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In paper(1) an examination was made, using the quasi-linear theory, 

of the pattern of development of aperiodic beam instability(2,3) right 

up to its disruption. No answer was given, however, to the question 

of the effect of the non-linear interaction of harmonics on the 

relaxation process which was considered. It is this question that we 

shall be investigating in this paper. 

1. In order to evaluate the influence of the following terms of 

expansion over the field in Maxwell's equations, it will be sufficient 

in the present instance to calculate the non-linear flow of the second 

orderx) (see also(4) for example). 

(1.1) 

x) This condition is related to the aperiodic character of the 
instability which is being investigated. 
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in which a = 1,2; index 1 refers to the beam and index 2 to the plasma. 
When obtaining equation (1.1) we used the following representation for 
the fieldsxx) 

(1.2) 

Taking into account the non-linear flow (1.1) Maxwell's equations can be 
written in the following form: 

(k2 δij - ki kj + γ
2 

c2 
εijπ) E = -

4πγ 

c2 
(2) 
j 

(1.3) 

where 

εijπ = δij -[δij + v o i
( a ) v o j

( a ) 
k2 + 

ki voj(a) voj(a)kj 
]( 

ωL(a) 
) 2 εijπ = δij -[δij + 

ω2 
k2 + ω ]( ω ) 2 

ωL = Langmuir frequency 

= (kx, 0, 0 ) , = (0, 0, v o z ) . 

Here the z axis is the direction of the relative movement of the beam 
and plasma. 

In order to simplify the solution of equation (1.3) we shall change 
over to the moving system of coordinates in which (see ref. 3) 

xx) A representation of the type naturally narrows the range of per
turbations under study. 
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(ωL(a))2 ( a ) = 0 (1.4) 

In this system all the non-diagonal elements εijπ are zero. In 
this manner we obtain 

(k2 - kx2 + γ
2 

+ 

(ωL(a))2 
) = -

4πγ (2) 
j (k2 - kx2 + c2 + c2 

) = -
c2 

(2) 
j 

(k2 + γ 
+ 

(ωL(a))2 
) E 

4π (2) 
j· 

(k2 + 
c2 + c2 ) = - c2 (2) j· 

(kx2 + γ - (ωL(a))2 (kx2 (voz(a))2 -1))Ekz = -
4πγ 

jkz(2) (kx2 + c2 - c2 
(kx2 

Y 2 
-1))Ekz = -

c2 jkz(2) 

(1.5) 

Assuming the non-linearity to be small, we shall solve system 
(1.5) by the method of consecutive approximations. It follows from 
the solution of the linear problem that only those waves with an elec-
trical vector directed along the beam(5) can be unstable. We shall 
therefore confine ourselves to investigating the oscillations in which = (0, 0, Ε z). In the non-linear approximation we shall consider 
only the interaction of transverse oscillations Εt (assuming the 
amplitude of the longitudinal linear oscillations Εl to be small, which 
may be the case, for example in a system which is limited along z, with 
open ends). 
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In accordance with this we have 

(1.6) 

2. Let us now turn to the calculation of the non-linear polarizability 
Siqr (k, k1, k 2). By expanding the kinetic equation for the distribution 
functions of the beam and plasma, with an accuracy up to the terms of the 
second order in the field, we obtain (see(6) for example): 

(2.1) 

or, in the hydrodynamic range which is at present of interest to us: 

siqr(a) = -
(ωL(a))2e [( k

2 
voi(a))δqr + k12 voq(a) δir) + k22 Vor(a)) δiq) + siqr(a) = - 8π mu) ω [( ω2 voi(a))δqr + ω12 

voq(a) δir) + 
ω22 

Vor(a)) δiq) + 
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Considering that the condition (vo(2))2« (vo(1))2 (which follows from formula(1.4))is fulfilled, the expression for non-linear polaris¬ ation of the plasma can easily be simplifiedx) 

si q r
( 2 ) = -

(ωL(2))2e 
( k

2 

voi(2) δqr + 
k12 v o q

( 2 ) , δ i r + k22 vor(2)δiq). si q r
( 2 ) = -8π πω1 ω2 ( 

ω2 voi(2) δqr + ω12 v o q
( 2 ) , δ i r + 

ω22 vor(2)δiq). 

(2.3) 
As shown in paper(1) the linear increment of the aperiodic beam 

instability can be written in the following manner: 

= ωL(2)( n1 )½ voz(1) -
kx 

• (2.4) = ωL(2)( n2 
)½ 

c -
√kx2 + (ωL(2))2 

• (2.4) 

Comparing kx voz(1) and the increment which is determined by 
means of formula (2.3) the following inequality can easily be obtained 

( 
n1 

) ½ . (2.5) 
kvo(1) 

( n2 
) ½ . (2.5) 

Using this condition the equation for polarizability can be 

simplified: 

(2.6) 
x) We would point out that as (Siqr(2) ≈ vo(2), its non-linear flow, in the system of coordinates where the plasma is at rest, is not included in the equation for the field Ekz

t. 
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3. In(1) the magnetic energy WH was evaluated for the moment of 

disruption of the instability to which it is due 

WH n1m(vo
(1))2 n1 (ωL(2))2 • (3.1) WH n1m(vo
(1))2 

n 2 k2 c2 + (ωL
(2))2 • (3.1) 

let us evaluate the non-linear term in the equation for the field 

Ε k z
t, the value of the field being determined by the relationship (3.1). 

The equation is of the form 

where Szzz(1) is determined by equation (2.6) and Szzz(2) by equation 

2.3). Using the same assumptions it is easy to show that 

( S ( 1 ) / S ( 2 ) ≈ ( ) ½ . Consequently for the evaluations we shall 

leave the function Szzz(1) everywhere in the non-linear flow. 

The maximum increment is that of the harmonics in which k is 

included in the interval 

ω L 
< k < ( 

n1 
)½ ( 

vo(1) 
) 

ωL (3.3.) 
c < k < ( n 2 

)½ ( v T
( t ) ) c 

(3.3.) 

but this interval is shortened with the passage of time 

vT - vT
*= vo(1)( 

n1 )½ vT - vT
*= vo(1)( n 2 

)½ 
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(the instability passes into a quasi-linear stage, examined in paper (7). Consequently, in the evaluations we shall use for |H|2 the formula | H | 2 = |H|2 δ() where ko ≈ 

Taking into consideration what has been stated above, and considering 
formula (3.1), we are able to determine that towards the end of the quasi¬ 
linear relaxation, the relation of the non-linear number to the linear one 
is of the order a, where a is : 

a = (WH/n1 m (vo(1))2) 
n 2 

< 1 . a = (WH/n1 m (vo(1))2) 
n1 

< 1 . 

It follows, therefore, that taking into account non-linear effects 
cannot noticeably alter the results obtained in the first part of the 
work. 

Finally, let us evaluate the amplitude of the longitudinal field 
Εℓ ( ( ) ≠ 0), which occurs as a result of the non-linear interaction 
at the moment of disruption of the instability. Using the first 
equation in the system (1.5), it is easy to obtain, in the approximation 
of weak non-linearity, 

Eℓ = ωL ( 
n1 

) « 1 . 
Et 

= ck ( n 2 
) « 1 . 

In conclusion, the authors have pleasure in expressing their 
gratitude to V.N. Tsytovich for the most valuable discussions. 
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