
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
European Laboratory for Particle Physics

Large Hadron Collider Project LHC Project Report 308

Second order chromaticity correction of LHC V6.0 at collision

Stéphane Fartoukh∗

Abstract

The low-β triplets of the LHC induce strong chromatic aberrations in collision. The most spectacular
one is a large second order chromaticityQ′′ which can reach 60’000 units in the ultimate configuration
(for protons) where the betatron functions are squeezed toβ∗ = 0.25 m in IP1 and IP5. This effect is
accompanied by an off-momentumβ-beatingβ′(s) ≡ (

∂β/∂δ
)
(s) all around the ring which has to be

carefully controlled at the level of the LHC inner triplets for mechanical aperture reasons. Two different
correction strategies are discussed. The first one consists in constraining the betatron phase advances
between the different collision points of the machine. It is found to be very efficient in the configuration
where only IR1 and IR5 are tuned and is made possible by the relatively large tunability of IR4 and IR6.
In the case of three IP’s (i.e.β∗ = 0.5 m in IP1, IP2 & IP5 in the nominal configuration for ions), the
conditions required are difficult to obtain due to the lack of tunability of the insertion IR2. The second
option is based on the use of several sextupole families, at least two per transverse plane, in order to
correct the linear chromaticityQ′, cancelQ′′ and, at the same time, reduce to an acceptable level the off-
momentumβ-beating in the LHC inner triplets. As shown by the results obtained for the LHC Version
6.0 for different tune splits (∆Q = 4 or 5) and different configurations (two or three IP’s), this option
seems to be less constraining than the previous one. Nevertheless, the use of sextupole families remains
well-suited to LHC as long as the arc cells have phase advances close to90◦ and is found to be inefficient
for too large tune splits as∆Q = 7.
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Introduction and motivation

The compensation of the chromatic aberrations arising from low-β insertions of a large
storage ring is an old problem for which two different types of solution can be proposed:

• Option I: the careful adjustment of the betatron phase advances between IP’s.

• Option II: the use of several sextupole families, more than one per transverse plane,
which was the choice of LEP [1].

The first option was tried out for the LHC Version 5 [2] in the case where only two inser-
tions, IR1 and IR5, were tuned in collision mode. The formula for Q′′ given in this note is
incomplete but however leads to the well-known condition which is to space the two IP’s
by π/2 + kπ (k integer) in betatron phase. As shown in [2], this condition can be fulfilled
by a careful re-matching of IR4 and IR6. On the other hand, the phase conditions required
in the case of three low-β insertions (for instance β∗ = 0.5 m in IP1, IP2 and IP5) have
not been discussed.
The use of two sextupole families per plane (Option II) was successfully implemented in
LHC Version 4.1 [3] in order to correct the second order chromaticity induced at collision.
Knowing that the efficiency of this correction depends strongly on the phase advance in
the arc cells and then on the tune split (which was zero in Version 4), this study has to be
repeated with the present lattice of the LHC and different optics.
The purpose of this report is to review the feasibility of these two correction methods for
the LHC Version 6.0.
We will begin by specifying some acceptability criteria concerning the chromatic aberra-
tions of the LHC at collision (Chapter 1). The latter will be defined, on the one hand, by
imposing some limits on the variations of the optical functions Q(δ) and β∗(δ) over the
natural momentum spread of the beam; on the other hand, they will be chosen according
to the ability to accelerate and decelerate safely the beam in a relevant momentum range
for linear chromaticity measurements at collision (Section 1.1). These criteria will then
be expressed in terms of tolerances on Q′′, Q′′′, β∗′ ≡ ∂β∗/∂δ and β∗′′ ≡ ∂2β∗/∂δ2 (Sec-
tion 1.2). After compensation of the linear chromaticity Q′, simulation results performed
with MAD [4] on different collision optics of LHC Version 6.0 will show that, among these
four quantities, only Q′′ and β∗′

require a correction (Section 1.3).
In order to clarify the problem, the latter will be computed analytically in Chapter 2 by a
simple use of the R-matrix formalism.
Starting from these analytic expressions, the strategy consisting in correcting Q′′ by phas-
ing the IP’s will be reviewed for LHC Version 6.0 (Chapter 3). In the case of three low-β
insertions (IP1, IP2 and IP5), this option will be found too constraining.
By using the 4×8 = 32 sextupole families per ring foreseen in the LHC lattice Version
6.0, the second option will be tested out on some collision optics available in the data
base1 (Chapter 4). The obtained results will show that, even after correction of Q′, Q′′

1Tune split of 4, 5 or 7; IP1, IP2 and IP5 with β∗ = 0.5 m; IP1 and IP5 with β∗ = 0.25 m.
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and β∗′
, the available safety margin on the sextupole gradients remains quite reasonable

(close to 20%). Nevertheless, this method will be found inefficient for a tune split of 7
because the phase advances per arc cell are then too far from 90◦.

1 Chromatic aberrations due to the low-β triplets at

collision: acceptability criteria and tolerances

1.1 Momentum window at collision and acceptability criteria for

chromatic aberrations

We begin by defining some acceptability criteria concerning the chromatic aberrations
of the LHC at top energy. For that purpose, we will consider requirements of different
nature, all related to the chromatic behaviour of the optical functions Q(δ) and β∗(δ) over
a given energy range. In order to define this range, we must consider both the natural
momentum spread of the beam at collision, and a minimal momentum window which must
be accessible under nominal conditions for the measurement of the linear chromaticity
after the β-squeeze:

• the relative energy spread (RMS) of the beam at collision is about σδ ' 0.11× 10−3

(0.111× 10−3 for the protons and 0.114× 10−3 for the ions 208Pb82+ [5]). Over the
range ±2σδ, the average chromatic detuning of the beam (due to Q′′), as well as
the tune ripple (due to Q′′ and Q′′′) sampling by the non-synchronous particles has
to be minimised. On the other hand, in order to preserve the performance of the
machine, the chromatic variation of the β function at the IP’s has to be carefully
controlled. As shown in the next section, this does only constrain the value of the
second derivative of β∗ with respect to the energy noted β∗′′

. The criterion used to
fix the tolerance on β∗′

is given hereafter.

• it is estimated that a good accuracy on the linear chromaticity measurement is
reached by fitting the points obtained in a window defined by δ = ±5× 10−4. In-
deed, at both extremities of this window, the tune shift induced by a Q′ of 2 units
(which is the nominal value chosen for LHC) is equal to ±10−3, which is sufficient
assuming an absolute resolution of 10−4 for the tune-metre. In order to avoid the
head-tail instability of the off-momentum beam, the slope of the function Q(δ) must
remain positive over the whole range [−5×10−4 , 5×10−4], which, obviously, imposes
a second constraint on the non-linear chromaticities Q′′ and Q′′′. The changes with
momentum of the β-functions must also been controlled, especially at the level of
the inner triplets, in order not to introduce additional aperture limitations. As we
will see in Chapter 2, the relative off-momentum β-beating, i.e. 1/β (∂β/∂δ), oscil-
lates with twice the betatron phase all along the machine; since the inner triplets
are spaced from the interaction point by ±π/2 in phase, this last requirement fixes
automatically an upper bounds on the value of the chromatic functions β∗′

/β∗ at
the IP’s.
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1.2 Tolerances

Chromatic aberrations Tolerances at collision

First derivative of β∗ with respect to the energy −200 < β∗′
/β∗ < 200

Second derivative of β∗ with respect to the energy −5× 105 < β∗′′
/β∗ < 5× 105

Second order chromaticity −2000 < Q′′ < 2000
Third order chromaticity −0.8 × 107 < Q′′′ < 5× 107

Table 1: Tolerances on the chromatic aberrations of the LHC at collision. The lower limit
given for Q′′′ can be multiplied by two if Q′′ is fully corrected.

