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SUMMARY * 

Theoretical considerations of the dynamics of the vapour 
babble in liquid upon the ultrasonic field is given. The following 
assumptions are made : a bubble is spherical and homogeneous; vapour is 
in thermodynamical equilibrium with the surface layer of the liquid; 
liquid should be incompressible and isotropic. The system of equations 
takes into account heat and mass exchange between a bubble and the 
liquid. The state equation contains the second and third virial coefficients. 
The numerical solutions of the system of equations are given for the 
case of liquid hydrogen. Since the solutions are studied in the 
asymptotical region where the size of the bubble is 10-3 cm, the initial 
bubble is taken equal 5.10-4 cm, and the surface tension is neglected. 
The properties of solutions are discussed with the various values of 
thermodynamical and acoustical parameters corresponding to the working 
conditions of the ultrasonic bubble chamber. When the ultrasound is 
switched on, the initial bubble begins growing and after the finite 
number of pulsations dynamical equilibrium is established and the 
average radius becomes constant. The mechanism of the bubble growth is 
rectified heat diffusion. By taking into account the property of real 
gas one obtains a larger bubble compared to that of an ideal gas. It is 
shown that the qualitative behaviour of small and big bubbles has the 
peculiarity due to the presence of the surface and volume terms in the 
equations. These peculiarities and the sign of vapour specific heat 
conductivity along the phase equilibrium curve are of importance when 
the dynamical equilibrium pulsations of the bubble are established. The 
natural frequency pulsations greatly affect the bubble behaviour. 

* The above summary in English was provided by the authors, L.G. Tkachev 
and V.D. Shestakov. 
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INTRODUCTION 

At the present time attempts are made to build 
ultrasonic bubble chambers (USBC)1), 2). In connection with this, the 
influence of an ultrasonic field upon the dynamics of a vapour bubble in 
liquid hydrogen was theoretically considered3), 4). In the present work, 
in distinction from3), 4), the vapour is not considered an ideal gas; as 
a result of this, the system of equations describing the behaviour of 
bubbles is different. As was to be expected, qualitative description of 
the behaviour of a single vapour bubble in a liquid under the influence 
of an ultrasonic field, did not change : as before, the mechanism for 
bubble growth is rectified heat diffusion. If one considers the 
characteristics of a real gas, then the bubble grows to a considerable 
large size. This explains the dominant role played by the volumetric 
factors during the establishment of pulsations of the bubble, which are 
in equilibrium. 

FORMULATION OF THE PROBLEM 

As in paper3), we shall limit ourselves to a 
consideration of a spherical vapour bubble in an incompressible liquid, 
making radial pulsations under the influence of the sinoidal ultrasonic 
field. The temperature field around the bubble is assumed to be 
isotropic, and the bubble itself -- homogeneous. The amplitudes and the 
frequencies of the pulsations of the bubble are limited by the condition 
of quasi-equilibrium of evaporation (condensation)* 

< 4πR2 aP' √µ , (1) < 4πR2 
√2πRBT' 

, (1) 

* The "µ" was omitted in formula below. 

.../... 



- 2 -

where µ-- gram mole, - speed of change of the mass of the bubble, 
RB— universal gas constant, R-- radius of the bubble, P' and T'--
pressure and temperature of gas in the bubble, a-- constant of 
accommodation. 

The present work examines fairly large bubbles. For the description of 
their behaviour, terms conditioned by surface tension are inessential. 

The condition (1) means that the vapour in the bubble is in thermodynamic 
equilibrium with the surface layer of the liquid 

P'(t) = P(R,t), T'(t) = T(R,t), (2) 

where P(R,t) and T(R,t)-- pressure and temperature in the liquid on the 
surface of the bubble at instant t. 

The equation, defining the behaviour of a bubble, follows frosr the 
laws of conservation of momentum, mass and energy. The continuity 
equation in an incompressible liquid 

r2 = UR.R2 (3) 

allows us to integrate the Euler equation along the space variable. 
As a result we have: 

R.R + 2UR. -
1 U2R = P' - , (4) R.R + 2UR. - 2 U2R = , (4) 

where r-- point coordinate in the liouid, and UR-- the speeds of the 

liquid in the points r and R correspondingly (UR = ); density of the liouid, Ρ∞ -- pressure in the liquid at infinity from 

.../... 
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the bubble Ρ∞ = Ρ0 - Ρ1 sin (2πft). Here Ρ0-- static pressure, P1 
and f-- amplitude and frequency of the ultrasonic field. 
Equation (4) changes to the well known Rayleigh equation, if one 
assumes UR = . In general, UR and are in correlation, following 
from the law of conservation of mass during evaporation and 
condensation on the surface of the bubble 

