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1 Introduction

Generation of artificial random events within multidimensional (phase) space according
to a positive probability distribution defined by a theoretical model is a standard exercise
in the particle physics, and in may areas of research. The above is usually called “Monte
Carlo simulation” or generation of unweighted (weight equal one) events, while more
modest task of calculating the integral only, using weighted events is usually termed
“Monte Carlo integration”. In this work, primary interest is in the Monte Carlo (MC)
simulation, which is a more difficult problem than MC integration. A computer MC
program doing this is usually called a “MC event generator”.

With the advent of ever faster computers, one is able to perform Monte Carlo simula-
tion or integration in more dimensions and for more and more complicated distributions.
All MC methods/algorithms for the efficient, i.e. fast, MC simulation/integration can be
reduced to a surprisingly small number of the basic methods, see e.g. ref. [1, 2], that is
to mapping variables into more natural ones, weighting/rejecting and splitting the prob-
ability distribution into sum of simpler ones (branching). For MC event generators which
are used widely it is worth the effort to develop very efficient algorithm of MC genera-
tion, custom-made for the individual problem. There is no better guide for constructing
an efficient custom-made MC generation algorithm than insight into the physics of the
process to be simulated. There are many examples of very efficient MC event generators
of the custom-made type.

On the other hand, it is often necessary to perform quickly “brute force” MC integra-
tion or generate events according to a probability density with strong peaks (singularities)
spanned along complicated hyperspaces of not very well known shape, or in the case when
the change of input data induces not very well controlled variations in the structure of
the singularities. In all such cases it would be highly desirable to have at our disposal a
numerical tool (program) with a MC generation algorithm featuring built-in capability of
adjusting automatically the generation procedure to an arbitrary pattern of singularities
in the probability distribution. Such a general-purpose tool was always a dream of people
using MC methods. This is an utopian dream in the sense that we shall never get an
ideal tool of this kind, i.e. working for an arbitrary distribution. Nevertheless, we may
hope to develop a MC tool with an algorithm which is fairly efficient for a relatively wide
range of multidimensional probability distributions. In reality, for each such method it is
possible to find a distribution for which the particular general-purpose MC method (tool)
fails badly. A similar situation exists for the problem of finding the absolute minimum of
a multi-parameter function or in many other numerical problems.

The best known and widely used general-purpose algorithm for the Monte Carlo in-
tegration of an arbitrary density function in n-dimensions is probably that of Lepage
described in ref. [3], and embodied in the widely used Fortran code VEGAS. In this
classical algorithm, the integrand function in n dimensions is assumed to be fairly well
approximated by a product of functions, each one depending just on one variable. The in-
tegration range of each variable is divided into k bins of unequal width, with binning (bin
sizes) different for each variable. The entire integration domain, that is an n-dimensional
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rectangle, is divided into kn sub-rectangles. The whole structure is explored by means of
the MC generation of random points within each sub-rectangle, with a uniform distribu-
tion. The result of repeated MC exploration runs is used to improve the binning. The
binning is adjusted iteratively, such that the minimum value of the ratio of the dispersion
to the average weight is achieved. In this way VEGAS is able to do MC integration quite
efficiently. The original VEGAS was not really aimed for MC generation, but with a little
bit off effort, it can be adapted to MC generation, as seen below.

As we see, the generation technique of VEGAS is essentially an example of a multi-
branching method with each branch corresponding to one of kn rectangles. In many
practical applications (maybe even a majority) the assumption of factorizability of the
integrand function is not violated too strongly and the VEGAS algorithm works fine. As
expected, it fails when singularities tend to follow diagonal of the rectangle, i.e. variables
are strongly correlated, also on the case of big voids, singularities on thin hyperspaces
etc. In such cases VEGAS algorithm fails badly, and increasing the number of bins k, or
number of iterations, does not help to reduce weight dispersion σ at all. The only method
to improve the integration precision is the brute force method of increasing the number
of MC points N , leading to a slow decrease of statistical error ∼ σ/

√
N , or changing

analytically integration variables (mapping).
As already stressed, our primarily interest is in MC simulation. The VEGAS algorithm

with almost no modification can produce MC weighted events. A little bit more effort
is required to produce constant weight events, by means of additional rejection, knowing
the maximum weight. This can be done by recording during the last iteration, for each
integration variable, a maximum weight in each of the n bins. The multichannel generation
of the sub-rectangles is then done using not the probability related to the average weight
or its dispersion but instead using the maximum weight (product of them). This simple
recipe works fairly well for an almost factorizable distribution. It fails really very badly
for an integrand departing from the factorizability assumption, much worse then for the
task of the MC integration only. Essentially, the VEGAS algorithm has no means to
reduce the ratio of the maximum weight to average weight below a certain value, for a
given integrand. The only way out is then to apply mapping from the actual variables to
new ones, in which the integrand hopefully factorizes much better. This requires detailed
knowledge of the integrand distribution – it means going back to a labor-hungry custom-
made MC.

There were several efforts to improve on the shortcomings of the VEGAS method, still
assuming no detailed knowledge about the structure of singularities in the integrand. For
example, in ref. [4], several improvements are done. The most important one is adding
the possibility of treating a subgroup of variables (wild) which cause strong variation in
the integrand, while the other ones (mild) are “averaged over”. This is particularly useful
for problems with many variables ∼ 100, of which only some are “trouble-makers” and
require special treatment.