We start from the following simple equations

Q(δ) = Q0 + Q′δ +
1

2
Q′′δ2 +

1

6
Q′′′δ3 + · · · , (1)

∆β∗(δ)
β∗ =

β∗′

β∗ δ +
1

2

β∗′′

β∗ δ2 + · · · , (2)

∆σ∗

σ∗ =

s
1 +

1

2

β∗′′

β∗ σ2
δ + · · · − 1 =

1

4

β∗′′

β∗ σ2
δ + · · · , (3)

where σ∗ denotes the beam spot-size in collision (on-momentum beam) at a given IP. We
can now deduce from the previous criteria the tolerances on Q′′, Q′′′, (β∗′

/β∗) and (β∗′′
/β∗)

(see also Table 1).

• Ability to measure the linear chromaticity. In order to avoid a head-tail instability of
the beam during the measurement of Q′, the function Q′(δ)=2 + Q′′δ + Q′′′δ2/2 + · · ·
must remain positive in the energy range defined by −5× 10−4 ≤ δ ≤ 5× 10−4. This
requirement can be replaced by the more restrictive condition:

Q′′δ > −1 and Q′′′δ2/2 > −1 for δ = ±5 × 10−4 ⇒ |Q′′| < 2000 and Q′′′ > −8× 106 .
(4)

Nevertheless, if Q′′ is fully corrected, the tolerance on Q′′′ can be doubled, i.e.

Q′′′ > −1.6× 107 . (5)

In the inner triplets, on both sides of a given IP, the relative change with momentum
of the β function, (∆β/β)Triplet ' ±β∗′

δ/β∗ (−5 × 10−4 ≤ δ ≤ 5 × 10−4), must stay
within its uncertainty due to linear optics errors, say lower than 10%, leading to����β∗′

β∗

���� < 200 . (6)
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• Tune ripple and performance. Due to the non-linear chromaticities Q′′ and Q′′′,
the non-synchronous particles sample a tune ripple at one, two or three times the
synchrotron frequency Ωs, i.e. below 100 Hz. In this low frequency range, the ripple
amplitude has to be carefully controlled at the level of a few 10−5 in order to preserve
the beam life-time [6]. For a particle belonging to the core of the (on-momentum)
beam, say δ = σδ, this condition yields

|Q′′| σ2
δ/2 <∼ 10−5 and |Q′′′|σ3

δ/6 <∼ 10−5 ⇒ |Q′′| < 2000 and |Q′′′| < 5× 107 . (7)

Finally, by imposing to the relative luminosity loss to be less than a few per mil, we
obtain (see Eq. (3)) ����∆σ∗

σ∗

���� <∼ 10−3 ⇒
����β∗′′

β∗

���� < 5× 105 . (8)

1.3 MAD calculation on LHC lattice version 6.0 for different
optics

In order to demonstrate that the correction of chromatic aberrations of the LHC is im-
perative after (or/and during) the β-squeeze, the values of Q′′, Q′′′, β∗′

and β∗′′
have been

computed with MAD [4] for different collision optics of the LHC lattice Version 6.0 (Ring-1,
Tune split of 4, 5 and 7) and for different tunings of the low-β insertions IR1, IR2, and
IR5:

• Tuning I. β∗ = 0.5 m in IP1 and IP5; β∗ = 10 m in IP2 and IP8 (nominal configuration
for protons).

• Tuning II. β∗ = 0.5 m in IP1, IP2 and IP5; β∗ = 10 m in IP8 (nominal configuration
for ions).

• Tuning III. β∗ = 0.25 m in IP1 and IP5; β∗ = 10 m in IP2 and IP8 (ultimate config-
uration for protons).

In each case, the gradients of the arc sextupoles (two families per ring, SF and SD) was
chosen to correct the linear chromaticity down to 2 units.
As shown in Table 2 and in view of the tolerances given previously, only Q′′ and β∗′

require
a special correction. More precisely, in the ultimate configuration where β∗ = 0.25 m in
IP1 and IP5, the second order chromaticity has to be corrected by more than one order
of magnitude while β∗′

has to be reduced by a factor 2. Note that the values of β∗′
and

β∗′′
which are put in brackets in Table 2 are not constrained by the specifications given in

Table 1: indeed, the latter concern the off-momentum β-beating at IP2 in the case where
IR2 is not tuned in collision mode.
In the case of two IP’s (Insertion 2 detuned) and for a given tuning of IR1 and IR5 (i.e.
β∗ = 0.5 m or β∗ = 0.25 m), it is worth noting that the chromatic aberrations induced
(i.e. Q′′, Q′′′, and β∗′

and β∗′′
in IP1 and IP5) does (almost) not depend on the choice of
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Optics Optics 63:31/59:32 Optics 64:31/59:32 Optics 65:31/58:32
Insertion tuning Tuning I Tuning II Tuning III Tuning I Tuning II Tuning III Tuning I Tuning II
�x[2�] at IP1 0 0 0 0 0 0 0 0
�x[2�] at IP2 8:322 8:247 8:404 8:461 8:381 8:523 8:604 8:514
�x[2�] at IP5 31:840 31:840 31:840 32:340 32:340 32:340 32:840 32:840
β∗′

x /β∗
x at IP1 223 138 469 190 368 405 199 245

β∗′
x /β∗

x at IP2 (150) −154 (794) (323) 417 (185) (−232) 212
β∗′

x /β∗
x at IP5 197 51 428 210 352 440 230 345

β∗′′
x /β∗

x [105] at IP1 1:4 0:9 5:2 1:2 1:7 5:0 1:1 1:5
β∗′′

x /β∗
x [105] at IP2 (1:1) 1:2 (5:9) (1:9) 2:3 (9:1) (1:7) 2:5

β∗′′
x /β∗

x [105] at IP5 0:8 −0:3 3:5 0:8 1:0 3:5 1:0 1:9
Q′′

x [103] 12:1 0:3 55:8 11:1 32:0 50:1 12:8 23:8
Q′′′

x [107] 0:4 −0:8 3:1 0:4 −0:1 3:3 0:4 1:2
�y[2�] at IP1 0 0 0 0 0 0 0 0
�y[2�] at IP2 7:467 7:486 7:389 7:446 7:500 7:322 7:309 7:388
�y[2�] at IP5 29:771 29:771 29:771 29:771 29:771 29:770 29:271 29:271
β∗′

y /β∗
y at IP1 77 192 141 75 155 119 56 257

β∗′
y /β∗

y at IP2 (229) 237 (809) (306) 166 (562) (232) 497
β∗′

y /β∗
y at IP5 25 14 94 38 −12 120 62 257

β∗′′
y /β∗

y [105] at IP1 0:6 0:9 2:7 0:7 0:8 2:7 0:6 0:4
β∗′′

y /β∗
y [105] at IP2 (2:2) 3:6 (6:5) (2:2) 3:8 (3:9) (0:9) 2:7

β∗′′
y /β∗

y [105] at IP5 1:1 2:2 4:5 1:2 2:1 4:3 1:1 1:6
Q′′

y [103] 2:7 13:0 15:0 3:3 9:2 15:5 3:6 30:5
Q′′′

y [107] 0:5 0:9 3:5 0:5 1:0 3:4 0:5 −0:2

Table 2: Chromatic aberrations in Ring-1 (after Q′ correction) and phase between IP’s for
different collision optics and configurations of IR1, IR2 and IR5 (LHC lattice Version 6.0).

the tune split. In fact, it can be observed that the phase differences between IP1 and IP5
are rigorously identical modulo [π] for the three optics, 63-59, 64-59 and 65-58, considered
here. This reveals the fact that only the betatron phase advances between IP’s play some
role and then could be used as correction knobs. In Chapter 3, we will show to what extent
this assertion is right.