= UR + (5) = UR + 
4πR2ρ 

(5) 

Equations (4) and (5) determine R(t), if P'(t) is known. The vapour 
pressure is determined by the law of conservation of energy in the 
system under consideration 

dEv + dEL = - 4πR2P'URdt, (6) 

where the increase of the internal energy of the vapour and of the 
liquid are correspondingly equal to: 

dEv = εv dM + ( ∂Ev )M,T dρ' + cv M.dT' (7) dEv = εv dM + ( ∂ρ' )M,T dρ' + cv M.dT' (7) 

dEL = - εL dM - 4πR2 k ∂T dt (8) dEL = - εL dM - 4πR2 k ∂R dt (8) 

Here εv and εL-- specific internal energy of the vapour and the 
liquid, ρ' and cv-- density and specific heat of the vapour at 
constant volume, k-- coefficient of heat conductivity of the liquid, 
∂T/∂R-- temperature gradient in the liquid at the surface of the 
bubble. Taking into account that, 

.../... 
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εν - εL = L - Ρ' ( 1 - 1 ), (9) εν - εL = L - Ρ' ( ρ' - ρ ), (9) 
where L-- heat of vaporization, the equation of conservation of energy 
can be written in the following way: 

L.dM + cSρ' dT = 4πR2 k. ∂T , (10) L.dM + cSρ' dT = 4πR2 k. ∂R , (10) 

where cS-- specific heat of vapour along the phase equilibrium, equal 
to 

cS = cν + T' ( dP' 
)ρ' 

d( 
1 

) . (11) cS = cν + T' ( dP' 
)ρ' 

d( ρ' ) . (11) cS = cν + T' ( dT' )ρ' dP' . (11) 

Thermodynamic values of Ρ', Τ' and ρ' are related to each other by the 
equation of state 

P' = RB T' 
ρ' [1 + Β ρ + c( ρ' )2], (12) P' = RB T' µ [1 + Β µ + c( µ )

2], (12) 

with µ-- gram mole, B and c-- virial coefficients, which are established 
functions of temperature5). In the approximation of ideal gas, 
Β ≡ C ≡ O. 

Formula (10) gives the equation determining the pressure of the vapour 
in a bubble 

dP' = 3 • 
k• ∂T - ρ' L 

, (13) dP' = 3 • 
k• ∂R - ρ' L 

, (13) dt = R • 
L dρ' + cSρ' dT' 

, (13) dt = R • 
L dP' + cSρ' dP' 

, (13) 

where the derivatives dρ' and dT' are measured along the curve of where the derivatives 
dP' 

and 
dP' 

are measured along the curve of 

.../... 



-5-

phase equilibrium. 

In order to calculate the gradient of temperature of the liquid at 
the surface of the bubble, it is necessary to examine the equation 
of heat conductivity in the liquid 

∂T + ν 
- URν3 

• ∂T = D ν4 ∂T (14) 
∂t + ν 

R 
• ∂ν = R2 ν4 ∂ν2 

(14) 

where D-- heat diffusivity of the liquid, ν = 
R 

-- dimensionless where D-- heat diffusivity of the liquid, ν = r -- dimensionless 
point coordinate in the liquid. In calculating (14),equation (3) was 
used. 

The equations (4), (5), (13), (14) allow us to solve the problem of 
the behaviour of a vapour bubble in an ultrasonic field. The initial 
and boundary conditions are selected in the following manner: 
R(o) = 5.10-4 cm, P(o) = Ρ0, T(r=∞,t) = Τ (ν = 0, t) = Τ∞; initial 
speed (o) and diffusion of temperature in the liquid Τ (ν, t = 0) 
were determined, in accordance with paper6), by supposing that with 
t < 0 the ultrasonic field is non-existent. Thermodynamic values L, k, 

cv are considered known functions along the curve of phase equilibrium 
7), 8). 

As in paper3), the problem is solved numerically. Results are shown 

as functions of R(t), M(t) or (t), where the bar indicates the 

average value in time for the period of the ultrasonic field. 

