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Abstract

The project ALPHA++ of the ALEPH collaboration is presented. The ALEPH data have been
converted from Fortran data structures (BOS banks) into C++ objects and stored in an object
database (Objectivity/DB), using tools provided by the RD45 collaboration and the LHC++
software project at CERN. A description of the database setup and of a preliminary version of an
object oriented analysis program (C++) is given.
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1 Introduction

Object oriented (OO) programming is becoming the new paradigm for software development in
high energy physics, in particular in view of the upcoming, very demanding LHC project and its
experiments. In order to provide an analysis platform and OO application software, the LHC++
project has been set up at CERN [1]. Furthermore, commercial products for the storage of
persistent objects in so called object databases are being evaluated by the RD45 collaboration [2].
The current candidate for a large scale application at CERN is Objectivity/DB [3].

In ALEPH a project called ALPHA++ [4] has been set up, with the following goals :

• convert the ALEPH data from a Fortran (BOS [5]) bank style into persistent objects and
write them to an object database (Objectivity/DB)

• rewrite a mini-version of the ALEPH analysis package ALPHA [6] in an object oriented
computing language (C++), based on the object database.

• compare the standard and OO performance with regard to the efficient access of the data
and their manipulation.

• test the software engineered by the RD45 and LHC++ projects.

• provide input and experience for a possible archiving of ALEPH data.

• give an opportunity to learn OO analysis, design and programming.

In this report we present the structure of the ALEPH object database and a preliminary version
of the analysis program.

2 The ALEPH data structure and its conversion to objects

ALEPH uses the Fortran based BOS system for the memory management. The event data are
kept in memory in a large array which is globally accessible as a common block. The data are
organized in so called banks, and the data definition language (DDL) for these banks is provided
by ADAMO [7]. The ADAMO package offers a conversion to C header files, which facilitates the
automatic conversion of the ALEPH DDL to C++ classes, or to be more precise, to the ddl-files
needed for the setup of an Objectivity/DB database. It has been decided to perform a one-to-one
conversion of all the relevant banks stored on an ALEPH DST (data summary tape), which can
be read by the analysis program ALPHA. A simple C++ tool has been developed which allows
for the automatic conversion of the ADAMO DDL of all 173 relevant banks into C++ classes. An
example of the correspondence between the ADAMO description of the track bank FRFT and its
C++ implementation is given in Fig. 1.

The general DDL structure as implemented in the Objectivity database is outlined in Fig. 2.
A class AlephBank serves as a base class for all the ALEPH banks. Persistency is obtained by
inheritance from the Objectivity class ooObj. The class AlephBank stores the name of each bank,
and defines the interface for the reading from and writing to memory of the bank contents. Each
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ADAMO DDL

FRFT
: ’Global Geometrical track FiT

NR=0.(JUL)\
Number of words/track\
Number of tracks’

STATIC
= (InverseRadi = REAL [*,*],

TanLambda = REAL [*,*],
Phi0 = REAL [0.,6.3],
D0 = REAL [-180.,180.],
Z0 = REAL [-220.,220.],
Alpha = REAL [-3.15,3.15],
EcovarM(21) = REAL [*,*],
Chis2 = REAL [0.,*],
numDegFree = INTE [0,63],
nopt = INTE [0,149]

);

C++ CLASS

class FRFT {
public:
// default constructor
FRFT() {}

float InverseRadi;
float TanLambda;
float Phi0;
float D0;
float Z0;
float Alpha;
float EcovarM[21];
float Chis2;
int numDegFree;
int nopt;

};

Figure 1: Correspondence between the ADAMO description of the track bank FRFT and its C++
implementation.

ALEPH bank is implemented as a class NAME Bank, where NAME is the BOS name of the
bank, such as FRFT. This class NAME Bank contains a variable length vector NAME Table, the
elements of which are objects of the class NAME obtained from the conversion of the ADAMO
DDL into a C++ class. For example, the elements of the vector FRFT Table are the FRFT
objects (tracks) of a given event. NAME Bank also has the specific implementation of the read
and write methods for the memory access.

3 The ALEPH object database

The database structure of the ALEPH object database is reproduced in Fig. 3. At the basis there
is a federated database called ALEPHDB, which contains several databases. These databases
either contain real data from different data taking periods with or without pre-classification of
events, or Monte Carlo events from fully simulated hadronic Z decays.

Every database has a container holding Run objects. These objects store the run number and
have bi-directional links to all the event objects of the corresponding run and to banks which store
global run condition data. Furthermore, for every run there is a container with the event objects
of this run and an additional container with all the bank objects per run. The event objects store
the event number and the classification bit of the event, and have bi-directional links to all the
banks of the event.

At the moment about eight Gbyte of real and Monte Carlo data are stored in the federated
database. In the following some examples are given. A database which contains 5 runs, 19773
events without preselection and a total of 374686 banks, has a size of 234.3 Mbytes. The operation
of the Objectivity tool ootidy reduces this by 5% to 221.2 Mbytes. The size of the corresponding
EPIO file where the BOS banks are stored is 186.2 Mbytes. The overhead arises mainly from the
relationships which are stored in the object database. A high page density of 99.8% is achieved.
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AlephBank

void setname(char* name)

int LoadFromMem(int* p)

char*4 _bankname

ooVarray(NAME) NAME_Table

int LoadFromMem(int* p)

NAME_Bank NAME
float InverseRadi;
float TanLambda;
float phi0;
….

ooObj

NAME=FRFT
=FRTL
= . . . .

