Report No. 408
L.L. Gol'din and A.A. Kuz'min

ON TEE FORM OF BEAM LOCATOR ELECTRODES

Moscow 1966

(Translated by E. Fischer, CERN)
 $[C E R N-\operatorname{trans}$ b6-4]

Abstract
Rules have been derived showing how to choose the shape of electrodes measuring the displacements of centre of gravity of the beam of charged particles in a chamber of arbitrary cross-section. The paper is a continuation of (1)

Recently several articles and reports have been published (ref. 2-5) on the determination of the form of electrodes for the measurement of the beam position (so-called "beam-locator electrodes"). In the present article theoremes are discussed which allow to solve this problem exactly for vacuum chambers of arbitrary cross section.

In ref. I has been shown that the difference of the potentials induced by a beam of charged particles in two conducting surfaces A and B which are isolated from ground and which are of arbitrary form can be found from the formulae :

$$
\begin{equation*}
\psi_{A}-\psi_{B}=\int \rho(x, y, z) \cdot \varphi(x, y, z) d x d y d z \tag{1}
\end{equation*}
$$

PS/5508
where ψ_{A} and ψ_{D} are the potenticls which appoar on the surfacos A and B whon a bearn passes by, $\rho(x, y, z)$ is the charge density in the bean and $\varphi(x, y, z)$ is the potontial at tho point (x, y, z) which is originated by having one single positive charge on the surface A and one single negative charge on the surface B (in absence of a beam). Let us now look at the most intoresting case.for our purpose where the beam density over the length of electrodes and somewhat beyond them (see below) does not depend on tho coordinate z (the longitudinal direction of the bcam). Equ. I can then be written in the form :

$$
\begin{equation*}
\psi_{A}-\psi_{B}=\iint d x d y \rho(x, y) \int \varphi(x, y, z) d z=\iint \rho(x, y) \phi(x, y) d x d y \tag{2}
\end{equation*}
$$

In equ. (2) enters the potential integrated over z

$$
\begin{equation*}
\emptyset(x, y)=\int \varphi(x, y, z) d z \tag{3}
\end{equation*}
$$

> Equ. (2) follows from equ. (1) only in those cases where the beam density ρ does not depend on z in the region where φ is essentially different from 0 - that is roughly spaking in a region which exceeds the length of the electrodos by one chember width. Usually this condition is largely fulfilled.

The function $\varphi(x, y, z)$ fulfils the Laplace equation.

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}=0 \tag{4}
\end{equation*}
$$

with the boundary conditions
$\varphi_{A}=$ corist.,$\varphi_{B}=$ const. $, \varphi_{C}, D . .=$ const.

The potontials φ_{A} and φ_{B} are determined by the charges of the electrodes A and B (unit charges of opposite sign). The potentials of all other electrodes are either 0 (if they are at ground) or are determined by the geomotry of the problea (their mutual capacities).

PS/5508

The vacuun chamber is assumed to to on ground so thet for sufficiantly large absolute values of z (far away from the oloctrodes) φ and $\partial \varphi / \partial Z$ are equal 0 .

In order to clarify the properties of the function $\phi(x, y)$ we integrate equ. 4 over z from $-\infty$ to $+\infty$. Remembering that

the function $\varnothing(x, y)$ fulfils, consequently, the two-dimensional Laplace equation with, generally speaking, very complicated boundary conditions.

For our furthor discussion we limit ourselves to the case where the measuring system contains inside the vacuum chamber a closed grounded electrode (a screen) the section of which does not depend on z over a sufficiently long distance. We assume now that the walls of the screen are partly replaced by electrodes (amorig which the electrodes A and D) as is, for instance, shown in fig. I. We assume furthermore that the screen goes very close to the electrodes partically without gap. The systom composed of the screen and the electrodes is placed inside the vacuum chamber. The latter one is not drawn on figure 1.