2 Analytical approach by the map formalism

In order to clarify the problem and before studying any strategy of correction for β∗′
and

Q′′, let us begin by deriving analytically the expressions of these two quantities.
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2.1 Matricial Hill equation and perturbative series

We start from the Hill equation and assume some quadrupolar field errors along the ma-
chine:

d2z

ds2
+
�
Kz(s) + kz(s)

�
z = 0 , (9)

where the used notations have the following meaning:

• z stands for either the horizontal or vertical coordinate with respect to a given closed
orbit with curvilinear abscissa s.

• Kx(s)
def
= K1(s)+h2(s) and Ky(s)

def
= −K1(s); K1(s) = eB1(s)/p0c is the quadrupolar

strength seen by a particle of nominal energy p0 and h(s) = eB0(s)/p0c denotes the
local curvature of the reference orbit.

• the function kz(s) represents the distribution of quadrupolar field errors around the
ring. In the particular case where the focusing errors are only related to chromatic
effects, this function is given by8>>>>>>>>>><>>>>>>>>>>:

kx = (K1 + h2)

�
1

1 + δ
− 1

�
+

K2

1 + δ

(
Dx δ + D(2)

x δ2 + · · · )
= (K2 Dx − (K1 + h2)) δ +

�
(K1 + h2)−K2 Dx + K2 D

(2)
x

�
δ2 + O(δ3)

ky = −K1

�
1

1 + δ
− 1

�
− K2

1 + δ

(
Dx δ + D(2)

x δ2 + · · · )
= (K1 −K2 Dx) δ +

�
K2 Dx −K2 D

(2)
x −K1

�
δ2 + O(δ3) ,

(10)

where δ
def
= (p − p0)/p0 is the relative momentum deviation, K2(s) = eB2(s)/p0c is

the sextupolar strength seen by a particle of nominal energy p0 and where Dx and
D

(2)
x denote the horizontal dispersion function and its first derivative with respect to

the energy2.

Note that in writing the Hill equation, the focusing terms related to the pole face rotation
and to the fringing fields of the dipoles have been omitted. These terms proportional to h
and h′ are found to have no influence on the chromatic properties of the LHC.
The solution of Eq. (9) can be written in a vectorial form as

Z(s) = R(s0; s) Z(s0) with Z(s)
def
=

�
z(s)
z′(s)

�
,

2By writing Eq. (10), it has been implicitly assumed that the magnetic �eld seen by the beam does not
contain any octupolar components.
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where the matrix R satisfies the following equation:8><>:
R(s0; s0) = 1

dR

ds
=
�
A(0) + A(1)

�
R with A(0) def

=

�
0 1

−Kz 0

�
and A(1) def

=

�
0 0
−kz 0

�
.

(11)

In order to solve this equation, the matrix R is searched as a perturbative series with
respect to the errors kz(s):

R(s0; s) = R(0)(s0; s) +

1X
n=1

R(n)(s0; s) , (12)

where, for a given n, R(n) is of order n in the perturbation and satisfies (see Eq. (11))8<:
R(0)(s0; s0) = 1

dR(0)

ds
= A(0) R(0)8<:

R(n)(s0; s0) = 0

dR(n)

ds
= A(0) R(n) + A(1) R(n−1)

, n ≥ 1 .

(13)

1. The matrix R(0) is known a priori:

R(0)(s0; s1) =

0BBBBBB@

vuutβ
(0)
1

β
(0)
0

�
cos(�(0))+�

(0)
0 sin(�(0))

� q
β

(0)
0 β

(0)
1 sin(�(0))

1q
β

(0)
0 β

(0)
1

�
cos(�(0))

(
�

(0)
0 −�

(0)
1

)−sin(�(0))
(
1+�

(0)
0 �

(0)
1

)�vuutβ
(0)
1

β
(0)
0

�
cos(�(0))−�

(0)
0 sin(�(0))

�
1CCCCCCA,

(14)

where α
(0)
0 =α(0)(s0), α

(0)
1 =α(0)(s1), β

(0)
0 =β(0)(s0) and β

(0)
1 =β(0)(s1) are the unperturbed

Twiss parameters in s0 and s1 and where µ(0) =

Z s1

s0

ds

β(0)(s)
is the phase advance from

s0 to s1 (without quadrupole field error).

2. Finally, by using Eq. (13) for n ≥ 1, it can be easily checked that the matrices R(n) and
R(n−1) are linked by the relation

R(n)(s0; s) = R(0)(s0; s)

Z s

s0

ds′ R(0)(s′; s0) A(1)(s′) R(n−1)(s0; s
′) , leading to

R(n)(s0; s) =

Z
s0<s1<...<sn<s

ds1 . . . dsn R(0)(sn; s)×A(1)(sn)×. . .×R(0)(s1; s2)×A(1)(s1)×R(0)(s0; s1) .

(15)
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2.2 Integral formula for Q′′ and
∂β

∂δ
We have now all the ingredients required to calculate the tunes Qx,y as well as the β
functions βx,y at least at the second order in the perturbation kz. Then, by using Eq. (10),
we will directly obtain the expressions of the second order chromaticity Q′′ and of the
off-momentum β-beating β ′ ≡ ∂β/∂δ.
For that purpose, at a given abscissa s within the ring, the one-turn R-matrix R(s; s + C)
is parametrised in the following usual way:

R(s; s + C) ≡
0@ cos(2πQ) + α(s) sin(2πQ) β(s) sin(2πQ)

−1 + α(s)2

β(s)
sin(2πQ) cos(2πQ)− α(s) sin(2πQ)

1A
= R(0)(s; s + C) +

1X
n=1

R(n)(s; s + C) ,

(16)

where C is the machine circumference and where the quantities8>>>><>>>>:
Q = Q(0) + Q(1) + Q(2) + . . . = arccos

�
R11 + R22

4π

�
β(s) = β(0)(s) + β(1)(s) + . . . =

R12

sin(2π Q)
α(s) = α(0)(s) + α(1)(s) + . . .

(17)

denote the (horizontal or vertical) tune of the ring and the Twiss parameters at abscissa s
in the presence of linear imperfections k ≡ kz. Then, by using the relations (15) and (17)
and after some algebra, we obtain

Q(1) = −R
(1)
11 (0;C) + R

(1)
22 (0; C)

4� sin
(
2�Q(0)

) =
1
4�

Z C

0

ds′ k(s′)β(0)(s′)

β(1)(s)
β(0)(s)

=
R

(1)
12 (s; s + C)/β(0)(s)− 2� cos

(
2�Q(0)

)
Q(1)

sin
(
2�Q(0)

)
= − 1

2 sin
(
2�Q(0)

) Z C

0

ds′ k(s′)β(0)(s′) cos
�
2
����(0)(s′)− �(0)(s)

���− 2�Q(0)
�

Q(2) = −R
(2)
11 (0;C) + R

(2)
22 (0;C) + 4�2 cos

(
2�Q(0)

) (
Q(1)

)2
4� sin

(
2�Q(0)

)
=

−1
16� sin

(
2�Q(0)

)Z C

0

ds1

Z C

0

ds2

�
kβ(0)

�
(s1)

�
kβ(0)

�
(s2) cos

�
2
����(0)(s1)−�(0)(s2)

���−2�Q(0)
�

:

(18)

Finally, the second order chromaticity Q′′ and the off-momentum β-beating β ′ can be
deduced from the previous relations by replacing the chromatic focusing error k by its
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expression given in Eq. (10):8>>>>>>>>>>>><>>>>>>>>>>>>:

Q′
x,y =− 1

4�

Z C

0

ds1 K(1)
x,y(s1) βx,y(s1)

Q′′
x,y =

1
2�

Z C

0

ds1 K(2)
x,y(s1) βx,y(s1) −

1
8� sin (2�Qx,y)

Z C

0

ds1

Z C

0

ds2 K(1)
x,y(s1)βx,y(s1)K(1)

x,y(s2)βx,y(s2) cos (2 |�x,y(s1)−�x,y(s2)|−2�Qx,y)

β′
x,y

βx,y
=

1
2 sin (2�Qx,y)

Z C

0

ds1 K(1)
x,y(s1) βx,y(s1) cos (2 |�x,y(s1)−�x,y(s)|−2�Qx,y) ;

(19)

where we have defined the following functions:8>>>><>>>>:
K

(1)
x (s) = (K1(s) + h2(s))−K2(s) Dx(s)

K
(1)
y (s) = −K1(s) + K2(s) Dx(s)

K
(2)
x (s) = K

(1)
x (s) + K2(s) D

(2)
x (s)

K
(2)
y (s) = K

(1)
y (s)−K2(s) D

(2)
x (s) .

(20)

For any ring, the optical functions Dx and D
(2)
x are generally of the same order of magnitude

since they satisfy two similar differential equations (see e.g. [7, p. 66]). Therefore, if the
lattice sextupoles are tuned to compensate the linear chromaticity of the ring, the first
term occurring in the expression of Q′′ becomes of the order of Q′ before its correction,
that is a few hundred for the LHC, and then can be neglected by comparing with the values
obtained in Table 2. Under this approximation, note that second order chromaticity and
off-momentum β-beating satisfy the following relation:

Q′′
x,y = − 1

4π

Z C

0

ds K(1)
x,y(s) β ′

x,y(s) . (21)

3 Phasing the IP’s to correct Q′′

The purpose of this chapter is to evaluate the possibility to correct the chromatic aber-
rations of the LHC induced at collision by adjusting the betatron phases between its
different IP’s. For any ring containing N low β-insertions, we will start by expressing Q′′

and β∗′
as a function of the phase advances between IP’s (Section 3.1). Then, we will

study the particular cases where the ring contains 2 or 3 identical low-β insertions and will
derive in each case the phase conditions required for a self-compensation of the induced
Q′′ (Sections 3.2 & 3.3). Numerical applications will be given for different collision optics
and different configurations of the LHC Version 6.0 showing that, in the case of three IP’s
(IR1, IR2 and IR5 tuned in collision mode), this solution cannot be easily implemented in
practice due to the lack of tunability of the insertion 2.

9



3.1 Q′′ and
∂β∗

∂δ
as a function of the phase advances between IP’s

We begin with some notations and definitions. Let us consider a ring containing N low-β
insertions IRi, i = 1 . . . N , separated by a large number of identical FODO cells (arc cells).
For each insertion IRi, the horizontal and vertical β-functions β∗

xi,yi
at IPi (interaction

point) are assumed to be made small (in a sense defined hereafter) by means of two sets of
quadrupoles, say two triplets, without loss of generality, symmetrically placed with respect
to IPi: the triplets TRi (on the right of IPi) and TLi (on the left). If L∗

i denotes the
distance between one of these two triplets and the collision point IPi, the ratio β∗

i /L
∗
i is

assumed to be much lower than unity so that the triplets TRi and TLi are spaced from
IPi by ±π/2 in phase:

µRi = µi + π/2 and µLi = µi − π/2 , (22)

where µRi , µLi and µi are the (horizontal or vertical) phase advances at TRi, TLi and IPi

respectively.
Now, by coming back to the relations (19), let us show that the contribution of the arc
magnets can be neglected in the calculation of Q′′ and β ′(s). Basically, this is due to the
fact that the integrand functions occurring in the expressions giving β ′(s) and Q′′ oscillate
with twice the betatron phase. As a result, integrating these functions over a large number
of identical cells or over a single cell gives quantitatively similar results. Finally, since the
β-functions are of the order of L∗2

/β∗ � L∗ in the triplets, that is several kilometres for the
LHC to be compared to one or two hundred meters within the arcs, the contribution of a
single cell is clearly negligible. However, note that all this would not be true anymore if, for
instance, the sextupole strength would change sign from cell to cell in a 90◦ FODO lattice.
This last remark reveals precisely that an other solution to correct Q′′ or β ′ consists in
increasing the number of sextupole families per arc, which will form the subject of Chapter
4.
This being said, for each insertion IRi, we introduce the following quantities:8>><>>:

IRi
x

def
=

Z
TRi

ds K1(s) βx(s) and ILi
x

def
=

Z
TLi

ds K1(s) βx(s)

IRi
y

def
= −

Z
TRi

ds K1(s) βy(s) and ILi
y

def
= −

Z
TLi

ds K1(s) βy(s) .
(23)

By using Eq. (19) and Eq. (22) and by considering only the contribution coming from the
triplets, the off-momentum β-beating β ′(s) can be expressed in the following way:

β′
x,y(s)

βx,y(s)
=

1
2 sin (2�Qx,y)

NX
i=1

�
IRi
x,y cos

(
2
���Ri

x,y−�x,y(s)
��−2�Qx,y

)
+ ILi

x,y cos
(
2
���Li

x,y−�x,y(s)
��−2�Qx,y

)�
= − 1

2 sin (2�Qx,y)

NX
i=1

�
IRi
x,y + ILi

x,y

�
cos
(
2
���i

x,y−�x,y(s)
��−2�Qx,y

)
:

(24)
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Insertions IL
x IR

x IL
y IR

y IR + IL

IR1 for β∗ = 0.5 m 188.52 158.72 158.72 188.52 ' 350
IR1 for β∗ = 0.25 m 375.04 316.92 316.92 375.04 ' 700

IR5 for β∗ = 0.5 m 188.52 158.72 158.72 188.52 ' 350
IR5 for β∗ = 0.25 m 375.04 316.92 316.92 375.04 ' 700

IR2 for β∗ = 0.5 m 162.02 201.73 201.73 162.02 ' 360

Table 3: Coefficients IR and IL for the insertions 1, 2 and 3 of the LHC Version 6.0 with
β∗ =0.5 m or β∗ =0.25 m.

Strictly speaking, the last equality is inexact in the drift located between two consecutive
triplets ILi and IRi but remains valid at the collision point IPi for which

β∗′
i

β∗
i

= − 1

2 sin (2πQ)

NX
j=1

�
IRj + ILj

�
cos
(
2
��µij
��−2πQ

)
= −

�
β ′

β

�
TRi

= −
�

β ′

β

�
TLi

(25)

where, in order to simplify the notations, the subscripts x or y have been omitted, µij ≡
µi − µj is the phase difference (horizontal or vertical) between IPi and IPj , and where
(β ′/β)TRi

and (β ′/β)TLi
denotes the relative off-momentum β-beating in the triplets TRi

and TLj (considered here as thin lenses).
The second order chromaticity is then deduced from Eq. (21):

Q′′ = − 1

4π

NX
i=1

"
IRi

�
β ′

β

�
TRi

+ ILi

�
β ′

β

�
TLi

#

= − 1

8π sin (2πQ)

NX
i=1

NX
j=1

�
IRiIRj + ILiILj + 2 ILiIRj

�
cos
(
2
��µij
��−2πQ

)
.

