CERN LIBRARIES, GENEVA

CM-P00100512

Nucloar Physics Instituve, Siburian Branch of the USSR Acadeny of Sciences

Preprint

Experimental Study of Charge Exchange Injection of Protons into Accelerator and Storage Rings

by
G.I. Budker, G.I. Dinov, A.G. Popov, Yu.K. Sviridov, B.N. Sukhina and I.Ya. Timoshin

Novosibirsk 1965

Translated at CERT! by A.I. Sanders and revised by I!. Mouravieff
(Original: Russian)
(CERN Trans. 66-2)

Geneva
February, 1966
G.I. Budker, G.I. Dimov, A.G. Popov, Yu.K. Bviridov, E.N. Sukhina and I.Ya. Timoshin

```
    *
```

$\% \quad \%$

This report describes experiments on storinc protons in a ring by a charge exchange method, with tho set-up illustrated in rig. 1. A beam of hydrogen atoms or negative ions is injected onto a proton orbit in a magnetic field at a point where the orbit intersects with a hydrogen $j e t$. The particles lose olectrons in the jet and are stored on the orbit in the form of protons. Fassing repeatedly through the jet, the protons lose energy and scatter. In a constant magnetic ficla tho storage time is limitea by the deviation of the circulating protons towaros the inside wall of the storage rine because of enerey losses in the jet. When the mean energy losses are compensated for, the storace time is limited by the elastic scattering and onergy spread of the protons.

In August 1964, charge exchang injection of motons into a storaco ring vas carricd out in the experimental set-up described in a report at the Accelerator Conference at lubna ${ }^{1}$). High proton trapping officiency was achieved for auasi-botatron and resonant operation.

The firsit experimoits pere carried out in a storage ring with an aperture $2 \Delta R \times 2 \Delta Z=8 \times 4 \mathrm{cn}^{2}$ in a weai-focusing magnetic field with a field gradient of 0.6 ; the orbit radius $R=42$ cin. The hydrogen jet directed radially from the inside of the ring is switchod on for 300-600 $\mu s \in c$ by means of an electromannetic valve. the diamoter of the jet in the region of the orbit is about 1 cm . The omission of protons out of the jet onto the orbit increases exponentially up to 100% with increasine
density of the jet. Observation of the proton beam on its first turn showed that it diverges when omerging from the hydrogen target, on account of its finite width. It expanas to 1.7 cm in radial dimension after a quarter of a radial betatron avelength, and after half a wavelength it, is focused again to the initial transverse dimension or 3-4m. The vertical dimension of the bean in the first tum is $3-4 \mathrm{~mm}$, and in practice it does not change, rith only insignificant proton losses. The proton bean in the first tum follous a circular orbit to within $\pm 2 \mathrm{~mm}$.

In the case of charge exchange injection into a storage device without an acceleratin ficld (quasi-betatron operation) the protons travel in an inward spiral. Proton storaso uncer thesc operatine conditions was observed from the intensity of luminescence of the hydrogen jet, recorded by a photomultiplicr, and also by wide-band pick-up electrodes and a target on the inner wall of the rine chamber. For an encrey of 1 heV and an injection time of $20 \mu \mathrm{sec}$ (100 turns), Fig. 2 shows oscillograns of the negetive ion current on the input target, of the proton current from the hydrofen jet, of the intensity of Iuminescence of the jot and of the proton current on the inside target. The luminescence of the jet and a similar sjegnal from the pick-up olectrodes, indicato that for 100 furns, when the beam is injocted into tho storace ring, the circulating current grows linearly; then for about 150 turns the crent romains constant, during which tiae the radius of the whole injected buan shrinks (which was observed by means of vertical pick-up electrodes), but the beam is not yet lost to the inside wall of the chanber. Thon the boan strikes the internal target. The charge striking the internal target is 100 times oroater than the charge in the proton bean auring the first turn. The ampitude of the sional from the pick-up ciectrodes during storage is 100 times greater than when a shuttor is insertod at the ond of the first turn. These measurements are accurate to vithin about 10\%. The signal from the electromultiplier recording tho litht from the jet incroases by a factor of only 40 to 50 during storace, apparonty owing to the difference between the trinsverse current distribution of the storod proton boam and that of the first turn. There is a similar ratio Por injection up to 250 turns. Thus for charge exchange injection in quasi-betatron operation, the injection efficiency is near to 100%.