Another improvement is described in ref. [5], where the VEGAS algorithm is up-
graded with the possibility of approximating the wild integrand not with one product of
n functions, each for one dimension, but with a sum of such products, with automatic
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adjustments of the relative importance of the component products. It is essentially an
application of the ideas of ref. [6] to the VEGAS algorithm. The modified algorithm
should be efficient for a wider class of probability distributions.

In this note, I describe an independent effort which is not rooted in VEGAS algorithm,
but rather in the algorithm used in subprogram VESKO2 of MC generator LESKOF for
deep inelastic scattering published in ref. [7] (in fact it was already used in the much older
LESKOC MC). In VESKO2 the 2-dimensional integration area is divided into rectangular
cells which gradually were subdivided by half along x or y direction (the choice of the
division direction was random). The division was always performed for the cell which
contained the biggest value of the integrand. Note that this algorithm does not require
factorizability of the integrand – it is not very efficient, but numerically rather stable.
Obviously, the rule of division by half is rather primitive, one could do it better. The
random (or arbitrary) choice of division line (along x or y ) could be replaced by a better
rule of dividing along the maximum gradient of the function. However, from inspection
of the way the grid of cells evolves, it was obvious that this algorithm has the following
intrinsic problem, even if such improvements were implemented: the edges of the cells
are always parallel to the axes. Consider, for instance, a narrow diagonal “ridge” along
x = y line. Of course, the algorithm of VESKO2 is obviously superior to VEGAS, because
cells multiply and concentrate along the diagonal. However, the adjustment of the cells
would be much faster if cells could turn themselves to be parallel to the “ridge”. The
self-suggesting solution is the replacement of rectangular cells with the triangular ones.
Then, hopefully in the process of subdivision, the cells could align along singular lines,
if the division rule was defined in an intelligent way. In n-dimensions the generalization
of triangular plaquette is simplex-shaped cell. In the following, I shall present certain
variant of such a method to which we refer as a “Foam” algorithm.

After completing the essential part of this work, I have found in ref. [8] a description
of a similar algorithm1; see last section for more comments.

The outline of the paper is the following: Section 1 describes the Foam algorithm,
Section 2 its implementation, Section 4 the usage of the program, and Section 5 presents
results of numerical tests.

2 The Foam algorithm

Let me define the aims which I have in mind with the new Foam algorithm:

• The algorithm is thought to be in the future a part of a bigger algorithm and it
is supposed to take care of several (< 10) “wildest variables”, i.e. variables with
the strongest singularities, while the other variables I imagine are dealt with the
VEGAS method, or are “averaged over” like in BASES of ref. [4]

• I assume that the integrand is completely arbitrary, in particular singularities may
lie on arbitrarily shaped hyperspaces. (For extremely narrow peaks, it always make

1I would like to thank Viacheslav Ilyin for bringing my attention to this work.
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sense to map variables.) In particular the algorithm should be able to deal with sin-
gularity along diagonals, with big voids and along “thin” hypersurfaces like surfaces
of the cube, sphere etc.

• I imagine that in the algorithm a grid of vertices forming a “foam of cells” is built,
which adapts automatically to the integrand in such a way that the resulting ratio
of average weight to maximum weight, i.e. efficiency, is arbitrarily good. In the
subsequent MC generation the foam of cells is used to generate one cell and a point
within this cell.

• For strong peaks the foam of cells may develop into a wrong direction, not knowing
at the early stage of the development the positions of the sharp peaks containing
most of the integral. I therefore require that the algorithm has a built-in capacity
to “collapse” (recess) i.e. possibility of removing a part of the foam (returning
to a coarser granularity in some region). The iterative succession of “grow” and
“collapse” should be available as an option, in order to stabilize the final optimal
foam of cells.

• The integrand should be positive and integrable. Weak integrable singularities of
the type

√
x or ln(1/x) are allowed. Such singularities are typically on the edges of

the integration domain – so there should be an option to include or not the vertices
at the corners of the simplex cell in the evaluation of the integral over the cell.

2.1 Data structures

The basic data structure is the foam being a linked list of cells. A simplex cell is defined
by its vertices. Each cell has also many other attributes such as pointers to parent and
daughter cells, its volume, an estimate of the integral over the cell which I call the proper
integral, average weight, maximum weight etc. Cells actually contain only pointers to
vertices, while n-component vectors defining vertices are in a separate list of all vertices.
This organization is well justified, because one vertex may enter into several cells. The
foam is in fact a hierarchical list of cells organized into one big tree. There are two kinds
of of cells, inactive cells which underwent division and got split into daughter cells and
active cells (with no daughter). Active cells actually cover the entire integration area.
In the MC simulation one active cell is chosen randomly according to its crude integral
which is usually bigger then its proper integral. For the relation between crude and proper
integral see below. Each inactive cell knows the sum of crude integrals of all active cells
it contains (all its daughter and granddaughter cells). It is done in such a way in order to
make generation of the active cell as natural and simple as possible. In fact, generation
starts with inactive root cell at the top of the tree – one of the daughter cells is chosen
randomly according to its crude integral. This process continues down the tree until an
active cell (with no daughters) is randomly chosen. The root cell is the entire integration
region, being a cube of unit size. In present algorithm, the root cell is the only one which
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has more than 2 daughters. It splits into n! simplices2.