(26)

The coefficients IR
x,y and IL

x,y are listed in Table 3 for the insertions 1, 2 and 5 of the LHC
in the configuration where β∗ = 0.5 m and for the insertions 1 and 5 with β∗ = 0.25 m.
IR1 and IR5 are rigorously identical and, as expected, the coefficients IR and IL scale
with 1/β∗. Moreover, for a given insertion, it is worth noting that IR

x = IL
y and IR

y = IL
x ,

which is due to the fact that the left and right inner triplets are identical but with inverse
polarities (antisymmetric design). Finally, note that the three insertions are similar in the
sense that

IR1
x,y = IR5

x,y ' IR2
x,y and IL1

x,y = IL5
x,y ' IL2

x,y ,

leading to

IRi
x + ILi

x = IRi
y + ILi

y ≡ IR + IL for i=1,2 or 5. (27)
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Under these conditions, the relations (25) and (26) reduce to8>>>>><>>>>>:

β∗′
ix,y

β∗
ix,y

= − IR + IL

2 sin (2πQx,y)

NX
j=1

cos
(
2
��µij

x,y

��−2πQx,y

)
Q′′

x,y = −
(
IR + IL

)2
8π sin (2πQx,y)

NX
i=1

NX
j=1

cos
(
2
��µij

x,y

��−2πQx,y

)
.

(28)

3.2 Case of two IP’s

In this section, we deal with the case of a ring containing only two low-β insertions. This
case corresponds to the proton operation of the LHC where the β-functions are made
extremely small in IP1 and IP5. By using Eq. (28) and after some trigonometric manipu-
lations, the non-linear chromaticity Q′′ and the off-momentum β-beating at IP1 and IP5
can be expressed as8>>>><>>>>:

 
β∗′

x,y

β∗
x,y

!
IP1

=

 
β∗′

x,y

β∗
x,y

!
IP5

= − IR + IL

sin (2πQx,y)
cos
(
µ15

x,y

)
cos
(
µ15

x,y − 2π Qx,y

)
Q′′

x,y = −
(
IR + IL

)2
2π sin (2πQx,y)

cos
(
µ15

x,y

)
cos
(
µ15

x,y − 2π Qx,y

)
,

(29)

where µ15
x,y > 0 is the (horizontal or vertical) phase advance from IP1 to IP5 for Ring-1 (or

from IP5 to IP1 for Ring-2). Therefore, Q′′ and β∗′
are simultaneously vanishing if

µ15
x,y =

π

2
mod[π] or µ15

x,y = 2π Qx,y +
π

2
mod[π] . (30)

It is also interesting to study the behaviour of the function β ′(s) all around the ring. The
latter can be easily deduced from Eq. (24):8>>><>>>:

β ′(s)
β(s)

= − IR + IL

sin(2πQ)
cos
(
µ15 − 2µ(s)

)
cos
(
µ15 − 2πQ

)
between IP1 and IP5

β ′(s)
β(s)

= − IR + IL

sin(2πQ)
cos
(
µ15 − 2µ(s) + 2πQ

)
cos
(
µ15
)

between IP5 and IP1,

(31)

where, in order to simplify the notations, the subscripts x and y have been omitted. Thus, if
µ15

x,y =0.25×2π mod[π], the function β ′(s) vanishes everywhere between IP5 and IP1 (closed

“β-bump” between IP1 and IP5) and vice versa if µ15
x,y =2π Qx,y + 0.25×2π mod[π].

The first condition seems well-suited to the present collision optics of the LHC Version 6.0.
Indeed, for the three optics considered in Table 2, this constraint can be satisfied by
reducing the horizontal and vertical phase advances of IR4 by ∆Qx = −0.090 ∼ −32.5◦

and ∆Qy = −0.021 ∼ −7.5◦, and vice versa for IR6 in order to keep the tunes constant:
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according to References [8] and [9], this is well within the tuning range of IR4 and accessible
to IR6. In this case, the measurement of the relative off-momentum β-beating between
IP5 and IP1 is certainly the simplest way to appreciate the exactness of this correction.
In order to guaranty the validity of these results, the quantities Q′′ and β∗′

IP1,5
have been

computed with MAD [4] as a function of the betatron phase between IP1 and IP5. For that
purpose, without re-matching explicitly the insertions IR4 and IR6, their phase advances
have been artificially modulated within a range of ±180◦ around their nominal value by
inserting in IP4 and IP6 a thin linear element represented by the following 6×6 symplectic
matrix:

R(∆µx, ∆µy) =

0BBBBBB@
R11 R12 0 0 0 R16

R21 R22 0 0 0 R26

0 0 R33 R34 0 0
0 0 R43 R44 0 0

R51 R52 0 0 1 0
0 0 0 0 0 1

1CCCCCCA , with

8>><>>:
R11=cos(∆�x)+�x sin(∆�x)
R12=βx sin(∆�x)
R21=−γx sin(∆�x)
R22=cos(∆�x)−�x sin(∆�x)

8>><>>:
R33=cos(∆�y)+�y sin(∆�y)
R34=βy sin(∆�y)
R43=−γy sin(∆�y)
R44=cos(∆�y)−�y sin(∆�y)

8>><>>:
R16=Dx (1−R11)−D′

x R12

R26=D′
x (1−R22)−D′

x R21

R51=D′
x (1−R11)+Dx R21

R52=Dx (R22−1)−D′
x R12

;

where βx,y, αx,y, γx,y, Dx and D′
x denote the Twiss parameters, the dispersion and the

angular dispersion at IP4 or IP6.
The results obtained are shown in Fig. 1. This computation concerns the collision optics
64-59 (tune split of 5) of the LHC lattice Version 6.0 with β∗ = 0.25 m in IP1 and IP5
(ultimate configuration for protons). For this optics, the nominal situation corresponds to
µ15

x = 32.340 × 2π and µ15
y = 29.771 × 2π (see Table 2), which is indicated by the small

circles on Fig. 1. As expected, the second order chromaticity Q′′ and the off-momentum
β-beating β∗′

at IP1 and IP5 are simultaneously vanishing when the condition (30) is
satisfied.
The same exercise has been done for the chromatic aberrations Q′′′ and β∗′′

, showing
that, regardless of the phase difference between IP1 and IP5, the latter remain within the
specifications given in Table 1 (see Fig. 2).

3.3 Case of three IP’s

We consider here a ring containing three low β-insertions, say the LHC in ion operation
with β∗ = 0.5 m in IP1, IP2 and IP5. By using Eq. (28) and after some trigonometric
manipulations, the second order chromaticity induced by the triplets can be expressed as

Q′′(µ12 , µ25
)

= −
(
IR + IL

)2
8π sin(2πQ)

�
cos(2πQ) + 8 cos

(
µ12
)
cos
(
µ25
)
cos
(
µ51
)�

, (32)
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Figure 1: Chromatic aberrations Q′′ and β∗′
at IP1 (solid lines) and IP5 (dashed lines)

versus the phase advance from IP1 to IP5 (LHC Version 6.0, collision optics 64-59 with
β∗ = 0.25 m in IP1 and IP5).
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Figure 2: Chromatic aberrations Q′′′ and β∗′′
at IP1 (solid lines) and IP5 (dashed lines)

versus the phase advance from IP1 to IP5 (LHC Version 6.0, collision optics 64-59 with
β∗ = 0.25 m in IP1 and IP5).
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with obviously µ51 = 2πQ− µ15 = 2πQ− µ12 − µ25.
In view of Eq. (32), it is clear that for some value of the phase µ12, for instance µ12 =
0.25×2π mod[π] (corresponding to a closed “β-bump” between IP1 and IP2), the equation
Q′′(µ12 , µ25) = 0 does not solve for µ25. In fact, it is easy to see that the condition Q′′ = 0
can also be written as

Q′′ = 0 ⇔ cos
(
2πQ−2µ25−µ12

)
= − cos(2πQ)

4 cos (µ12)
− cos

(
2πQ− µ12

) ≡ G (µ12
)