Charge exchange injection of protons vas also carried out for resonant (r.f.) operation. Under those operatine concitions, the r.f. acceieratine field compensetes for fonization losses of proton enerey. The ampitude of tho accelorating voltage was up to 6 kV , with constant frecuoncy. In Fig. 3 is shown an oscillogram of the been current (signel fron the r.f. pick-up eiectrodes) upon injection for resonant operation. Tnergy: 1 HeV ; injection tine: $300 \mu \mathrm{sec}$ (1500 turns); accelerating voltage: 1.5 kV . Tn Fig. 5 are shown oscillosmans characteristic of treppint into resonant operation. Energy: 1 HeV ; injection time: $20 \mu \mathrm{sec}$. The first tro oscillograns represent the signal from the wide-band pick-up electrodes with and without an r.f. accelerating field. Comparison of the signals shows thet the linear density of trapped protons in the centre of the bunch in resonant operation is one-and-a-half times greater than that of the protons stored in quasi-betatron operation. The third oscillogram shows the signal from the r.f. pick-up electrodes, and the fourth the signal fron the internal target when protons are being stored in resonant operation. Comparison of the last osciliogran with the sienal from the internal target during injection into the cuasi-betatron (see Fie. 2) shows that, unlike what occurs when protons are injected in quasi-betatron operation, more or less constant particio losses occur durine the injection of protons in resonant oporation. The protons go mainly towards the inside vall of the ring (the signel from the external target is many times smalier). Particie losses upon injection in resonant operation are 20-25\%. In Fig. 5 are shown oscillograms of the bean current of protons stored under resonant operating conditions for 500-1000 turns (energy 1 IeV). It can be seen that the current stored in resonant operation increases linearly with tine.

The cross-section of protor losses due to scettering on gas in the ring chamber is

$$
\sigma=\frac{\pi e^{4} \sum}{T^{2}}\left\{\left(\frac{2 \alpha R}{\Delta R}\right)^{2}+Z(\lambda+1)\left[\left(\frac{R}{v x \Delta R}\right)^{2}+\left(\frac{R}{v_{z} \Delta z}\right)^{2}\right]\right\}
$$

where T is the kinctic onergy of the protons; a the monentum compaction factor; ν_{x} and ν_{z} the number of betatron oscillations per turn, and λ the Coulomb logarithm.

In this expression the first tom corresponds to the sproad of the ionization energy losses in cas, the second to elastic scattoring. In the hydrogen jet $(Z=1)$ the proton losses due to the onorgy spread and to elastic scatterine are aporoxinately equal. In the above-mentioned experiments with the hydrogen jet $\sigma=4.5 \times 10^{-22} \mathrm{~cm}^{2} / a t o m$. In the last turn, the proton trapping efficioncy for betatron opcration without taking into account the danping and build-up of tho oscillations on the gas, is
and the injoction efficioncy

$$
\eta=\sqrt{\frac{2 \mathrm{~K}}{\pi \mathrm{~K}_{\mathrm{eff}}}} \times \mathrm{e}^{-\mathrm{K}_{\mathrm{cff}} / 2 \mathrm{~K}}+2 \mathrm{orf} \sqrt{\frac{\mathrm{~K}_{\mathrm{off}}}{2 \mathrm{~K}}}-2 \frac{\mathrm{~K}_{\mathrm{off}}}{\mathrm{~K}}\left(1-\operatorname{crf} \sqrt{\frac{\mathrm{K}_{\mathrm{eff}}}{2 \mathrm{~K}}}\right)-1
$$

where $I \mathrm{I}$ is the number of injected turns

$$
K_{e f f}=\frac{\xi}{\Pi \sigma} \quad ;
$$

here Π is the thickness of the jet in atoms $/ \mathrm{cm}^{2}, \xi$ is the by-pass factor of. the jet. Whon $K=K_{\text {efi }}, \Phi=0.36, \eta=0.71$.

Any energy lossos of the particlos circulating in the ring result in damping or build-up of betatron and synchrotron oscillations or the increasc of the orbit spread with increments on reverse turns

$$
\begin{array}{ll}
\delta_{z}=\frac{1}{2} \frac{W}{\beta^{2} E} ; & \delta_{x}=\delta_{z}\left(1-\alpha \frac{\mathrm{L}}{\mathrm{~W}} \frac{\partial W}{\partial \mathrm{I}}\right) ; \\
\delta_{\varphi}=\delta_{z}\left(\beta^{2} \frac{\mathrm{E}}{\mathrm{~W}} \frac{\partial W}{\partial \mathrm{E}}+\alpha \frac{\mathrm{L}}{\mathrm{~W}} \frac{\partial W}{\partial I}\right) ; & \delta_{r}=2 \delta_{\varphi},
\end{array}
$$

where T is the onergy loss per turn, 3 tho cnorgy of tho particlo, β tho rolative volocity, and I the orbit length.