2.2 Initialization: growth and collapse of the foam

The foam structure described in previous section is constructed during the initialization
phase. It consists of subsequent growths and collapses of the foam. Let me first describe
the phase of the growth. The initial cube is divided into n! equal simplices, daughter
cells, and each daughter cell immediately subjected to an MC exploration procedure, eg.
a certain number of MC events is generated within the cell in order to calculate the average
weight, dispersion, maximum weight, minimum weight, proper integral (MC estimator)
and more. In the rest of the growth phase each cell has a chance to get divided into 2
daughters. In present version of the program two options of choosing cell for division
are implemented: In the first method, the active cell picked up for division is always
this one which actually contains the biggest crude integral. In the second method, the
choice of the (active) cell for division is done randomly, with probability proportional to
its crude integral. The user may check empirically which option fits better his integrand.
This division process continues until the memory buffer reserved for the foam fills up3.
The active cell chosen for division, is tagged as inactive and divided into 2 daughter cells
(active) and each daughter cell undergoes MC exploration. The recipe for the cell division
is the most important part of the algorithm; see below for its detailed description. The
division of a cell into two daughter cells involves a creating new vertex. The new vertex
is added to the list of vertices. The sum of crude integrals calculated for the new two
daughters is not necessarily equal to the crude of the parent – in order to maintain our
algorithm of picking randomly the active cell following the tree, the crude integral of the
divided cell and of all parent cells is corrected up to the root cell, in such a way that the
crude integral of parent is always equal to sum of crude integrals of the daughters. In
particular the root cell contains always the crude integrals of all active cells, i.e. the total
crude integral.

As already indicated, in the case of a strongly peaked distribution, growth may go
into a “wrong area”, so one is interested in a possibility of trimming/downsizing the
foam, which is termed the collapse of the foam. The algorithm of the collapse is very
simple and intuitively understandable. When growth is stopped by the buffer limits, the
maximum value IC

max of the crude in all active cells is determined. Next, all inactive cells
are checked, starting from the top cell, looking for cells which have crude integral smaller
than IC

max times some adjustable factor close to one (default is one, the user may reset
it easily). Every such inactive cell is reset as active and all its daughters, down to the
bottom of the tree, are tagged for removal. Finally, the removal of the tagged cells is
done, releasing free space in the buffer. All vertices are also checked, to see if they are

2This already shows why we are limited to n < 10. N.B. I do not favour the other possible solution in
which the unit cube is mapped into single simplex, because such a transformation is “singular” at certain
vertices.

3In fact, the user may only request for a maximum number of cells in the foam smaller than the total
length of the entire buffer. For the moment, there is no dynamical memory allocation in the program.
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members of any cell, and the orphan vertices are also removed. In this way, the entire
“un-successful” branches are eliminated from the tree of cells, or, in other words, several
cells which are product of the division get replaced by the single (parent) cell, just like in
the real foam! Typically, about half of the cells are eliminated in this way, and one may
start another phase of the growth. Note that after reviving an inactive cell, one needs to
attribute to it the original (uncorrected) crude integral. This original crude integral from
first exploration is memorized as one of attributes of the cell, and is therefore available. In
tests I have found out that the collapse and subsequent growth usually leads to the same or
very similar foam. The above option is useful only for very sharply peaked distributions.
It is switched on only on explicit request of the user.

2.3 Division of the cell

Each newly created cell undergoes exploration, just after its creation, in order to determine
its proper crude integral and the other weight parameters. The division of the symplectic
cell is the essence of the algorithm. Let me therefore describe it in a more detail. The
division procedure is defined in a maximally simple way. A simplex of n + 1 vertices
x1, x2, ..., xn, xn+1 has n(n + 1)/2 edge lines joining every possible pair of vertices of a
given cell. In our division algorithm, one such edge between xi and xj is chosen and a
new vertex Y is put somewhere on the line

Y = λxi + (1− λ)xj

where 0 < λ < 1. The two daughter simplices are defined with two new list of vertices:

(x1, x2, ..., xi−1, Y, xi+1, ..., xj−1, xj , xj+1, ..., xn, xn+1),
(x1, x2, ..., xi−1, xi, xi+1, ..., xj−1, Y, xj+1, ..., xn, xn+1).

At this stage, it has do be determined which (i, j) pair and which value of λ to choose.
The aim is generally to make this choice in such a way that the function varies the most
strongly in the direction of the edge defined by the (i, j) pair of vertices. How to find
it out? To this end, the information from the relatively short sample of the MC events
(100-1000) generated inside the cell, during its MC exploration is exploited. First of all,
from geometrical considerations which I omit, one is able to “project” each MC point X
into a point Y on a given edge (i, j), i 6= j:

Y = λijxi + (1− λij)xj

where

λij(X) =
|Deti|

|Deti|+ |Detj | ,
Deti = Det(r1, ..., ri−1, ri+1, ...rn, rn+1),
Detj = Det(r1, ..., rj−1, rj+1, ...rn, rn+1),
rk = xk −X,
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and Det(x1, x2, ..., xn) is the standard determinant. The condition 0 < λi,j(X) < 1 is
obviously fulfilled. With help of the MC series of vectors X (from MC exploration of the
cell) we determine for each edge (i, j) the MC distribution of the variable < λi,j >, the
average < λi,j >, its variance σ(λi,j) etc. For the division procedure I am looking for
an edge (i, j) along which the integrand is varying most rapidly. How do I quantify the
the “rapidness” of the distribution of λi,j within its domain (0,1)? For instance, I could
use the ratio of the dispersion to the average σ/ < w > of λi,j. This would work if the
distribution of λi,j had a single maximum, in the middle of the (0,1) interval, or at one of
its ends λi,j = 0, 1. This criterium of the “rapidness” of the distribution of λi,j would fail,
however, if the distribution of λi,j had two or more maxima within (0,1) interval. It would
be an annoying failure in many practical cases like a double ridge or closed hyperspaces
(like sphere). A more sophisticated measure of the “rapidness” of the distribution of λi,j

is therefore used in the algorithm. For each (i, j) the full distribution dN/dλ is recorded
(histogrammed) and the value of the integral