, (33)

which has no solution if |G| > 1. For the present working point of the LHC at collision,
Qx = .31 and Qy = .32, the condition |G| ≤ 1 is equivalent to

µ12
x /(2π) ∈ [ 0 , .242 ]

S
[ .389 , .742 ]

S
[ .889 , 1 ] mod[1]

µ12
y /(2π) ∈ [ 0 , .241 ]

S
[ .402 , .741 ]

S
[ .902 , 1 ] mod[1] ,

to be compared with the values of µ12 given in Table 2 for different LHC tune splits.
The solutions of the equation Q′′

x,y

(
µ12

x,y , µ25
x,y

) ≡ 0 are plotted in Fig. 3. The symbols ◦, ×
and • refer to the collision optics 63-59, 64-59 and 65-58, respectively, of the LHC lattice
Version 6.0. Inside (resp. outside) the islands, the second order chromaticity is negative
(resp. positive). On the frontier, Q” vanishes as it is the case (by chance) in the horizontal
plane for the optics 63-59 (Q′′

x ∼ 300 in Table 2). On the other hand, the situation is much
more delicate, for instance, in the horizontal plane for the optics 64-59 (symbol × on the
top picture of Fig. 3). Different solutions are a priori possible to cancel Q′′. The simplest,
apparently, are the following:

• keep µ12
x quasi-constant, change µ25

x by ∼ ±0.25×2π (see Fig. 3) and then µ51
x by

∼∓0.25×2π in order to keep the horizontal tune constant. This is beyond the tuning
range of IR4 and IR6 and then would require to re-match (almost) all the LHC
insertions. This possibility is then too constraining.

• keep µ25
x constant, reduce µ12

x by ∼−0.14×2π (see Fig. 3) and then increase µ51
x by

∼0.14×2π. According to Ref. [9], the change of the phase µ51
x between IP5 and IP1

can be achieved by re-matching IR6. On the other hand, since the IR2 tunability
is quasi null due to the special constraints imposed by the injection elements in
Ring-1 [11], the condition required for µ12

x can be fulfilled only by acting on the
right side of the insertion IR1, i.e. by reducing its horizontal phase advance by
∆Qx ∼ −0.14. In view of the study done in Ref. [12], this is beyond the tuning
range of IR1.

Finally, it is worth noting that whether by acting on the main arc quadrupoles MQ or
whether by acting on the tune correctors MQT, the arcs cannot be used in a simple way
as tunable phase trombones between IP’s. Indeed, on the one hand, in a given arc, the
MQ’s are powered in series in Ring-1 and Ring-2 (and the phase difference between two
given IP’s is not necessarily the same for Ring-1 and Ring-2). On the other hand, the
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µ x2
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Figure 3: Solution of the equation Q′′(µ12, µ25) ≡ 0 in the horizontal plane (top picture)
and the vertical plane (bottom picture); the phases µ12 (from IP1 to IP2) and µ25 (from
IP2 to IP5) are given modulo 1 in units of 2π. The symbols ◦, × and • refer to the
nominal collision optics 63-59, 64-59 and 65-58, respectively, of the LHC lattice Version
6.0 (Ring-1).
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MQT’s (2 families of 8 MQT’s per arc) are only foreseen for rapid and small changes of
tune in operation. To that end, it is true that their use is limited by the optical aber-
rations (mismatch of the β-functions) that they induce at too high gradient so that the
global change of tune that they can safely guaranty remains lower than ±0.3 per ring [10]
and corresponds to only 3/13 of their available strength at top energy. Therefore, they
could also be used for phasing IP1, IP2 and IP5 (independently in Ring-1 and Ring-2) but
provided that the β-functions are carefully re-matched at the entrances and exits of IR1,
IR2 and IR5. By assuming that this re-matching does not change too much the tunability
diagrams of IR1, IR2 and IR5 and by using say up to 10/13 of the MQT strength available
at top energy, the variability of the phases µ12, µ25 and µ51 could be increased by ±0.125,
±3×0.125=±0.375 and ±4×0.125=±0.5, respectively, which is sufficient for our concern.
This alternative would require a specific study of feasibility.
Due to the limited tunability of the LHC insertions, we conclude that the strategy consist-
ing in phasing the IP’s is not well-suited to the case of three low-β insertions. Moreover,
note that if the LHC was constrained to run temporarily with only one low-β insertion, the
correction of the second order chromaticity could evidently not be performed at collision.
Therefore, as mentioned in the introduction, it is recommended to keep the 4×8 sextupole
families presently foreseen in LHC Version 6.0. This will form the subject of the next
chapter.

4 Using sextupole families to correct Q′′ and
∂β∗

∂δ
In Section 4.1, we begin by describing the layout of the chromaticity sextupoles in the LHC
lattice Version 6.0, i.e. four families per arc and per ring. Then, by using the analytical
results derived in Chapter 2, we will obtain explicitly the dependence of the chromatic
aberrations Q′′ and β∗′

on the strengths of these different families (Section 4.2). Finally,
in Section 4.3, we will develop a minimisation method suited to our problem and will test
it on different collision optics and different configurations of the LHC Version 6.0.

4.1 Sextupole budget and available gradient

In the previous LHC versions, the sextupoles were only dedicated to the correction of
the linear chromaticity Q′. In each arc, they were split in two distinct families, the SF
family and the SD family, placed in the vicinity of the arc quadrupoles of type QF and QD
respectively. Since the Version 6, the total number of sextupole families has been doubled,
passing from 2×8 to 4×8 = 32 families per ring, in order to guaranty also the correction
of Q′′ at collision. In a given arc, the four families are named SFa, SFb, SDa and SDb
respectively (see Fig. 4). The rings 1 and 2 are independent in terms of the sextupole
supplying; each ring contains 188 sextupoles of type SD and 154 sextupoles of type SF 3.

3In each arc, it is foreseen to tilt by 90◦ four chromaticity sextupoles of type SF in order to use them
as a3 correctors [13].

18



Circuit SDb-Ring2

QD QF QD QF QD QD QF QD QF QDQF

QF QF QF QF QF QFQD QD QD QD

RING 1

RING 2

QD

SDa SDaSDb SDb SDbSDaSFa SFa SFaSFb SFb

SFa SFa SFaSDa SDa SDaSFb SFb SFbSDb SDb

Circuit SDb-Ring1
Circuit SFa-Ring1
Circuit SDa-Ring1

Circuit SFb-Ring1

Circuit SFa-Ring2
Circuit SDa-Ring2
Circuit SFb-Ring2

Figure 4: Sextupole families in LHC lattice Version 6.0.

The maximum strength available per sextupole is 0.129 m−2 at 7 TeV (for a nominal field
of 1500 T/m2 [5]).