DISCUSSION OF THE RESULTS 

Equations, describing the behaviour of the bubble, change 
···/··· 
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into the corresponding equations m paper3), if one supposes UR = in (4) and Β ≡ C ≡ O. Exchange of formula (4) for the Rayleigh 
equation leads to a negligibly small change in the results in the 
examined range of temperatures : from 24 to 28 K. The influence 
of the characteristics of vapour on the behaviour of a bubble is 
more considerable, as can be seen from diagram 1, where the functions 
of R(t) are shown : the curve I corresponds to real gas, the curve 
II and III-- to ideal. The difference between curves II and III 
is explained by the method of assigning experimental values for 
the specific heat of vapour cp and cv, related to each other by the 
equation of state. If one uses the equation of state for the ideal 
gas and the numerical values for cp (cv), one gets then curve II 
(curve III). For the real gas, one gets, naturally, the single 
result -- curve I. In this case, the bubble becomes larger and its 
behaviour is characterized by peculiarities, which the small bubbles 
did not have. 

Let us look in more detail at the characteristics of an ideal and real 
gas, utilizing equation (10). Present in this equation are 
surface as well as volumetric terms, proportional correspondingly 
to R2 and R3. In examining this qualitative behaviour, one can 
disregard the volumetric terms : sufficient number of small bubbles 
is present in the course of one cycle of the ultrasonic field, then 

L = 4π R2 k ∂T . (15) L = 4π R2 k ∂R . (15) 

It is easy to show that this formula gives us the inequality > 0 
(fig. 2a), which means that in the phase of growth (compression) of the 
bubble, its mass also grows (decreases). Here we can describe the 
qualitative behaviour of the bubble in terms of rectified and 
static heat diffusion, irrespective of the fact whether or not the 

.../... 
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vapour is an ideal gas. 

When considering large bubbles, one can disregard the surface terms 
in equation (10), then 

L + cS M = 0. (16) 

Taking into account that always < 0, we conclude that the sign 
of the product depends on the sign of the specific heat of the 
vapour cS. 

The specific heat of an ideal gas cS = cP - L can be positive as The specific heat of an ideal gas cS = cP - Τ can be positive as 
well as negative. The specific heat of real gas along the curve of phase equilibrium, calculated by using (11), according to experimental facts5), is always negative. 

Therefore, the specific heat of ideal and real gases, in the 
range of considered temperatures (in the environment of 26 Κ), have 
along the curve of phase equilibrium opposite signs. As result of 
this, in the first instance, > 0 and in the second-- < 0 
(fig. 2b). Note, that in spite of the above, in both instances > 0 ; 
that is, generally, the mass of the vapour increases, if the average 
size of the bubble increases. 

In the case of < 0 the conditions of thermodynamic equilibrium 
for a sufficiently large vapour bubble require condensation of the 
vapour in the course of its growth during the lowering of the 
temperature; and conversely, evaporation of the liquid in the course 
of the compression of the bubble during the raising of its 
temperature. Apparently, the transfer of energy, accompanying the 
transfer of a substance from one phase into another, and the 

.../... 
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transfer of energy, conditioned by rectified heat diffusion, are 
directed into opposite directions. As a result of this, dynamic 
equilibrium of sufficiently large bubbles in an ultrasonic field is 
established only when both currents compensate each other. The new 
way of establishing dynamic equilibrium of the pulsating bubble 
brings along with it, as we shall see, a qualitative new dependence 
between the significance of Ρ1, Ρ0 and = lim (t). between the significance of Ρ1, Ρ0 and = 

t→∞ (t). 

In figures 3 and 4 are shown the dependencies of (t) during the 
various values of the amplitude of the ultrasonic field for the 
frequencies f = 400 kHz and f = 40 kHz. As the amplitude P1 grows, the 
"life span" of the initial bubble grows and becomes infinitely large, 

when the amplitude reaches the value of the diffusion threshold 
Ρ1 > Pdiff. Here, the value of the asymptotic radius is rather small, 

so that the volumetric terms, in comparison with the surface ones, do not 
play a significant role in the creation of the dynamic equilibrium 
Therefore, grows, as the amplitude of the ultrasonic field 
increases (fig. 3, Ρ1 = 1.1 bar, P1 = 1.2 bar). In the case of large 
amplitudes of an ultrasonic field, the behaviour of the bubble is 
complicated not only by the fact that the volumetric effects play 
a significant role, but also on account of resonance effects, 
which increase according to the growth of the bubble and the 
approach of its frequency to the frequency of the ultrasonic field. 
When the frequencies are multiples of each other, the pulsations of 
the bubble on its own frequency become especially intensive. This 
leads either to the appearance of resonance levels on the curvature (t), or to the disruption of the condition of quasi-equilibrium 
(1). The curves, corresponding to P1 = 2.4 bar and P1 = 2.03 bar 
in fig. 3, are examples of the fact that the resonance level has 
reached an equilibrium, because only due to strong pulsations on 
its own frequency one and the same value for , as well as for the/various 

.../... 
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amplitudes of the ultrasonic field, can be attained. 

