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Abstract
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structure constants – electric α and magnetic α̃ – were obtained. It was shown that the Dirac relation
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<∼ 1 with α̃ given by the Dirac relation: αα̃ = 1
4
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1 Introduction

The existence of the renormalization group (RG) in the quantum field theory was dis-
covered by E.C.G.Stueckelberg and A.Peterman [1]. RG techniques were successfully
developed by Gell–Mann and Low [2] in their investigation of the effective charge behav-
ior. They first noticed that the derivative d logα(p)/dt is only a function of the effective
fine structure constant:

α(p) =
e2(p)

4π
(1)

where e(p) is the effective charge, p is a 4–momentum and

t = log
p2

M2
(2)

with M as a momentum cut–off.
In gauge theories without monopoles the Gell–Mann–Low RG equation has the follow-

ing form:
d logα(p)

dt
= β(α(p)) (3)

where the function β(α) depends on the Lagrangian describing the theory.
At sufficiently small charge (α < 1) the β–function is given by a series over α/4π:

β(α) = β2(
α

4π
) + β4(

α

4π
)
2

+ ... (4)

The first two terms of this series were calculated in QED a long time ago [3,4]. The
following result was obtained in the framework of the perturbation theory (in the one–
and two–loop approximations):

a)

β2 =
4

3
, β4 = 4 − for fermion (electron) loops (5)

and
b)

β2 =
1

3
, β4 = 1 − for scalar particle loops. (6)

This result means that for both cases a) and b) the β–function can be represented by the
following series:

β(α) = β2(
α

4π
)(1 + 3

α

4π
+ ...) (7)

and we are able to use the one–loop approximation up to α ∼ 1 (with accuracy ≈ 25%
for α ≈ 1).

In the present paper we consider the Abelian quantum field theory when both electri-
cally and magnetically charged particles with charges e and g, respectively, present in the
theory which we call below QEMD (”quantum electromagnetodynamics”) following the
terminology used in Ref.[5]. In their review [5], M.Blagojevic and P.Senjanovic described
the various formulations [6-15] of the Abelian quantum field theories containing two cou-
pling constants (electric and magnetic charges) connected via the quantization condition.
Several topics were treated there: Dirac’s and Schwinger’s quantum mechanics of the
monopole, connection with non-Abelian monopoles, a supersymmetric generalization of
the theory and other aspects.
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The aim of this paper is to investigate in QEMD the corresponding RG equations
for electric (α) and magnetic (α̃) fine structure constants in accordance with the Dirac
relation for the minimal charges:

eg = 2π, (8)

or

αα̃ =
1

4
(9)

where

α̃ =
g2

4π
. (10)

Below we consider QEMD in the Zwanziger formalism [9].

2 The Zwanziger formalism for the Abelian gauge theory with
electric and magnetic charges

A version of the local field theory for the Abelian gauge fields interacting with electrically
and magnetically charged particles is represented by the Zwanziger formalism [9,10] (see
also [16]) which considers two potentials Aµ(x) and Bµ(x) describing one physical photon
with two physical degrees of freedom.

In this theory the total field system of the gauge, electrically- (Ψ) and magnetically-
charged (Φ) fields is described by the partition function which has the following form in
Euclidean space:

Z =
∫

[DA][DB][DΦ][DΦ̄][DΨ][DΨ̄]e−S (11)

where
S = SZw(A,B) + Sgf + Se + Sm. (12)

The Zwanziger action SZw(A,B) is given by:

SZw(A,B) =
∫
d4x[

1

2
(n · [∂ ∧A])2 +

1

2
(n · [∂ ∧B])2 +

+
i

2
(n · [∂ ∧ A])(n · [∂ ∧ B]∗)− i

2
(n · [∂ ∧B])(n · [∂ ∧A]∗)] (13)

where we have used the following designations:

[A ∧ B]µν = AµBν − AνBµ, (n · [A ∧ B])µ = nν(A ∧ B)νµ,

G∗
µν =

1

2
εµνλρGλρ, (14)

with nµ representing the direction of the frozen Dirac string.
Sgf in Eq.(12) is the gauge–fixing action and the actions Se and Sm:

Se,m =
∫
d4xLe,m(x) (15)

describe the matter fields with the electric and magnetic charges, respectively.
Here we have a number of possibilities. The electrically- and magnetically-charged

fields can be described by the following Lagrangian expressions (given in Minkowski
space):
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a)

Le = Ψ̄γµ(iDµ − µe)Ψ, (16)

Lm = Φ̄γµ(iD̃µ − µm)Φ (17)

if they are fermions (electrons or monopoles, respectively). In Eqs.(16), (17)

Dµ = ∂µ − ieAµ (18)

and
D̃µ = ∂µ − igBµ (19)

are the covariant derivatives.
b)

Le =
1

2
[|DµΨ|2 − µe

2|Ψ|2], (20)

Lm =
1

2
[|D̃µΦ|2 − µm

2|Φ|2] (21)

if the electrically- and magnetically-charged particles are the Klein–Gordon complex
scalars. But for the Higgs scalars with electric and magnetic charges we have the fol-
lowing Lagrangians:

c)

Le =
1

2
|DµΨ|2 − U(|Ψ|), (22)

Lm =
1

2
|D̃µΨ|2 − U(|Φ|) (23)

where

U(|Ψ|) =
1

2
µ2

e|Ψ|2 +
λe

4
|Ψ|4 (24)

and

U(|Φ|) =
1

2
µ2

m|Φ|2 +
λm

4
|Φ|4 (25)

are the Higgs potentials for the electrically- and magnetically-charged fields, respectively.
The complex scalar fields:

Φ = φ+ iχ1 and Ψ = ψ + iχ2 (26)

contain Higgs (φ, ψ) and Goldstone (χ1, χ2) boson fields.
Below we shall consider the gauge-fixing action Sgf chosen in Ref.[16]:

Sgf =
∫
d4x[

M2
A

2
(n · A)2 +

M2
B

2
(n · B)2] (27)

which has no ghosts.
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3 Dual Symmetry and Charge Quantization Conditions

In the last years gauge theories essentially operate with the fundamental idea of duality
(see, for example, reviews [8] and references there).

Duality is a symmetry appearing in free electromagnetism as invariance of the free
Maxwell equations:

5 · ~B = 0, 5× ~E = −∂0
~B, (28)

5 · ~E = 0, 5× ~B = ∂0
~E, (29)

under the interchange of electric and magnetic fields:

~E→ ~B, ~B→ −~E. (30)

Letting
F = ∂ ∧ A = −(∂ ∧B)∗, (31)

F ∗ = ∂ ∧B = (∂ ∧A)∗, (32)

it is easy to see that the following equations:

∂λFλµ = 0, (33)

which together with the Bianchi identity:

∂λF
∗
λµ = 0 (34)

are equivalent to Eqs.(28), show invariance under the Hodge star operation on the field
tensor:

F ∗
µν =

1

2
εµνρσFρσ (35)

(here F ∗∗ = −F ).
This Hodge star duality applied to the free Zwanziger Lagrangian (13) leads to its

invariance under the following duality transformations:

F ↔ F ∗, (∂ ∧A) ↔ (∂ ∧ B), (∂ ∧A)∗ ↔ −(∂ ∧ B)∗. (36)

Introducing the interacting Maxwell equations:

∂λFλµ = je
µ, (37)

∂λF
∗
λµ = jm

µ , (38)

with the local conservation laws for the electric and magnetic charges:

∂µj
e,m
µ = 0, (39)

we immediately see the invariance of these equations under the exchange of the electric
and magnetic fields (Hodge star duality) provided that at the same time electric and
magnetic charges and currents (and masses if they are different) are also interchanged:

e↔ g, je
µ ↔ jm

µ (40)

together with µe ↔ µm in Eqs.(16), (17), (20), (21), (24), (25), and λe ↔ λm in Eqs.(24),
(25).
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The corresponding quantum field theory with electric ei and magnetic gi charges is
selfconsistent if both charges are quantized according to the famous Dirac relation [6]:

eigj = 2πnij (41)

when nij is an integer. For nij = 1 we have the Dirac quantization condition (8) in terms
of the elementary electric and magnetic charges. But J.Schwinger [8] showed another
possibility for the charge quantization condition when instead of Eq.(8) we have:

eg = 4π. (42)

The results (8) and (42) depend on the choice of the string singularity line. We prefer to
consider the Dirac semi-infinite string and the Dirac relation (8) as a charge quantization
condition.