Under the above formulated conditions the form of the border of tho region in which the potontial $\varphi(x, y, z)$ is different from zero does not depend on z and the problem is very much simplified. It is natural to charactorize a point of the border line not by three but by two coordinates, for instance by the coordinate z and the angle α as it is shown in figure 1 . We now integrate the potential $\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ over z along theborder lines. The integration over the
screen is zero. In the region be, ond the scroen the potential p and together with it the integral $\int \varphi d z$ are also zcro, because under our conditions the field produced by the eloctrodes A and B beyond the screen is negligably small. Wo obtain thorefore

$$
\begin{equation*}
\emptyset_{A}(\alpha)=\varphi_{A} \ell(\alpha) ; \emptyset_{B}(\alpha)=\varphi_{B} \ell(\alpha) ; \emptyset_{C, D} \ldots=\varphi_{C}, D \ldots \ell(\alpha) \tag{7}
\end{equation*}
$$

The potential ϕ and together with it the difference of the potentials on the beam locator clectrodes is determined by the solution equ. (6) under the boundary conditions equ. (7). Wo note that if one varies (in dependence on α) the longths of the electrodes the boundary conditions can depend in an arbitrary way on the angle α while the potentials φ_{A} and φ_{B} do not, of course, depond on the angle α. It follows from equ. (1) (for details see ref. 1) that one must create with the help of the beam locatcr electrodes A and B in the space a potential which depends lineerly from x if one wants to measure the abscisse of the centre of gravity of the beam. This can be done either by giving the electrodos A and B the form of endless plates parallel to the ordinate a is or by varying linearly with respect to x the potential on the border surrounding the beam. For electrodes the form of which dous not depend on z only the first way is possible. This is practically without interust. The exact solution of the problem of measuring the bean position by two beam locator electrodes is in this case impossiblc (an approximation of the solution with the holp of electrodes of finite dimensions is possible and is being used in large scale). The second way luads imnodiately to simple condition : the form of the electrodes which moasure the beam displacement along the x-axis must be chosen in such a way that they appoar for an obsorver looking along the paxis to be trianglos as it is shown in figure $2 a, b$ and c. It should be emphasized that the fulfilment of this condition allows an accurate solution of the problem as it has been posed for vacuum chamber of arbitrary crosssection. No adaitional conditions on the eloctrode longth has to
bo added. It had, howcver, bee zssumed thet the charge intensity in the beam does not denond on z over a sufficiont longth (seo above) and that the screon is sufficiently long.

We add several romarks :

1) In the geometry as shown in figure $2 c$ the electrodes A and B serve for measuring tho bocm displaccment along tho x-axis. Tho projection is formed by straight lines for an obsorver looking along the y-axis. The eloctrodes C (on the top) and D (on the bottom) scrve for the measurcment of the ordinate of the contre of gravity of the beam. The projections of these electrodes must appear to be formed by straight lines for an observer looking down the x-axis, but for an observor looking down the y-axis (as shown in the figure) they have, generally speakins, a complicated form. Between the olectrodes appear free spades which, strictly speaking: should bo filled in by the screen. If the free spaces are not big, and if the vacuum chamber is close to the electrodos, it is not absolutuly nucessary to fill the froe spaces.
2) If the cloctrodos are symmotrically arranged, tho oxistance of the plates C and D have no influonce in the measuroment of tho boam displacement along the X-axis by means of tho olectrodos A and B. In fact, if one brings unit charges of oppositc signs onto the eluctrodes A and B, the potentials of the plates C and D do not change and remain zero. Onc can thereforo recon them to bo connected to the screon, and the plates A and. B have for an obsorver looking down the y-axis the form of triangles as it has been asked for.
3) The electrodes $2 a, b$ and c solve the problem of measuring the abcissa of the contro of gravity of the bom indopondontly of its ordinate. In order to convince onesulf on this, it is sufficiont to know that the equipotontials of the fiold integratod over z are straight lines parallel to the y-axis. Under this condition the differcnce of the potentials $\psi_{A}-\psi_{B}$ as determined by equ. 1 dous not depend on the ordinate of the beam (and not, in particularly, on the distribution function over the y-axis).

PS/5508
4) It has beel essential for our disc assion that on a section porpendicular to the z-axis the screcn and tho clectrodes form a contour the form of which doos not depend on z over the whole range in which potentials essentially differ from zero appear after unit charges hrve boen brought onto the buam locator cloctrodes. If thure is a big gap between the vacuurn chamber and the oluctrodes and if the electrodes are short (so that Stray fivid offocts play an important rôle) then one must place between the electrodes the grounded screen as it has been shown in figure 2. In tho case of long cluctrodes, one can drop the screen without influencing tho results.