Ri,j =

∫
|dNdλi,j −N | dλi,j

is calculated. The edge (i, j) with the biggest Ri,j is chosen for the cell division. As easily
seen, the Ri,j is close to zero for flat (uniform) dN/dλi,j and has high value, ∼ N , if
dN/dλi,j has one or multiple narrow peaks. As a value λ for the division λ =< λi,j > is
taken. In this way one makes attempt to divide the cell in such a way that two daughters
cells contain roughly half of the parent integral (as in VESKO2). In the MC exploration of
the new cell, the index of the (optimal) edge (i, j) and its < λi,j > are readily determined
and memorized for future use – when later on, an active cell is picked up for division, the
division direction (i, j) and its ratio < λi,j > is already predetermined.

Let me finally comment on the weight normalization, and the related question of
reduction of the variance and/or maximum weight. Before I enter details it is very im-
portant to remember that my final aim and highest priority is to generate events with the
weight equal one i.e. unweighted events. This is a much harder task than generate the
variable weight events. As usual, one may produce variable weight events and turn them
into unweighted events by means of rejection. However, one cannot do it efficiently if one
does not control very strictly the maximum weight for weighted events. Weighted events
(without strict control of maximum weight) are good enough for evaluating the value of
the integral. In this less interesting case, the appropriate choice of the foam of cells, can
minimize the variance of the weight. Our primary aim is, however, to construct the foam
of cells which will allow us to control the maximum of the weight, while decent variance
of the weight is of secondary importance.

In the initialization phase, the basic weight is defined w = f(x)VCart where f is
integrand function, and VCart is Cartesian volume of the cell. The above weight is therefore
normalized such that the proper integral is equal the average weight, i.e., for infinite
number of MC events < w > is just equal to the integral over the cell.

In order to gain good control over the maximum of the weight (and/or its variance) I
introduce the crude integral of the cell, which is typically an overestimated integral over
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the cell. In the subsequent MC generation, the MC weight wMC will compensate for the
fact that crude integral is not equal the true value of the integral over the cell. Since the
control of the maximum weight is our main priority, in the default case, the crude integral
of the cell is chosen

Icrude = wmax = VCartMaxXf(X),

i.e. it is equal the maximum value of the integrand function times the volume of the
cell. Of course, the true maximum of the integrand function is not know, and instead,
one employs its estimate obtained in the course of the MC exploration of the cell. This
above choice ensures that the condition wMC ≤ 1, essential for turning weighted events
into wMC = 1 events by means of the rejection, will not be violated too often.

Note that if one is interested only in the variable weight events, for instance for calcu-
lating the integral, then a more economical choice of the crude integral of the cell would
be

Icrude =
√

< w >2 +σ2 =
√

< w2 >,

i.e. this quantity is either the average weight < w > or its variance σ, depending which one
is bigger, see also discussion in refs. [3,6]. This would provide a reasonable reduction of the
variance by populating more densely cells which have bigger ratio of the proper variance
to proper average weight σ(w)/ < w >, and therefore reducing the overall σ(w)/ < w >.
The above choice of the crude integral is also optionally available in the program.

In any case, the compensating weight for the MC generation is always the same:

wMC = f(x)VCart/Icrude.

3 Program structure

The program consists of one source file and one header file. It is written in Fortran77
with the popular extensions like long variable names, long source lines, etc., which are
available on all platforms. In the makefile there is a collections of f77 compilation flags,
for Linux, AIX HPUX and ALPHA compilers which should be used to activate these
extensions. The program is written in such a way that its translation to c++ or Java
should be not too difficult. In fact the program has structure of the c++ class as much
as it is possible to do it within f77. Below I characterize the rules according to which
program was written. Variables obey the following rules:

• There is only one common block /c FoamA/ which contains all class member vari-
ables, which is placed in the header file FoamA.h . Each subroutine in FoamA.f

source file includes an INCLUDE ’FoamA.h’ statement. The outside programs
should never include directly /c FoamA/ . All input/output communication is done
with the help of dedicated, easy to use, subroutines.
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• Variables in /c FoamA/ are class members and all have special prefix “m ” in their
name, for example m Iterat is number of iterations.

• User has access to some class members through “getters” and “setters”; see below.

• Strong typing is imposed with help of IMPLICIT NONE.

Subprograms in the class are loosely organized in several categories:

• Constructor with name FoamA PreInitialize which pre-sets default values of many
variables, including input variables. It is invoked automatically.

• Initializator with name FoamA Initialize, which performs initialization of the foam
grid.

• Finalizator with name FoamA Finalize, which summarizes the whole run, sets out-
put values in /c FoamA/, prints output etc.

• Maker with the name FoamA MakeSomething or similar a one, which does the essen-
tial part of job, in our case a maker FoamA MakeEvent generates single MC event.