If the fundamental electric charge e is so small that it corresponds to the perturbative
electric theory, then magnetic charges are large and correspond to the strongly interacting
magnetic theory, and vice versa. But below we consider some small region of e, g values
(we hope that it exists) which allows us to employ the perturbation theory in both, electric
and magnetic, sectors.

When non-trivial dyons – particles with both electric and magnetic charges simal-
taneously – are present, then the analogue of the Dirac relation becomes a little more
complicated and it then reads:

eigj − ejgi = 2πnij (43)

which is duality invariant (see for example the reviews [5], [17] and the references there).
The relation (43) has the name of the Dirac–Schwinger–Zwanziger [6,8,9] quantization

condition. But in this paper the theory of dyons is not exploited.

4 Propagators

At the same time as the partition function (11) let us consider the generating functional
with external sources J (A)

µ , J (B)
µ , η and ω:

Z[J (A), J (B), η, ω] =

=
∫

[DA][DB][DΦ][DΦ̄][DΨ][DΨ̄]e−S+(J(A),A)+(J(B),B)+(η̄,Φ)+(Φ̄,η)+(ω̄,Ψ)+(Ψ̄,ω) (44)

where

(J, A) =
∫
d4xJµ(x)Aµ(x), and (η̄,Φ) =

∫
d4xη̄(x)Φ(x), etc. (45)

Using this generating functional it is not difficult to calculate the propagators of the fields
considered in our model.

Three ”bare” propagators of the gauge fields Aµ and Bµ:

Q0(A)
µν =< AµAν >=

δ2Z[J (A), J (B), η, ω]

δJ
(A)
µ δJ

(A)
ν

,

Q0(B)
µν =< BµBν >=

δ2Z[J (A), J (B), η, ω]

δJ
(B)
µ δJ

(B)
ν

,
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Q0(AB)
µν =< AµBν >=

δ2Z[J (A), J (B), η, ω]

δJ
(A)
µ δJ

(B)
ν

(46)

are presented in Fig.1 (see Fig.1(a)) together with the propagators Q(A)
µν , Q(B)

µν and Q(AB)
µν

determined by Fig.1(b).
Propagators (46) were calculated by authors of Ref.[16] in the momentum space:

Q0(A,B)
µν (q) =

1

q2
(δµν +

q2 +MA,B
2

M2
A,B

qµqν

(n · q)2 −
1

(n · q)(qµnν + qνnµ)), (47)

Q0(AB)
µν =

i

q2
εµνρσ

qρnσ

(n · q) . (48)

The dot on the diagrams of Fig.1(a,b) corresponds to the following operator:

Λµν = iq2εµνρσ
qρnσ

(n · q) . (49)

Considering QED with Lagrangian (16) for electrons (monopoles are absent in this case)
it is easy to see that the ”bare” D0

µν(q
2) and the ”dressed” (renormalized) Dren,µν(q

2)
photon propagators obey the following relation presented in Fig.2:

Dren,µν(q) = D0
µν(q) +D0

µκ(q)Πκλ(q)Dren,λν(q). (50)

Here the contribution of the electron loop is described by the operator Πκλ(q) given by
the following expression:

Πκλ(q) = e2
∫

d4k

(2π)4Tr[γκG(k)Γλ(k, k − q)G(k − q)] (51)

where γκ is the Dirac matrix, Γλ is the renormalized vertex and G(k) is the ”dressed”
propagator of the electron. Taking into account the transversality of the photon self-
energy tensor we have:

Πκλ(q) = (q2δκλ − qκqλ)Π(q2). (52)

The ”dressed” propagators Q(A)
ren,µν , Q

(B)
ren,µν and Q(AB)

ren,µν containing the contributions of
the electric (thin lines) and magnetic (thick lines) charged particle loops are presented in
Fig.3.

