent)
addDataEventListener(:object)
removeDataEventListener(:object)
getQueryType()
setQueryType(:int)

DataEvent 1&2

DataEven
t

 Figure 5: DirQuery bean events &
methods