• Setter with the name FoamA SetVariable, is called from the outside world to set
m Variable in /c FoamA/. For example CALL FoamA SetIterat( 5) sets variable
m Iterat=5. Only certain privileged variables have a right to be served by their own
setter, the other ones are in principle “private”. Most of setters should be called
before initialization.

• Getter with the name FoamA SetVariable, is called from the outside world to get
m Variable from /c FoamA/. It is a preferred way of sending output information to
outside world. For example, with CALL FoamA GetMCwt(MCwt) one gets MC weight
MCwt in the user program.

The full list of class member variables in /c FoamA/ is shown in the Appendix A. Addi-
tional information on all subprograms of the Foam package can be found in Tables 1 and
2, where I list all subprograms with short descriptions of their role.
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Subprogram description
Initialization of the foam grid

FoamA PreInitialize Pre-initialization, set all default values (constructor)
FoamA Initialize(FunW) Initialization of the grid etc.
FoamA InitVertices Initializes first vertices of the basic cube
FoamA InitCells Initializes first n-factorial cells inside original cube
FoamA DefCell Creates new (daughter) cell and append at end of the

buffer
FoamA SetVertex(iVe,k1,k2,k3) Helps to define vertex
FoamA Explore(iCell,funW) Short MC sampling in iCell, determine < wt >, wtmax

etc.
FoamA RanDiscr(Crud,nTot,Pow,iRnd) Random choice of cell division direction
FoamA MakeLambda(Lambda) Auxiliary procedure for FoamA Explore
FoamA Determinant(R,Det) Determinant of matrix R
FoamA Det2Lapl(R,i1,i2) Laplace formula for 2-dim. determinant
FoamA Det3Lapl(R,i1,i2,i3) Laplace formula for 3-dim. determinant
FoamA Det4Lapl(R,i1,i2,i3,i4) Laplace formula for 4-dim. determinant
FoamA Det5Lapl(R,i1,i2,i3,i4,i5) Laplace formula for 5-dim. determinant
FoamA Grow(funW) Grow cells until buffer is full
FoamA PeekMax(iCell) Choose randomly one cell, used also in MC generation
FoamA Peek(iCell) Generates randomly pointer iCell of (active) cell
FoamA Divide(iCell,funW,RC) Divide iCell into two daughters; iCell tagged as inac-

tive
FoamA Collapse Finds and removes some cells, revives some nonactive

cells
Generation

FoamA MakeEvent(funW) Generates point/vector Xrand with the weight MCwt
FoamA GetMCvector(MCvector) Provides point/vector MCvector generated by Ma-

keEvent
FoamA GetMCwt(MCwt) Provides MC weight MCwt calculated by MakeEvent
FoamA MCgenerate(funW,X,MCwt) Alternative entry, Generates point X with the weight

MCwt
Finalization

FoamA Finalize(MCresult,MCerror) Calculates integral and its error after MC run
FoamA GetIntegral(MCresult,MCerror) Integral estimate from MC generation

Table 1: List of all subprograms with short description.
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Subprogram description
Other Getters and Setters

FoamA GetCrude(Crude) Provides Crude used in MC generation
FoamA SetNdim(Ndim) Sets Ndim= no. of dimensions (called before Initialize)
FoamA GetNdim(Ndim) Provides Ndim, miscellaneous, for tests
FoamA SetnBuf(nBuf) Sets nBuf, length of working area in the buffer
FoamA SetIterat(Iterat) Sets Iterat= no. of iterations (called before Initialize)
FoamA SetOut(Out) Sets output unit number
FoamA SetChat(Chat) Sets chat level Chat=0,1,2 in the output, Chat=1 normal
FoamA SetnSampl(nSampl) Sets nSampl; No of MC sampling before dividing cell
FoamA SetOptCrude(OptCrude) Sets OptCrude; type of Crude =0,1,2.
FoamA SetOptBeta(OptBeta) Sets type of method in cell division
FoamA SetOptPeek Sets type of method in cell division
FoamA SetOptEdge(OptEdge) Sets OptEdge; (inclusion of vertices in the cell exploration)
FoamA SetKillFac(KillFac) Sets KillFac; threshold factor for collapse procedure

Debugging and miscellaneous
FoamA Check(mout,level) Checks all pointers (after compression) debugging!
FoamA ActUpda Miscellaneous, Creates list of active cells (pointers)
FoamA BufPrint(mout) Prints all cells, debugging
FoamA BufActPrint(mout) Prints all active cells, debugging
FoamA VertPrint(mout) Prints all vertices, debugging
FoamA PltBegin Plotting 2-dim. cells and vertices
FoamA PltVert(mout) Plotting 2-dim. cells and vertices
FoamA PltCell(mout) Plotting 2-dim. cells and vertices
FoamA PltEnd Plotting 2-dim. cells and vertices

Table 2: List of all subprograms with short description, continuation.
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Parameter Meaning
m nDim Number of dimensions.
m nBuf Actual dynamic length of the buffer m nBuf<m nBufMax. Larger

m nBuf has to be used for higher dimensions and for strongly singu-
lar integrand. For larger m nBuf the CPU time of the initialisation will
increase but the total CPU time of the event generation will be shorter
because the acceptance rate < w > /wmax will improve. Default is
m nBuf=1000.

m nSampl Number of MC sampling per cell in the MC exploration of the new cell
daughter cell. The MC efficiency < w > /wmax seems to depend weakly
on m nSampl. However, if one cannot increase m nBuf any more then
enlarging m nSampl may still help a little bit. Default is m nSampl=200.