The Lagrangians (16) and (17) contain the interaction terms je
µAµ and jm

µ Bµ where je
µ

and jm
µ are the electric and magnetic currents:

je
µ = eΨ̄γµΨ (53)

and
jm
µ = gΦ̄γµΦ. (54)

The interactions in the Lagrangians (20)-(23) are given by je
µAµ and jm

µ Bµ as well as by

”seagull” terms e2AµAµΨ
+Ψ and g2BµBµΦ

+Φ, respectively, but now we have:

je
µ = e(Ψ+∂µΨ−Ψ∂µΨ+) (55)

and
jm
µ = g(Φ+∂µΦ− Φ∂µΦ+). (56)

The simplest electron-electron, monopole-monopole and electron-monopole interac-
tions corresponding to the Lagrangians Le,m given by Eqs.(16) and (17) are shown in
Fig.4.

Now we are ready to obtain the renormalization group equations for the effective fine
structure constants when both, electric and magnetic charges are present in our field
system.
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5 Renormalization Group Equations for the Electric and Mag-

netic Fine Structure Constants

The Gell–Mann–Low RG equation (3) can be obtained by the calculation of the ”dressed”
propagators. In the case of QED the relation shown in Fig.2 gives us:

D(q) = Z−1
3 D0(q) (57)

where the renormalization constant Z3 is related, in its turn, with Π(q2) determined by
Eqs.(51),(52):

Z3 = 1−Π(µ2). (58)

Here µ is the energy scale: q2 = µ2.
The Gell–Mann–Low β-function is given by the following expression:

β(α(p)) = −∂ logZ3

∂ logµ2
, (59)

or

β(α(p)) = −∂ log (1−Π(µ2))

∂ logµ2
. (60)

In the one–loop approximation of perturbation theory (see for example [18]) we can write:

β(α(p)) ≈ ∂Π(µ2)

∂ log µ2
≈ −∂Π(M2)

∂ logM2
(61)

where M is the momentum cut–off.
Let us consider now the renormalization group equations for α and α̃ when both

(electric and magnetic) charges are present in our theory.
Fig.3 shows the contributions of the electric (thin lines) and magnetic (thick lines)

charged-particle loops to the ”dressed” propagators Q(A)
ren,µν and Q(B)

ren,µν. We consider also
the ”dressed” propagators in loops assuming the theory of the case a) with Lagrangians
Le,m given by Eqs.(16) and (17).

Introducing the renormalization constants Z3 and Z̃3 by the following relations:

Q(A)
ren,µν = Z−1

3 Q(A)
µν , (62)

Q(B)
ren,µν = Z̃−1

3 Q(B)
µν , (63)

Q(AB)
ren,µν = (Z3Z̃3)

−1/2
Q(AB)

µν , (64)

it is not difficult to calculate Z3 and Z̃3 according to the diagrams shown in Fig.3. These
diagrams demonstrate the following relations:

Q(A,B)
ren,µν = Q(A,B)

µν +Q(A,B)
µκ Π

(e,m)
κλ Q

(A,B)
ren,λν +Q(AB)

µκ Π
(m,e)
κλ Q

(AB)
ren,λν (65)

which mean:

Z−1
3 Q(A)

µν = Q(A)
µν +Q(A)

µκ Π
(e)
κλZ

−1
3 Q

(A)
λν +Q(AB)

µκ Π
(m)
κλ (Z3Z̃3)

−1/2
Q

(AB)
λν , (66)

Z̃−1
3 Q(B)

µν = Q(B)
µν +Q(B)

µκ Π
(m)
κλ Z̃

−1
3 Q

(B)
λν +Q(AB)

µκ Π
(e)
κλ(Z3Z̃3)

−1/2
Q

(AB)
λν , (67)
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Using the expressions (47) and (48) obtained in Ref.[16] for propagators Q0(A,B,AB)
µν and

the limit MA,B → ∞ in Eq.(47), it is possible to show that the following relations are
valid:

Z−1
3 Q(A)

µν = Q(A)
µν + Π(e)Z−1

3 Q(A)
µν + Π(m)(Z3Z̃3)

−1/2
Q(A)

µν , (68)

Z̃−1
3 Q(B)