When discussing the rôle of the screen, one must keop the following in mind : tho screen is necessary in order to make zero the potential which appoars on the extention of the contour of the clectrodes (see figure 3) after bringirg urit charges onto the electrodes A and B. Only in this caso is integral $\int \varphi d z$ taken along the border lines equal to the potential of the ulectrode multiplied by its length $\ell(\alpha)$. As can be seen from the figure alroedy a very short grounded screen is sufficiont in ordor to make with sufficient accuracy the potential on the extension of the contour of the electrodes to zero.
5) The signal, measured from the locator clectrodes, is proportional to the product of the beam displacement and its charge. In ordor to obtain the beam displacement itself, it is necessary to divide the potential difference by a sjgnal proportional to the intensity of the beam. Such a signal can be obtained by any olectrode fully surrounding the beam (see ref. no. 1).

If some conditions are fulfilled, a signal proportional to the bean intensity can be furnished from the potential as originated on the locator electrodes themselves. In order to efrify this question, let us have a look at figure 4. We consider a systom of clectrodes surrounding the beam. If the clectrodes are gelvanically connected, they form ono single ring elcctrode, the potontial of which does not depend on the position of the beam (on the displacenent of the beam from point 0 to point 1). If wo use for the intensity signal
the sum of the potentiais of the cloctrodes, then we obtain in this case four times the potential of such on clectrode: 4 U (for the case of four eloctrodes as shown on the figure).

If the beam is displaced, the general cherge on the electrodes isolated from ground remains zoro. The charges of its parts A, B, C and $D, h o w e v e r, ~ a r e ~ n o t ~ s o p a r a t o l y ~ e q u a l ~ O . ~ I f, ~ f o r ~ i n s t a n c e, ~$ the been goes onto point 1 , the charge of the clectrode B will incroaso and the charge of the electrode \& decrease.

If now the electrodes are separated and the beam displaced again, then not only tho sun of the charges remains zero, but also the charge of cvery eloctrode soparatcly, The potential of the electrodes are not equal to each other any more (which gives the possibility to measure the beam displacement) and the sua, generally speaking, is not equal to 4 J .

We shall show that the sum of the potentials of the clectrodes does not depend of the position of the berm if the capacitios of all electrodes are equal. In fact, if the capacities are equal, the transfer of charge from one olectrode to mother does not perturb the sum of potontiais on the eloctrodes and, by, transfor of charge ono can arrive at the sane distrikution which appers if the electrodes are galvanically connectod.

In this way, one can moasure the intensity of the beam by means of the sum of tho potentials of tho electrodes surrounding the been if the capacity of all electrodos are equal to each other (indepindently on the size and the position of these electrodes). On the size and position of the clectrodes depends their contribution to the sum of potenticis and also the orror which is made when the capacities are not equal. As it follows from this deduction, the capacity of the locator electrodus is their full enpecity to gromid in the rosl achemo with all olectrodes in place.

The formulated mile is corroct only in the cases where the sum electrode obtaincd from galvanical connction of all individual olcctrodes surrounds fully the beam. The "tongs" of the screen (see figure 1 or fig. 2c) and the gaps between the electrode perturb the accuracy of the proof. This is, howover, in most of the easos unimportant.

References :

1) I.I. Gol'din, PTE, in press, 1966
2) A.A. Kuz'min, S.s. Kurotshkin, ETE, no. 4, 1962, p. 126
3) I.P. Karabekov, M.A. Martirossian, PTE, no. 5, 1964, p. 36.
4) A.J. Sherwood, IEEE Transaction, volNs-12, no. 3, 925, (1965)
5) G. Schneider, Private Communcation, I965, CERN.

11th January, 1965.
Figure captions :
Fig. 1 Signal electrodes and screen. (The vacuum chamber surrounding the system is not shown).

Fig. 2 Different forms of signal electrodes (seen in projection).

Fig. 3 Stray field in presence (left) and in absence (right) of a screen.

Fig. 4

Pис.工. Ситнальнде элекродв энран.
 иу, на рисунне де ycesaza).

Pac. 2. Краевое поле при наличи (сдева) при олсутствии (оправе) әкрада.

Puc.