m Iterat No of iterations in the initialization of the grid, m Iterat=0 is the lowest
possible value. In most cases it is enough. Each iteration consists of the
grow and collapse of the grid. Several iterations are recommended for
very strongly peaked distributions.

m KillFac threshold factor for reviving inactive cells in the “collapse” procedure
of the iteration. Its change seems to be without much effect. May be
in some rare cases the user will find profitable to readjust it. Default is
m KillFac=1.

m OptCrude Type of the crude integral used for the MC generation of the active cell.
For OptCrude=0 estimator of the “true” integral in the cell is take as
crude, for OptCrude=1 the value of

√
< w2 > and for OptCrude=2 the

maximum weight wmax. Default is m OptCrude=2.
m OptEdge Option parameter deciding whether vertices are included in the MC ex-

ploration of the cell. For m OptEdge=0 they are not included and for
m OptEdge=1 they are included. Generally it is good to include ver-
tices, but if there are some weak singularities or numerical instabilities
of the integrand close to boundary of the integration domain, then it
better to set m OptEdge=0. Default is m OptEdge=1.

m OptPeek Option parameter deciding method of selecting the cell for division. Opt-
Peek=0 cell with maximum crude (default), OptPeek=1 randomly.

m OptBeta Type of choice of the edge in the division of the cell, Default OptBeta=0
described in the text, OptBeta=1, OptBeta=2 for tests.

m Out Output unit number. For redirecting output from Foam to separate disk
file. Default is m Out=6.

m Chat Chat=0,1,2 increasing chat level in the output unit, Chat=1 is the de-
fault normal level

Table 3: Important input parameters of the Foam. They are listed in the order of their
importance.
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4 Program usage, input parameters

Basic input variables are listed in in Table (3) together with their explanation. Typical
user program using Foam package may look as follows:
*------------------------------------------------------------------------
DOUBLE PRECISION Density
EXTERNAL Density
CALL FoamA_SetNdim( 3) ! number of dimensions
CALL FoamA_SetnBuf( 2000) ! length of buffer
CALL FoamA_SetIterat( 1) ! number of iterations
CALL FoamA_SetnSampl( 500) ! no. of MC events/cell (initialization)
CALL FoamA_SetOptCrude( 2) ! type of crude, =2 is default anyway
CALL FoamA_SetOptEdge( 1) ! edge point are included, (=0 excluded)
CALL FoamA_SetChat( 1) ! printout level
CALL FoamA_Initialize(Density) ! initialize foam grid
DO loop = 1, 200000

CALL FoamA_MakeEvent(Density) ! generate MC event
CALL FoamA_GetMCvector(MCvector) ! get MC event, vector
CALL FoamA_GetMCwt(MCwt) ! get MC weight
CALL GLK_Fil1(1000, MCwt,1d0) ! users histogramming

ENDDO
CALL FoamA_Finalize(MCresult,MCerror) ! printouts, get integral & error
CALL FindWtLimit(1000) ! users routine, check on MC efficiency

*------------------------------------------------------------------------

In fact user has to set only the number of dimensions Ndim. The other input variables
nBuf, Iterat, nSampl, OptCrude, OptEdge, Chat are already preset for the user thus
calling setters for them is optional. User needs to provide his own integrand function which
in the example is Density. Below is an example of a simple integrand function (3-dim.
sphere).
*------------------------------------------------------------------------

DOUBLE PRECISION FUNCTION Density(X)
*////////////////////////////////////////////////////////////////////////
*// 3-dimensional testing function, Thin sphere centred at (A1,A2,A3) //
*// with Radius and Thickness defined below //
*////////////////////////////////////////////////////////////////////////

IMPLICIT NONE
DOUBLE PRECISION X(*)
DOUBLE PRECISION Radius,Thickness,A1,A2,A3,R
DATA A1,A2,A3 / 0.25, 0.40, 0.50 / ! centre of sphere
DATA Radius / 0.35 / ! radius of sphere
DATA Thickness / 0.020 / ! thickness of sphere

*------------------------------------------------------------------------
R = SQRT( (x(1)-A1)**2 +(x(2)-A2)**2 +(x(3)-A3)**2 )
Density = Thickness/( (R-Radius)**2 + Thickness**2)
END

*------------------------------------------------------------------------
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5 Numerical tests

A minimum of testing was done. It is even more important that the program was already tested
in a real practical application. The present version of Foam is implemented as a part of KK
Monte Carlo event generator [9] for the up to 3-dimensional problem of the simulation of the
initial state photon radiation (ISR) and beamstrahlung for future Linear Colliders4.

In the following I present the comparisons of the Foam program with VEGAS [3] for n = 2, 3.
For n = 2 I use three testing functions:

fa(x1, x2) = 1−Θ(0.5 − |x1 − 0.5| − γ) Θ(0.5 − |x1 − 0.5− γ|), γ = 0.05,

fb(x1, x2) = 1/4πR2 γπ[(R −
√

(x1 − 0.25)2 + (x2 − 0.40)2)2 + γ2)], γ = 0.02, R = 0.35

fc(x1, x2) = γπ[(x1 + x2)2 + γ2)], γ = 0.02.

(1)

All above functions are defined within unit square 0 ≤ xi ≤ 1. The first density function is
peaked along one of diagonals of the square, the second one is peaked along a 2% wide ring
centered at (0.25,0.40) of radius 0.25, and the last one represents 5% wide band along four edges
of the square.