Ionization losses in the jet ane responsible for the following
incroments

$$
\delta_{x}=\frac{1}{4} \frac{T}{T}\left(1-\alpha \frac{R}{\Pi} \frac{\partial \Pi}{\partial r}\right) ; \quad \delta_{p}=\frac{1}{4} T\left(\alpha \frac{R}{\Pi} \frac{\partial I}{\partial r}-2\right) .
$$

For radial positioning of the jet

$$
\frac{R}{\pi} \frac{\partial \Pi}{\partial r} \sim-\frac{2}{i} \frac{R}{a}
$$

where a is the dianeter of the jot in the rogion of the orbit and the iiach number. This relation is correct provided thet the protons always cross the jet in its diametral planc. In rcality, the jet is by-passed, mainly when $r<R$, wher, the jot has a small diameter (according to our measurements the diameter of the jut on the inside wall of the chamber is very small, about 2 mm , although the cross-section of the jet output nozzle is 6 mm in dianeter). As a result, the fffective value ($\mathrm{R} / \mathrm{I})$ ($\partial \Pi / \partial \mathrm{r}$) mey drop to zero. This is confirmed by the fact that accordine to our measurements the shrinkage velocity of the orbit radius cuasi-bctatron operation decreases on the inside wall of the chamber.

In our axporimonts (2/L) (R/a) ~6. For a target thicknoss
$\mathrm{H}=2 \times 10^{17}$ atoms $/ \mathrm{cm}^{2}$, the onorey losses in the jot anount to about 200 eV and the increment in orbit sprcad $\delta_{r}=1 / 500$ to $1 / 5000$ per turn. The increase in orbit spread because of ionization friction in the jet reduces the effectivo number of inicction turns $K_{\text {off }}$ from 11000 to 1000-7000. In order to increase the offoctivo number of tirns, tho jet should be positioned axially. In ous exporimontal Bot-up it was difficult to do this because of tho design of the negret. Since under cuasi-betatron operating conditions the injection time was limited by the spiraling of the orbit to a few hundred turns, we could not obscrve proton losses, since oven for $\mathrm{K}_{\text {eff }} \sim 1000$ with $K=250$ the losses amounted to only 2%.

For injection for resonant operation, the ratid gffective number of injection turns feils by a factor of approximetuly one-and-a-half, and the increase in synchrotron oscillations is twice as small as the increase in the orbit spread. The fact that upon injection in resonant operation

66/260/5/p/mm

proton losses did not noticeably increase up to 1500 turns, shovs that the offective valuc of $(R / \Pi)(\partial \Pi / \partial r)$ is considerably less than 6 .
Constant particle losses of 20-25\% upon injection for resonant operation agree fairly well with shrinkine of the azinuthal dimension of the separatrix due to energy losses.

In the first experiments the negative hydrogen ion source was provided by a high-frequency ion source with maximum constant current of $21 \mu \mathrm{~A}$, with a powor supply of 400%. The ion extraction system is without a probe and the extraction voltage goes up to 12 kV . The distinctive feature of the source is the stopping of sccondary cloctrons in the charge exchange channel of the extraction electrode with a voltage of 250-300 V.

When the source was installed in the Van do Craaf accelerator, the atomic beam was not separatod, which considerably increased the eloctron charge in the accolerating tubc. Accordingly, a bean of negative hyurogen ions of up to 12 ms was obtained from tho accelerator (at this powor the radiation doses under tho accelerator amounted to $30 \mathrm{rad} / \mathrm{h}$).

In the storage dovice the beam was fod in separate pulsos
lasting 1-300 $\mu \mathrm{sec}$ from a cut-off capacitor ins talled in the ion duct. With a quadrupolo Iens, the beam of negative hyorogon ions was focuscd on the inlet of the storace dovice, which had a diancter of $3-4 \mathrm{~mm}$ and an aperture anglo of 2×10^{-3}. Here the beani passed through the gas tarect made in the form of a drift tube of 5 on lensth and a diametor of 1 cm , and with diaphragms and aifferontial pumping. The gas vas admitted to the drift tube in seporato pulsos, lasting $1 \mu \mathrm{sec}$, by muans of an electromagnotic valve. The atomic hydrogen bean from the input target was put into tho orbit with an accuracy of $\pm 1 \mathrm{~mm}$ on the transvorso position and $\pm 2 \times 10^{-3}$ on the ancie, achicved by means of a magnetic corrector. The cnergy stability was $\pm 0.2 \%$ 。

For the purpose of obtaining the maximum output of the atomic boam, charge oxchango oross-soctions of negativo hydrogon ions wore mosured by mass spoctroscopy in verious gasos ($\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{3} \mathrm{H}_{3}, \mathrm{CO}_{2}, \mathrm{SF}_{6}, \mathrm{CCl}_{2} \mathrm{~F}_{2}$)
at an energy of $1-1.5 \mathrm{HoV}$. The maximum output of the atonic beam was found to depend only slichtiy on the kine of gas and on the energy, and amounted to 50-55\%. We used for the injector targut hydrogen and carbon dioxide with an optimum thickness of 2.5×10^{16} and 3×10^{15} molecules $/ \mathrm{cm}^{2}$, respoctively.