Figure 2: The DDL structure of the ALEPH object database

Another database of 19 runs, 5000 events classified as hadronic events and 1204362 banks, has
a size of 763.4 Mbytes, whereas a database with 5000 simulated hadronic events is of similar size,
containing 883047 banks.

For the moment two simple C++ programs exist for the reading and writing of the databases.
In the reading case, a loop over all run, event and bank objects is performed, using the iterators
over the bi-directional links, and for every bank in the loop its method is called which copies the
bank contents into memory in order to restore the BOS common. This allows for the application
of the standard Fortran based analysis program ALPHA as well as for the event display program
to be used. The banks stored in the memory are also the starting point for an object oriented
analysis program which is described in the next section.

4 The Analysis Program

The ALPHA++ analysis program is based on the structure of ALPHA. Two basic objects are
defined: the Tracks and the Vertices.

A Track can be a charged track reconstructed in the TPC, a photon identified in the ECAL
or a general Energy Flow Object. The common attributes of a Track are: the total momentum
with its components, the energy, the mass and the charge. A Track can also have more specific
attributes depending if it is a charged track, a photon or an Energy Flow Object.

The previously described structure has been implemented in ALPHA++ with an abstract class
AlObject (Figure 4), with the common attributes of a Track defined as purely virtual member
functions. The concrete transient classes Altrack (charged tracks), AlEflw (Energy Flow) and
AlGamp (photons) are defined by inheritance from AlObject (Figure 5).

The same principles apply also to the definition of the Vertices (Figure 4). There is an abstract
class AlVertex with the basic attributes, and two concrete transient classes AlMainVertex, holding
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Figure 3: The database structure of the ALEPH object database.

the position of the interaction point, and AlGenVertex for the secondary vertices found by the
reconstruction program (Figure 6).

The implementation of the previously mentioned transient classes in ALPHA++ makes use of
the ALPHA internal banks QVEC (containing the Tracks) and QVRT (containing the Vertices).
This is done in the following steps:

• For each event the relevant persistent classes from the Objectivity database are read and
the corresponding BOS banks in the Fortran BOS common are filled;

• the Fortran subroutines which starting from the BOS banks construct the internal QVEC
and QVRT data structures are called from C++;

• the concrete C++ classes (such as AlTrack, AlMainVertex etc.) are instantiated using the
data contained in QVEC and QVRT;

• for each event the transient class AlphaBanks containing all the instances of the previous
classes and giving access to them through member functions is instantiated.

A complete class diagram of the analysis program is shown in Fig. 7. The choice to call Fortran
from C++ in the analysis program is due to the fact that there are many algorithms in ALPHA
which, on a short time scale, are not possible to develop in C++. Therefore our strategy is to
have a “Fortran wrapped” analysis program already working and to use it as a basis to develop
new C++ code and algorithms.

5 Conclusions

A project called ALPHA++ has been set up within the ALEPH experiment in order to test
new object oriented approaches to data storage and analysis. The data definition language, the
structure of the object database as well as a preliminary version of an object oriented analysis
program have been presented. Future work will concentrate on the further development of this
analysis program as well as on detailed performance studies.
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classAlObject {

public:

~AlObject();
virtual float QP() = 0;

virtual float QX() = 0;

virtual float QY() = 0;

virtual float QZ() = 0;

virtual float QE() = 0;

virtual float QM() = 0;

virtual float QCH() = 0;

};

classAlVertex {

public:

~AlVertex();
virtual float VXposition() = 0;

virtual float VYposition() = 0;

virtual float VZposition() = 0;

virtual int Vertex_number() = 0;

virtual int Vertex_type() = 0;

virtual float ChiSquareFit() = 0;

virtual float* CovMatrix() = 0; //
pointer to covariance matrix

};

Figure 4: The AlObject and AlVertex abstract classes interface

AlObject AlTrack

AlEflw AlGamp

Figure 5: The AlObject inheritance structure

AlVertex
AlMainVertex

AlGenVertex

Figure 6: The AlVertex inheritance structure
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AlObject

QP()
QX()
QY()
QZ()
QE()
QM()
QCH()
TYPE()

AlVertex

TYPE()
QVX()
QVY()
QVZ()
KVN()
KVTYPE()
QVCHIF()
QVEM()

FRTL_ALPHA

QVEC_ALPHA

QvecBase

QVRT_ALPHA
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AlTrack
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1

−frtl

0..1

1

AlEflw
AlGamp

AlMainVertex AlGenVertex

QVEC

0..1

1

−qve
0..1

1 0..1
1

#q

0..1
1

QVRT

0..1

1

−qvr 0..1

1

0..11

#q

0..11

AlphaBanks
AlphaBanks()
~AlphaBanks()
Eflw()
Gampec()
MainVertex()
GenVertex()
NTrack()
NEflw()
NGampec()
NGen_Vertex()
Track()

0..1

1

0..1

−tr

1

0..1

1

0..1

−ef

1

0..1

1

0..1

−g

1

0..1

1

0..1

1

0..1

1

0..1

−ge

1

0..1

1

0..1

−qv

1

0..1

1

0..1 −qvr

1

Figure 7: ALPHA++ analysis program class diagram (reverse engineered). The vertex related
classes are on the left side, the track related classes are on the right side. The class AlphaBanks
acts as a container for the previous classes.
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