µν = Q(B)
µν + Π(m)Z̃−1

3 Q(B)
µν + Π(e)(Z3Z̃3)

−1/2
Q(B)

µν , (69)

or

Z3 =
1− Π(e)(µ2)

1−Π(m)(µ2)(Z3Z̃3)
−1/2

, (70)

Z̃3 =
1− Π(m)(µ2)

1− Π(e)(µ2)(Z3Z̃3)
−1/2

. (71)

Here Π(e)(µ2) and Π(m)(µ2) are given at q2 = µ2 by the photon self–energy tensors Π(e)
µν

and Π(m)
µν corresponding to the electron and monopole loops, respectively (see bubbles in

Fig.3):
Π(e,m)

µν (q) = (q2δµν − qµqν)Π
(e,m)(q2) (72)

where Π(e) (or Π(m)) is described by Eqs.(51),(52) with e, µe (or g, µm) as a charge and a
mass of the electron (or monopole).

J.Schwinger was the first (see Refs.[8]) who investigated the renormalization problem
of the electric and magnetic charges in QEMD.

Considering the ”bare” charges e0 and g0 and the renormalized effective charges e and
g, we must distinguish between two opposite cases. It was shown in Refs.[8,11,12]:

e/g = e0/g0, (73)

while other authors [13,14] obtained the following result:

eg = e0g0. (74)

S.Coleman [15] analysed the case when the extended t’Hooft–Polyakov monopole is shrunk
to zero size. The effective theory describing the interaction between such objects in QEMD
tells us something about the renormalization effects. The consistency condition gave the
following result:

eg = (Z3Z̃3)
1/2
e0g0 = 2π, (75)

or
Z3Z̃3 = 1. (76)

This means that the Dirac relation (8) is valid not only for the ”bare” charges e0 and g0,
but also for the renormalized effective charges e and g.

We have actually already rederived this result in the Zwanziger formalism, since we
can obtain it by using (70) and (71). Let us in fact multiply (70) on both sides with

1/
√
Z3 − Π(m)(µ2)/

√
Z̃3 and (71) by 1/

√
Z̃3 − Π(m)(µ2)/

√
Z3 and then add the resulting

equations. The last ones become by the cancellation of Π terms giving√
Z3 +

√
Z̃3 = 1/

√
Z3 + 1/

√
Z̃3, (77)

from which it is easily seen that Eq.(76) follows.
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Using this result we obtain the following important relations:

Z3 = Z̃−1
3 =

1−Π(e)(µ2)

1−Π(m)(µ2)
. (78)

RG equations for the fine structure constants α and α̃ immediately follow from Eq.(78):

d(logα(p))

dt
= −∂ logZ3

∂ logµ2
, (79)

or
d(logα(p))

dt
= −∂ log(1−Π(e)(µ2))

∂ log µ2
+
∂ log(1−Π(m)(µ2))

∂ logµ2

= β(e)(α)− β(m)(α̃) (80)

and
d(log α̃(p))

dt
= −∂ log Z̃3

∂ logµ2
=
∂ logZ3

∂ log µ2
= β(m)(α̃)− β(e)(α). (81)

Here the analytical expressions for β–functions are given by the same Eq.(60):

β(e,m)(α or α̃) = −∂ log (1− Π(e,m)(µ2))

∂ logµ2
, (82)

but now these β–functions contain electron (e, µe) and monopole (g, µm) parameters,
respectively.

The obtained RG equations (80) and (81) obey the following equality:

d(logα(p))

dt
= −d(log α̃(p))

dt
(83)

which corresponds to the Dirac relation:

α(t)α̃(t) =
1

4
(for all t) (84)

valid for the renormalized electric and magnetic fine structure constants at the arbitrary
scales.