An air (tubular) coil was instelled in tho storaso chamber in order to carry out multi-turn chargo exchange injection for betatron operation, and to study the possibility of componsating for the spaco charge of the proton beam with olectrons (see Fig. 6). Proton storage takes place inside the coil. Accelorating voltage up to 200 V is fed to the coil frorn a special foncrator, in approxinately suare pulses lasting $500 \mu \mathrm{sce}$, which alloms storage to take place during 2500 turns. The current through the coil from the eqnerator incroases approximatoly lincarly up to 300 kA . Caro was takon to shield the coil cavity from the external magnetic accelerating flux.

Proton storace takos place in on axially symmetrical ($\alpha=2.5$) and an alternating gradient ficla $(\alpha=0.6)$. The covity aperture is $4 \times 3 \mathrm{~cm}^{2}$. Taking into account damping and build-up in the jet, the effective number of injoction turns at an energy of 1.5 MeV is 4000 . Proton trapping efficioncy for botatron operation is about 85\%. The maximum current due to spaco cherge limitation is $0.75 \mathrm{~A}\left(0.7 \times 10^{12}\right.$ particlos).

For storing large currents, a source of nogative hydrogen ions with a current of up to 1.5 mA in pulses lasting $1 \mu \mathrm{suc}$ was installed in the Van de Graaf accclerator. The source is of the cyclotron type doscribed by Ehlers ot al. ${ }^{2)}$. Figure 7 gives a diagran of the source. Along the magnotic field (2000 gauss) in tho anode channel an arc is ienitod (curront 4-5 A, voltage 300 V) with a tentalum themo-cathode (powor 160 W). The arc serves as a powerful emittor of electrons, which in the noutral gas form negative hyorogen ions. Tho latter are accelorated across the magnetic fiold towards the extraction clectrode (extraction voltage 5 kV). The electron current onto the extraction electrode is limitod by the magnetic field and amounted in our source to 100 mA . The admission of hydrogen is pulsed by
nonns of an electronegnctic valve (duration of pulse $1.5 \mu \mathrm{sec}$). The ion curront is fririy sencifite to the donsisy of the ges. Whe otinum thiclness of the hedrosen ?aven betweon the surfoce of the are and the dreining clectrodo is cbout 10^{15} at/ $/ \mathrm{cm}^{2}$. The hydroger plon rate is $5 \times 10^{-3} \mathrm{~cm}^{3}$ yor pulse. In ordon to losson the yulsod hydrogen charge
 was inconsed to 102. 'he wming-down time for this onmber is ebout 0.2 sec . The also cheso of the ion curront is sonsitive to the cothode tomporture. Figure 8 shows an oscillogrom of the ion curront yulso when there is slicht overhotine of the cothode. The breatdoms obsorvod in the ion current wre conroctod with instability of the are.

Thi nogntive ion boom issuis in the form of a ribbon with an increased aporturc anclo in the plene perpondiculer to the marnetic fiold. The phosc space aree of the bu: in this direction is luas then the phase
 drupole lonses, tho bon is focusoc 10 on from tho inlot into the accolorating tube with a diametcr of $4-5$ ma and aporturi anclos of 0.07 and 0.15 rad. In focus, tho boan is accolmoded up to 10-12 kov for olcotronic-optical matching with the socclonatine tubc. At the outlet of the cocolentor
 $5 \times 10^{-3} \mathrm{om}$ rod, which sotisfics our roquirmonts.

The nocetive hycrogon ion wource doscribod makes it possiblo to store about 10^{12} protons (cument sout 1 A) in the betatron coil cavity.

$$
\begin{gathered}
* * \\
* \quad \% \\
\text { RGMCES }
\end{gathered}
$$

1) G.I. Dudicir and G.I. Dimov, Int.Conf. on Accolcrators, Dubna (1963),

2) K.W. Thlcrs, 3.F. Gavin and N. I. Hubbard, Nucl. Instr and Hothods 22 , 87 (1963).

MTCUR CEPIOMS

12. Cut-ofi electrode
13. Acoelerating electrode
14. Accoleratine tubo

Fig. 8 : Horizontal: $1 \mathrm{an}=500 \mu \mathrm{sec}$. Vertioal: 1 on $=500$ microanperes.