The curves, shown in fig. 4, demonstrate the role of 
volumetric factors during the creation of dynamic equilibrium of 
large bubbles : with the increase of the amplitude of an ultrasonic 
field, the value of decreases, contrary to the instances when 
equilibrium is established as a result of equality of static and 
rectified diffusion. Such behaviour of the asymptotic radius of 
the bubble can be explained by the following rough calculations. 
In case of dynamic equilibrium, all physical values M(t), T(t), 
T'(t), etc... become periodic functions of the period of an 
ultrasonic field τ. Let us divide the equation (10) by M and 
integrate it from to to t + τ. 

t+τ 
L dt + 

t+τ 
cS dt = 

t+τ 4πR2 k ∂ T . ∫ L dt + ∫ cS dt = ∫ 4πR2 k ∂ T . ∫ L M dt + ∫ cS dt = ∫ M k ∂ R . t 
L M dt + t 

cS dt = 
t M k ∂ R . 

When examining the qualitative behaviour of a bubble, one can 
consider that the thermodynamic values L, cS, k are independent of 
temperature, and, consequently, of time. Then, the left side of 
equation (17) becomes 0, so that: 

t+τ 1 ∂T dt = 
t+τ 1 ∂T(ν=1,t) dt ≈ 0. ∫ 

1 ∂T dt = ∫ 
1 ∂T(ν=1,t) dt ≈ 0. ∫ R ∂R dt = ∫ R2 ∂ν dt ≈ 0. 

t R ∂R dt = 
t R2 ∂ν dt ≈ 0. 

Expanding into a series of sub-integral functions 1 , 
∂T(ν=1,t) Expanding into a series of sub-integral functions R2 , ∂ν 

and preserving in the expansion the more essential harmonics, one 
can show that the approximating formula 

P1 ≈ const. 
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is valid, with which the results shown in fig. 4 agree very well. 

In reference to relation (19), as well as the curves in figs. 4 and 
5, one can mention the following. The decrease of Ρ1, f or the 
increase Ρ0 leads to a decrease in the speed of the pulsation of the 
bubble. Since the volumetric terms in equation (10) are proportional 
to the derivative ones in time, they decrease faster, than the 
surface ones. Therefore, the relative role of rectified heat diffusion 
grows and a dynamic equilibrium is established during the larger 
values of . Naturally, with a decrease of amplitude and the 
speed of the pulsations of the bubble, the curve (t) grows slower. 

In fig. 6 are shown the dependencies (t), derived during the 
various temperatures of the liquid Τ∞ during the condition when the 
excess of static pressure in the liquid above the pressure of the 
saturated vapour is constant : Po - ΡS = 0.5 bar, and when the 
amplitude and the frequency of the ultrasonic field are also constant. 
As seen from the curves, the resonance effects during the amplitudes 
2 - 3 bar are very significant. Due to this it is difficult to 
indicate the temperature, optimal for the tecnnical realisation of 
USBC. From the point of view of the dynamics of bubble nuclei, 
because of smaller surface tension, higher temperatures are prefered. 

It is essential to note that the obtained results pertain to an ideal, 
homogenous bubble. As seen from fig. 1, the general picture of the 
behaviour of a bubble in an ultrasonic field depends primarily upon 
the description of the characteristics of the vapour; therefore, in 
the future, it would be of interest to observe the dynamics of 
heterogenous bubbles. 

.../... 
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In conclusion, the authors are grateful to V.A. Akulichev, V.N. 
Alekseev, B.A. Zhukov, G.I. Selivanov, and A.I. Filippov for their 
valuable discussions. 
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Fig. 1 
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Fig. 2 Functions of R(t) and M(t) for small (a) and for large 
(b) bubbles during the period of the ultrasonic field. 
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Fig. 3 Functions of (t) for the various amplitudes of the 
ultrasonic field. 
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Fig. 4 Functions of (t) during the various amplitudes of the 
ultrasonic field and during various static pressures. 
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Fig. 5 Functions of (t) during the various frequencies of the 
ultrasonic field. The star on the curvature indicates 
that further examination of the corresponding event 
is impossible with the condition of quasiequilibrium (1). 
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Fig. 6 Functions of (t) during various temperatures 

Ρ1 =2.03 bar 
Τ∞ = 24 Κ (I) 

Ρ1 =2.03 bar Τ∞ = 26.15 Κ (II) 

Ρ1 =3.04 bar 
Τ∞ = 26.15 Κ (III) Ρ1 =3.04 bar Τ∞ = 28 Κ (IV) 