In Fig. 1 the resulting 2-dimensional foam of cells is plotted. In each case, the foam consists
of about 75 active cells and the exploration of the single cell in the initialization was based on
1000 MC events per cell. Only active cells are plotted. As expected, cells of the foam concentrate
in the areas of the enhancement of the integrand functions. They clearly try tend to elongate
along the lines of the “ridges” in the integrand functions.

Functions Foam VEGAS
fa(x1, x2) (diagonal ridge) 0.94 0.05
fb(x1, x2) (circular ridge) 0.83 0.15
fc(x1, x2) (edge of square) 0.57 0.53

Table 4: Efficiency wε
max, for ε = 10−4, of Foam and VEGAS for 3 examples of the 2-

dimensional integrand function defined in eq. (1). After initialization, efficiency was determined
from sample of 106 MC events. Results from Foam are for 5000 cells (about 2500 active cells)
and cell exploration was based on 200 MC events per cell.

The three test functions of eq. (1) are intended to be of the “non-factorizable” type, such
that Foam should be more efficient than VEGAS. I definitely want to adjusted the concept of
“efficiency” of the MC to the task of MC generation of weight one events. (It should not be
confused with the statistical error of the integral.) Generally, I define efficiency as the ratio of
the average weight to maximum weight < w > /wmax, such that it is equal to the rejection
rate in the process of turning variable-weight events into w = 1 events. In practice, however,
wmax has to be defined unambiguously and in a numerically stable way. The straightforward
definition of wmax as a maximum weight determined empirically in the MC test run, or during
the initialization of the grid, can be prone to large fluctuation. For practical reasons I do not
want to exclude from our considerations the case of the weak integrable singularities in the
integrand function like, for instance, x−1/10 which may lead to a tail in the weight distribution.

4It this practical application Foam is more efficient than VEGAS by factor of order 100.
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Figure 1: Two dimensional foam of the cells for three density functions fa, fb and fc defined in
eq. (1). For fa the boundary of the nonzero integrand is marked with a dashed line.

(numerical instabilities due to rounding errors may produce similar effect.) Quite often, such a
tail will not influence the average weight < w > and the MC estimate of the integral at all. It
will, however, render wmax ill-defined, that is dependent on the number of the events in the MC
sample and/or wildly fluctuating. In order to avoid such a problem, in all presented tests, the
following alternative definition of the wmax is applied: For a given precision level ε << 1 wmax

is determined from the weight distribution in such a way that the contribution to < w > (that
is to total integral) from “under-rejected” (“over-weighted”) events with w > wmax is equal ε.

15



Such a quantity is referred to as wε
max

5. In practice it is a little bit of effort to determine wε
max

from the weight distribution. One has to create a histogram of the weight with at least ∼ 1000
bins, in order to determine wε

max with 2 digit precision.
In order to understand correctly the following comparisons of the Foam and VEGAS, it

is important to remember that for Foam the efficiency < w > /wε
max can be improved by

means of a brute force increase of the number of cells and/or manipulating its other input
parameters while for VEGAS it is not possible. More precisely in practical applications one
has to face the following fundamental deficiency of the VEGAS (from the point of view of the
MC simulation): For a given type of the integrand function, its efficiency is limited in a rigid
way – the increase of function calls and/or number of iteration in VEGAS cannot improve the
efficiency < w > /wε

max beyond certain asymptotic value which I call asymptotic efficiency.
This annoying feature is excluding VEGAS from many practical MC applications. In order to
improve efficiency of VEGAS beyond the above asymptotic value, it is necessary to map the
integration variables or employ other MC techniques like branching etc. However, this is exactly
contrary to the spirit of a general purpose MC tool like VEGAS or Foam.

In Tab. 4 the MC efficiency of Foam and VEGAS is compared for three testing integrand
functions of eq. (1). As expected, Foam is significantly more efficient for fa and fb which clearly
do not comply with the factorizability assumption. The case of fb is a little bit more complicated;
see below. Tab. 4 shows the asymptotic efficiencies for VEGAS, that is the best possible one.
Even worse, for functions fa and fb these asymptotic efficiencies of VEGAS are of O(γ) and can
be even worse for sharper singularities in test functions (smaller γ parameter). As indicated,
the case of fc is more involved. Although at first sight fc looks clearly a non-factorizable,
however, it is well approximated by the product of two functions and its asymptotic efficiency is
equal 1/2+O(γ). Even more interestingly, although for the Foam algorithm there is no limiting
asymptotic efficiency (its asymptotic efficiency for large number of cells is arbitrarily close one),
nevertheless the increase of number of cells for fc does lead to rather slow increase of its efficiency.
This phenomenon is also seen in Fig. 1(c) where the foam of cells fits visually the shape of fc

worse than in other two cases6. The amount of CPU time necessary for producing the results
in Tab. 4 was about the same for the Foam and VEGAS programs.

Functions Foam VEGAS
fa(x1, x2) (thin diagonal) 0.67 0.04
fb(x1, x2) (thin sphere) 0.36 0.10
fc(x1, x2) (surface of cube) 0.37 0.33

Table 5: Efficiency wε
max, for ε = 10−4, of Foam and VEGAS for 3 examples of the 3-

dimensional integrand functions, the analogs of the integrand of eq. (1). After initialization,
efficiency was determined from sample of 106 MC events. Results from Foam are for 5000
cells (about 2500 active cells) and cell exploration was based on 200 MC events per cell.