4.2 Q′′ and
∂β

∂δ
as a function of the gradient of each sextupole

family

We now come back to the results obtained in Chapter 2, more precisely to the relations (19)
which give the quantities Q′, Q′′ and β ′(s) in integral form. The purpose of this section
is to find explicitly the dependence of these chromatic aberrations on the strengths of the
different sextupole families present in the ring.
Let us begin with some notations. We assume that the LHC runs with N low β-insertions
and that each ring possesses 32 sextupole families. For a given ring, Mi and K2i

, i = 1 . . . 32,
denote the number and the strength of the sextupoles belonging to the ith family. When
the sextupole gradients are all set to zero, the linear and second order chromaticities, Q′

and Q′′, the off-momentum β-beating β ′(s) and the second order dispersion D
(2)
x (s) along

the machine will be labelled by the superscript (0). Note that neither the β functions nor
the dispersion Dx depend on the sextupolar strength K2(s) but the second order dispersion
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does. The latter varies linearly with K2 and is given by (see e.g. [7, p. 66]):

D(2)
x (s)=D(2)(0)

x (s)− 1
4 sin (�Qx)

Z C

0
ds′ K2(s′)Dx(s′)2

p
βx(s)βx(s′) cos

����x(s′)−�x(s)
��−�Qx

�
:

(34)

Finally, K will represent the 32-dimensional vector containing the strengths K2i
of the

32 sextupole families (column vector) and its transpose will be noted Kt (row vector). In
view of Eq. (19), the linear chromaticity Q′ and the off-momentum β-beating β ′(s) vary
linearly with K:8>>>>>>>>>>>><>>>>>>>>>>>>:

Q′
x,y = Q

′(0)
x,y + Kt ·Q1

x,y with(
Q1

x,y

)
i

def
= ± L

4π

MiX
j=1

βxj ,yj
Dxj

, i = 1 . . . 32

β ′
x,y(s)

βx,y(s)
=

β
′(0)
x,y (s)

βx,y(s)
+ Kt ·Bx,y(s) with

(Bx,y(s))i

def
= ∓ L

2 sin (2πQx,y)

MiX
j=1

βxj ,yj
Dxj

cos
(
2
��µxj,yj

−µx,y(s)
��−2πQx,y

)
, i = 1 . . . 32 ,

(35)

where L denotes the sextupole length and where the subscript j, 1 ≤ j ≤ Mi, refers to the
location of the jth sextupole of the family number i.
On the other hand, the second order chromaticity Q′′ contains both a linear and a quadratic
term in K and can be expressed in the following way (see Eqs. (19) and (34)):

Q′′
x,y = Q

′′(0)
x,y + Kt ·Q2

x,y +
1

2
Kt ·Ax,y ·K , (36)

where the 32-dimensional vector Q2
x,y and the 32×32 symmetric matrix Ax,y are defined by8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

(
Q2

x,y

)
i

def
= ∓ L

2π

MiX
j=1

βxj ,yj

�
Dxj

−D(2)(0)

xj

�
| {z }

Term I

±2× 1

4π

MiX
j=1

β
′(0)
xj ,yj

Dxj| {z }
Term II

, i = 1 . . . 32

(Ax,y)ij

def
= ∓ L2

8� sin(�Qx)

MiX
r=1

MjX
s=1

�
βxr,yr(Dxs)

2 + βxs,ys(Dxr)
2
�p

βxrβxs cos (|�xr−�xs |−�Qx)| {z }
Terms linked to the second order dispersion

−

L2

4� sin (2�Qx,y)

MiX
r=1

MjX
s=1

βxr,yrβxs,ysDxr Dxs cos (2 |�xr,yr−�xs,ys |−2�Qx,y)| {z }
Terms linked to the o�-momentum β-beating induced by the sextupoles

,

i = 1 . . . 32 , j = 1 . . . 32 .
(37)
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Concerning the quadratic variation of Q′′, we can make the following two remarks by
examining the dependence of the coefficients (Ax,y)ij on the phase advances between the
different sextupoles of the ring:

• it is worth noting that two consecutive sextupoles of a same family are spaced roughly
by π in betatron phase. As a result, the first term (terms in “cos(µ)” linked to the
second order dispersion) is expected to be small.

• the second term is related to the off-momentum β-beating generated at the level of a
given family of sextupoles and contributing to Q′′ by means of an other family. This
β-beating varies with “cos(2µ)” so that its influence on Q′′ will be minimised if the
gradient differences are not too high between the two families SFa and SFb (resp.
SDa and SDb) of a same arc.

Let us now examine the linear dependence of Q′′ on the sextupolar gradients of the 32
families:

• if the first constraint imposed on the sextupole strengths is the correction of the
natural linear chromaticity of the ring (including that of the triplets), the first term
occurring in the definition of Q2

x,y (Term I) will be of the order of Q
′(0), i.e. a few

hundred for the LHC, and then can be neglected.

• the second term (Term II) is much more interesting. In fact, the latter contains two
contributions which are equal (note the factor 2 in bold-face character in Eq. (37)) but
of different origin. The first one (Contribution I) comes from the off-momentum β-
beating β

′(0) induced by the triplets and contributing to Q′′ by means of the sextupole
families. The second one (Contribution II) is related to the off-momentum β-beating
generated by the sextupoles and contributing to Q′′ at the level of the inner triplets.
After some algebra, it is easy to see that these two contributions are equal. As a
result, if, by means of the sextupoles, the off-momentum β-beating β ′(s∗i ) , 1 ≤ i ≤ N,
is cancelled at each IP (and then in the inner triplets), the contributions I and II
become both equal to −Q

′′(0); in other words, the second order chromaticity is over-
compensated in this case, roughly by a factor 2:

β ′(s∗i ) ≡ 0 , 1 ≤ i ≤ N ⇒ Q′′ ' −Q
′′(0) + O(K2) . (38)

On the other hand, if the off-momentum β-beating is not set to zero at the IP’s but
only reduced by a given factor λ (close to one-half), the second order chromaticity
can be easily cancelled:

β ′(s∗i ) ≡ λ β
′(0)(s∗i ) , 1 ≤ i ≤ N ⇒ Q′′ ' (2λ− 1) Q

′′(0) + O(K2) = 0 for λ ∼ 0.5 .
(39)

In view of the different optics studied in Chapter 1, note that the situation is partic-
ularly favourable for the LHC since the values obtained for β∗′

do never exceed their
specification by a factor larger than 2, whereas the second order chromaticity shall
be strongly reduced.
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In conclusion, it seems difficult (or even impossible) to satisfy simultaneously the conditions
Q′′ ≡ 0 and β ′(s∗i ) ≡ 0, 1 ≤ i ≤ N , and to minimise at the same time the sextupole
strengths in order to keep under control the anharmonicities that the latter induce.
The method that we will use for the LHC is based on Eq. (39) and is described in the next
section.

4.3 Minimisation method and application to LHC Version 6.0

The initial problem to solve is of quadratic programming type (QP problem). The objec-
tive functions to cancel are Q′′

x and Q′′
y which depends quadratically and linearly on the

variable K (see Eq. (36)). The constraints vary linearly with K and are given by (see
Eq. (35)) 8>>>><>>>>:

Q′
x,y = Q

′(0)
x,y + Kt ·Q1

x,y = 2

β ′
x,y(s

∗
i )

βx,y(s∗i )
=

β
′(0)
x,y (s∗i )

βx,y(s∗i )
+ Kt ·Bx,y(s

∗
i ) = 0 , 1 ≤ i ≤ N

|Kj| ≤ K2max , 1 ≤ j ≤ 32 .

According to the different points discussed in the previous section and instead of seeking
to solve this problem, we tackle successively the two following sub-problems.

• First, by using the method of the Lagrange multipliers, we compute the solution
K(λx, λy) of the linear problem

Pb1

8>>>><>>>>:
Q′

x = 2 and Q′
y = 2

β ′
x(s

∗
i ) = λx β

′(0)
x (s∗i ) and β ′

y(s
∗
i ) = λy β

′(0)
y (s∗i ) , 1 ≤ i ≤ N

Minimise the penalty function

16X
j=1

wj (Kj −KSF)2 +

32X
j=17

wj (Kj −KSD)2 ,

where the coefficients λx and λy are undetermined and where the sextupolar gradients
KSF and KSD are obtained by a standard correction of Q′ (using one single sextupole
family per transverse plane). Note that we have implicitly assumed that the indices
j in the range 1 to 16 refer to the families SFa and SFb and that those in the range
17 to 32 concern the families SDa and SDb. Finally, in most cases, the weights wj

will be taken equal to 1.
Since the penalty function is quadratic in K, the solution of Pb1 is linear in λx,y:

K(λx, λy)
def
= K0 + λxKx + λyKy . (40)

• After a numerical estimate of the vectors K0, Kx and Ky, we complete our compu-
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tation by finding the coefficients λx and λy satisfying

Pb2

8>>><>>>:
K = K0 + λxKx + λyKy

Q′′
x(λx, λy) = Q

′′(0)
x + Kt ·Q2

x +
1

2
Kt ·Ax ·K ≡ 0

Q′′
y(λx, λy) = Q

′′(0)
y + Kt ·Q2

y +
1

2
Kt ·Ay ·K ≡ 0 .

The functions Q′′
x,y(λx, λy) are simple polynomials of degree 2 in λx and λy and the

non-linear problem Pb2 can be easily solved by using, for instance, the steepest
descent method, starting from the approximate solution λx =λy =0.5 (see Eq. (39)).