6 The beta–functions

The functions β(e,m) are given perturbatively by the expressions similar to Eq.(4):

β(e)(α) = β
(e)
2 (

α

4π
) + β

(e)
4 (

α

4π
)
2

+ ... (85)

and

β(m)(α̃) = β
(m)
2 (

α̃

4π
) + β

(m)
4 (

α̃

4π
)
2

+ ... (86)

The perturbative expansions (85) and (86) coincide with the series (4) calculated in QED,
at least on the level of the two–loop approximation. The monopole(electric) loops inside
the electric(monopole) loops appear only on the level of the three–loop approximation.
Of course, these β–functions are different if we consider magnetic scalar particles instead

of electric fermions, or vice versa. The corresponding coefficients β
(e)
2 , β

(e)
4 of the series
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(85) or β
(m)
2 , β

(m)
4 of the series (86) are given by Eqs.(5) or (6) depending on the type of

the charged particles.
If both matter fields are electrically- and magnetically-charged fermions or both are

scalars then we have the same expressions for the functions β(e,m) and we can write the
following equations for the cases a) and b):

d(logα(p))

dt
= −d(log α̃(p))

dt
= β2

α− α̃

4π
(1 + 3

α+ α̃

4π
+ ...). (87)

The last equations show that the one–loop approximation works with accuracy
<∼ 30% if

both α and α̃ obey the following requirement:

0.25
<∼ α, α̃

<∼ 1. (88)

But strictly speaking, we don’t know the exact behaviour of the whole asymptotic series
(87).

In Refs.[19] and [20] the behaviour of the effective fine structure constants was in-
vestigated in the vicinity of the phase transition point in compact (lattice) QED by the
Monte–Carlo simulation method. The following result was obtained [19,20]:

αlat
crit ≈ 0.20 and α̃lat

crit ≈ 1.25. (89)

These values almost coincide with the borders of the perturbation theory requirement (88).
In consequence, assuming that the phase transition couplings (89) may be described by
the one–loop approximation with accuracy not worse than (30 − 50)%, we have tried to
calculate them in the Higgsed monopole model (see Ref.[21]). The aim of the last paper
was to confirm, in general, the idea of the approximate ”universality” (regularization
independence) of the phase transition couplings. The result obtained in [21]:

αlat
crit ≈ 0.185 and α̃lat

crit ≈ 1.35 (90)

is in accordance with the lattice result (89). It seems that the idea of the approximate
”universality” for the first-order phase transitions is really confirmed.

7 Conclusions

The aim of this paper was to obtain the renormalization group equations for the electric
and magnetic renormalized fine structure constants using the Zwanziger formalism for
QEMD. The result (see Eqs.(80) and (81)):

d(logα(p))

dt
= −d(log α̃(p))

dt
= β(e)(α)− β(m)(α̃) (91)

confirms the Dirac relation α(t)α̃(t) = 1/4 existing at the arbitrary scale.
According to the philosophy given in the Introduction it is possible to consider the

perturbation theory for β(e)(α) and β(m)(α̃) simultaneously if both α and α̃ are sufficiently
small. Then the functions β(e,m) are given perturbatively by the usual series (4) or (7).
The calculations in QED (see Section 1) have shown that the perturbation theory works

up to α
<∼ 1. Due to the Dirac relation (9), such a requirement leads to the following
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condition: α̃
>∼ 0.25. In consequence, we have QEMD RG equations with beta-functions

β(e,m) considered perturbatively if both α and α̃ obey the following requirement:

0.25
<∼ α, α̃

<∼ 1. (92)

We have just this case in the vicinity of the phase transition point for the compact (lattice)
QED: αlat

crit ≈ 0.2 and α̃lat
crit ≈ 1.25 (see Refs.[19] and [20]).
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Captions for figures:

Fig.1
(a) ”Bare” propagators of gauge fields Aµ (thin wavy line) and Bµ (thin dashed line)

describing a photon in two (non–dual and dual) states existing in the Abelian gauge the-
ory with both electric and magnetic charges.

(b) Propagators of gauge fields Aµ (thick wavy line) and Bµ (thick dashed line) de-
scribing the contribution of dual transformations of the photon.

Fig.2
”Dressed” propagator (double line) of the photon in QED.

Fig.3
”Dressed” propagators of gauge fields Aµ (double wavy line) and Bµ (double dashed

line) containing the contributions of the electrically- (thin lines) and magnetically-charged
(thick lines) particle loops.

Fig.4
The interaction of the electric (thin line) and magnetic (thick line) currents.
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