In Tab. 5results of comparison of Foam and VEGAS are shown for 3 dimensional integrands
being straightforward extension to 3 dimensions of the functions of eq. (1). Again Foam is clearly
superior, and again the efficiency of VEGAS already is at its limiting/asymptotic value while the

5The concept of such a maximum weight was already used in BHLUMI MC [10].
6Apparently, a grid with rectangular cells would do better in this case.
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efficiency of Foam can be still improved by adding more cells in the initialization phase. In this
3-dimensional case the CPU time consumption of Foam is noticeably smaller than of VEGAS.

As it was already discussed in the description of the Foam algorithm, the actual implementa-
tion has several operational modes corresponding to several variants of the algorithm. The user
may switch to one of them by changing input parameters/switches. All these operational modes
were tested and the default configuration corresponds to a mode which is the best, according
to our present knowledge. One disappointing result of these tests of various operational modes
is that the iterative grow/collapse of the foam does not really improve the grid. Nevertheless
I leave this option in the actual program, because it might be a useful as a starting point for
some fresh idea in the future development of the algorithm.

Concerning similar algorithms proposed in ref. [8] it may be noted that the algorithm pre-
sented here is defined more narrowly but it is defined very clearly, while in ref. [8] authors
propose the whole family of algorithms exploiting the idea of symplectic grid, without going
much into details. In particular they contemplate an interesting possibility of adapting the grid
to the integrand, by moving vertices and deforming cells. It is an attractive idea, but it is
difficult to judge how difficult it would be to implement it and how important a gain would be
in the efficiency, without defining fine details of the algorithm. The other idea in ref. [8] is that
of division of a cell in several cells, while I deliberately limited ourselves to division into only
two cells. Even the division into two cells can be realized in several ways, and I have realized
two scenarios with the resulting efficiency being quite different. Without a clear guiding idea,
entering into a game of multi-division of cells looks like taking risk of getting lost in hundreds
of options and scenarios. It is also important to remember that the main concern in the present
work is MC simulation with constant weight events, while ref. [8] is rather aiming at the eas-
ier task of the MC integration with weighted events. This pre-determines the priorities in the
construction of the algorithm very strongly and differently.

6 Conclusions

A new general purpose Monte Carlo tool based on a symplectic self-adapting grid is available.
Numerical tests show that for non-factorizable integrand functions it is more effective than the
classical VEGAS solution. The first real application to beamstrahlung and ISR in KK the Monte
Carlo confirms maturity of the solution. The main limitation is that program is adapted for
relatively small dimensions, n < 8. The algorithm and the program should not be treated as a
final solution – it is rather a beginning of a new development direction in MC methods.
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7 Appendix A

Below the entire “class common block” of the Foam class is show explicitly.

COMMON /c_FoamA/
$ m_CeStat(m_nBufMax), ! Cell member: status=0 inactive, =1 active
$ m_CePare(m_nBufMax), ! Cell member: parent cell pointer
$ m_CeDau1(m_nBufMax), ! Cell member: daughter1 cell pointer
$ m_CeDau2(m_nBufMax), ! Cell member: daughter2 cell pointer
$ m_CeVert(m_nBufMax,m_NdiMax+1),! Cell member: vertex pointers
$ m_CeIntg(m_nBufMax), ! Cell member: integral estimator
$ m_CeCrud(m_nBufMax), ! Cell member: Crude integral estimate
$ m_CeVolu(m_nBufMax), ! Cell member: Cartesian volume
$ m_CeXave(m_nBufMax), ! Cell member: Average best X
$ m_CeBest(m_nBufMax), ! Cell member: Best pair of vertices, pointer
$ m_CeSum( m_nBufMax,m_sMax), ! Cell member: weight summaries
$ m_VerX( m_vMax, m_NdiMax), ! List of all VERTEX positions
$ m_ActC(m_cMax), ! List of all pointers to ACTIVE cells
$ m_VolTot, ! Estimate of Volume total, without error
$ m_Crude, ! M.C. generation Crude value of integral
$ m_SumWt, ! M.C. generation sum of Wt
$ m_SumWt2, ! M.C. generation sum of Wt**2
$ m_NevGen, ! M.C. generation sum of 1d0
$ m_WtMax, ! M.C. generation maximum wt
$ m_WtMin, ! M.C. generation minimum wt
$ m_MCresult, ! M.C. generation Final value of ITEGRAL
$ m_MCerror, ! M.C. generation Final walue of ERROR
$ m_MCwt, ! M.C. generation current event weight
$ m_MCvector(m_NdiMax),! M.C. generated vector
$ m_KillFac, ! Threshold factor for collapse of cells
$ m_Ndim, ! dimension of the problem
$ m_nBuf, ! Actual dynamic lenth of the buffer m_nBuf<m_nBufMax
$ m_LastVe, ! Last vertex
$ m_LastAc, ! Last active cell
$ m_LastCe, ! Last cell in buffer
$ m_nSampl, ! No. of sampling when dividing cell
$ m_Iterat, ! No. of iterations in consolidation process
$ m_Ncalls, ! No. of function calls, total
$ m_OptCrude, ! type of Crude =0,1,2 for TrueVol,Sigma,WtMax
$ m_OptEdge, ! decides whether vertices are included in the sampling
$ m_Chat, ! Chat level in output, Chat=1 normal level
$ m_Out ! Output unit
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