This method has been implemented in a FORTRAN program minchroma.f which is called
from MAD by the command system,"minchroma". The input file is produced in a first
time by running the OPTICS command of MAD which computes the optical functions βx,y,
Dx, . . . as well as the phase advances µx,y at each sextupole and at the N IP’s. Then, the
program generates the vectors Q1

x,y, Q2
x,y, Bx,y(s

∗
i ), 1 ≤ i ≤ N , and the matrices Ax,y (see

Eqs. (35) and (36)). The problems Pb1 and Pb2 are solved successively and minchroma

returns to MAD the strengths of the 32 sextupole families. Finally, the chromatic aber-
rations Q′, Q′′ and β∗′

(but also Q′′′ and β∗′′
) are re-computed with MAD in order to

appreciate the quality of the correction.
Concerning the different collision optics and insertion tunings considered in Chapter 1, the
results obtained after correction are reported in Table 4. The method works extremely
well for a tune split of 4 and a tune split of 5. The second order chromaticity is fully cor-
rected, the off-momentum β-beating β

′∗/β∗ is reduced in each case by more than a factor 2
and the other chromatic aberrations β

′′∗ and Q′′′ are within their specification given in
Table 1. In every case, the safety margin on the sextupole gradient remains greater than
20% and the anharmonicities induced are quite reasonable. Indeed, according to tracking
results, satisfactory dynamic apertures are often correlated with low amplitude detuning,
say lower than 10−3 at 8 σ’s. In terms of the anharmonicity coefficients given by the STATIC
command of MAD, this criterion yields

∆Qx,y(8σ) <∼ 10−3 ⇒
����dQx,y

dEx,y

���� <∼ 10−3

64 εx,y
' 31000 m−1 ,

(where εx,y = 5.03 × 10−10 m is the physical emittance r.m.s. of the LHC beam at top
energy [5]), to be compared to the values obtained in Table 4.
The sextupole families are found to be inefficient for a tune split of 7. Indeed, according
to [14], the regular sextupole families proposed for the LHC can work properly only if the
phase advance per cell is close to π/2 within about ±0.01×2π. This is not the case for the
optics 65-58 of the LHC Version 6.0 for which µx =95.243◦ and µy =83.758◦. However, it is
worth noting that this is not a problem when only IR1 and IR5 are tuned in collision mode:
in that case, IP1 and IP5 can always be separated by π/2 + kπ in phase (see Section 3.2).
On the other hand, no solution has been found to correct Q′′ and β∗′

for the optics 65-58
of the LHC when the β functions are squeezed to 0.5 m in IP1, IP2 and IP5.
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Optics Optics 63:31/59:32 Optics 64:31/59:32
Insertion tuning Tuning I Tuning II Tuning III Tuning I Tuning II Tuning III
Coe�cient �x 0:30 0:26 0:37 0:53 0:18 0:44
Coe�cient �y 0:54 0:47 0:27 0:48 0:39 0:44
max1�i�32 |Ki| in
[%] of the availa- 49:9 69:6 82:0 52:0 78:8 77:6
ble strength

Chromatic Aberrations (horizontal plane)
β∗′

x/β∗
x at IP1 68 35 174 101 64 178

β∗′
x/β∗

x at IP2 (203) −40 (714) (293) 73 (170)
β∗′

x/β∗
x at IP5 60 13 158 111 62 194

β∗′′
x /β∗

x [105] at IP1 0:8 0:6 4:4 0:9 0:3 2:6
β∗′′

x /β∗
x [105] at IP2 (0:5) 0:2 (6:4) (1:7) −0:4 (5:7)

β∗′′
x /β∗

x [105] at IP5 0:3 0:0 2:1 0:7 0:2 2:3
Q′

x 2:0 2:0 2:0 2:0 2:0 2:0
Q′′

x 0:0 0:0 0:1 0:0 0:2 0:2
Q′′′

x [107] 0:2 −0:5 5:4 0:6 −0:2 2:9
Chromatic Aberrations (vertical plane)

β∗′
y /β∗

y at IP1 42 91 38 36 60 53
β∗′

y /β∗
y at IP2 (201) 112 (692) (272) 64 (555)

β∗′
y /β∗

y at IP5 14 7 26 18 −4 54
β∗′′

y /β∗
y [105] at IP1 0:5 0:7 0:7 0:5 0:5 2:5

β∗′′
y /β∗

y [105] at IP2 (2:1) 2:9 (4:3) (2:0) 2:9 (3:6)
β∗′′

y /β∗
y [105] at IP5 1:1 2:1 2:3 1:0 1:7 3:6

Q′
y 2:0 2:0 2:0 2:0 2:0 2:0

Q′′
y 0:0 0:0 0:2 0:0 0:1 0:0

Q′′′
y [107] 0:4 0:8 0:6 0:4 0:7 3:3

Anharmonicities
dQx/dEx [m−1] 449 536 5004 943 7011 2896
dQx/dEy [m−1] −5298 −7883 −12702 −5551 −10309 −10386
dQy/dEy [m−1] 985 1677 2688 1745 2927 5000

Table 4: Chromatic aberrations and anharmonicities in Ring-1 after Q′′ correction for
different collision optics and configurations of IR1, IR2 and IR5 (4 × 8 sextupole families
per ring, LHC lattice Version 6.0).
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Conclusions

In order to compensate the chromatic aberrations induced by the low-β triplets of the
LHC in collision, mainly the second order chromaticity and the off-momentum β-beating
β ′ = ∂β/∂δ, the following two options have been envisaged:

• to constrain the phase advances between the different IP’s of the ring.

• to use more than one sextupole family per transverse plane.

In the case where only IR1 and IR5 are tuned with the same β∗ (nominal or ultimate
configurations for protons), it is easy to obtain the required phase advances between IP1
and IP5 by re-matching, for instance, the insertions IR4 and IR6. On the other hand, in
the nominal configuration for ions (i.e β∗ = 0.5 m in IP1, IP2 and IP5), phasing the IP’s
becomes difficult due to the limited tunability of IR2. Nevertheless, this option remains
possible if we allow using some tuning correctors MQT as phase trombones between IP’s;
this possibility is delicate to implement in practice since it imposes to re-match in collision
the β functions at the entries and exits of several LHC insertions; this has not yet been
studied.
It is worth noting that this correction strategy would become irrelevant if the LHC was
constrained to run temporarily with only one low-β insertion, the others being partially or
completely detuned in order to limit the background in their detector.
Therefore, it is recommended to keep the 4×8 sextupole families presently implemented in
the LHC lattice Version 6.0. They have been successfully tested out on the optics 63-59 and
64-59 with different tunings of IR1, IR2 and IR5. Nevertheless, we have to keep in mind
that the sextupole families become inefficient for too large tune splits, as, in particular, for
the collision optics 65-58 of the LHC Version 6.0.
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