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1. Introduction

The AdS/CFT correspondence (see [1] for a review) relates field theories without

gravity to supergravity (string) theories on certain curved backgrounds. The corre-

spondence naturally arises when considering Dp-branes in a limit where the world-

volume field theory decouples from the bulk gravity [2]. As discussed in [3] and

further studied in [4], when turning on a B field on the D-brane worldvolume the

low energy effective worldvolume theory is deformed to a noncommutative super-

Yang-Mills (NCSYM) theory. With N coinciding Dp-branes in the presence of a

nonzero B field the worldvolume theory is deformed to a U(N) NCSYM [5].

Turning on a B field on the D-brane worldvolume can be viewed via the

AdS/CFT correspondence as a perturbation of the worldvolume field theory by a

higher dimension operator. The noncommutative effects are relevant in the UV and

are negligible in the IR. In fact, there is a map from the commutative field theory

variables to the noncommutative ones [5]. As in the cases with B = 0, there exists a

limit where the bulk gravity decouples from the worldvolume noncommutative field

theory [6, 5], and a correspondence between string theory on curved backgrounds
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with B field and noncommutative field theories is expected. The aim of this paper is

to study this correspondence using Dp-branes, M5 branes and NS5 branes. Related

works along this directions are [7, 8, 9]. Other recent studies of noncommutative

field theories and string theory are [10].

The paper is organized as follows. In section 2 we will review the effect of a B field

on the worldvolume theory of branes. We will discuss the Dp-branes supergravity

solutions in the presence of a B field, the decoupling limit and various aspects of

the correspondence with the noncommutative worldvolume field theories. We will

analyse the phase structure of the Dp-branes and plot their phase diagrams. We will

see that the structure can vary depending on the rank of the B field, i.e. depending on

the number of noncommutative coordinates. We will argue that, unlike the B = 0

case, in the presence of a nonzero B field there is a limit where the worldvolume

theory of Dp-branes with p > 5 decouples from gravity. In particular, for D6 branes

we will see that with two noncommutative coordinates we have for finite N a UV

description in terms of eleven dimensional supergravity on a curved space. For four

or six noncommutative coordinates we find for finite N a UV description in terms of

ten dimensional supergravity on a curved space.

In section 3 we will discuss M5 branes in the presence of a nonzero C field

and NS5 branes in the presence of nonzero RR fields. In the case of M5 branes

wrapping a circle we will see the same decoupling limit discussed in [5] arising from

supergravity. However, in the UV the good description of this system is in terms of

D4 branes background, and we do not find a six dimensional field theory description.

Considering M5 branes with six flat nocompact worldvolume coordinates we curiously

find another decoupling limit. At low energies the supergravity background is of the

form AdS7 × S4 with a self-dual C field which is the dual description of the (0, 2)
theory. As we increase the energy the background is deformed and the C field is no

longer self-dual. In section 4 we will use the dual description in order to compute

Wilson loops and Wilson surfaces for the different brane theories. We will show that,

in some cases, in the presence of the nonzero B (C) field there is way to fix the string

(membrane) end point (string) by considering a moving coordinates frame in the

computation. Section 5 is devoted to a discussion.

2. Dp-branes in constant B field

2.1 B field background

Consider string theory in flat space in the background of constant NS B field and

Dp-branes. In this set up, the end points of the open strings attached to the branes,

xi, are noncommuting [11]:

[xi, xi+1] = il
2
s

Bi,i+1

1 +B2i,i+1

∣∣∣∣
on the brane

. (2.1)
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We will study this system in the limit Bi,i+1 →∞ and ls → 0 such that bi ≡ l2sBi,i+1
is fixed. Rescaling the coordinates xi → bi

l2s
xi and keeping the new coordinates fixed

in the limit we get [xi, xi+1] = ibi.

In the presence of the B field, the massless states excitations of the open strings

attached to the Dp-branes give rise to a noncommutative worldvolume field theories,

with bi being the deformation parameters. The mode expansions of the open strings

coordinates and momenta are:

X i(σ, τ) = xi + piτ +Bijp
jσ + oscil. ,

l2s P
i(σ, τ) = (1−B2)ij(pj + oscil.) , (2.2)

where σ, τ parametrize the string world-sheet [11]. In the above limit the oscillator

modes decouple,

X̄i(σ) ≡ bi
l2s
Xi(σ) = x̄i + biP̄i+1σ , (2.3)

where P̄i ≡ l2s
bi
Pi is rescaled in order to preserve the canonical commutator relations.

As we see in (2.3), there is a finite part added to the string end point, which is

proportional to the momentum. Physically it means that the open strings attached

to a mixed brane are “dipoles” of the worldvolume U(N) gauge theory [12, 13, 14]

and this, in part, is a reflection of the non-locality in these theories. The moment of

these dipoles are proportional to biPi+1.

2.2 The string (supergravity) description

In the following we will discuss the dual formulation of noncommutative gauge the-

ories as string (supergravity) theory on curved backgrounds with a non-zero B field.

Consider now the supergravity description of Dp-branes in the presence of a non-zero

B field. Such solutions were written in [15, 7, 8]. It is straightforward to write the

most general solutions. Since we can gauge away the non-zero components of the B

field that are normal to the worldvolume of the branes, the relevant cases are those

with non-zero components of the B field parallel to the branes. We denote by 2m,

m = 1, . . . , [p+1
2
], the rank of the B field. The space-time coordinates are x1, . . . , xd

and we denote by xp+1 the time direction.
1 The supergravity background takes the

form2

ds2 = f−1/2p

[
2m−1∑
i odd

hi(dx
2
i + dx

2
i+1) + · · ·+ dx2p+1

]
+ l4sf

1/2
p (du

2 + u2dΩ28−p) ,

fp = 1 +
R7−p

l4su
7−p , R7−p = cpg2YMN

(
2m−1∏
i odd

cos θi

)−1
,

1For odd p and when m = [p+12 ] we will consider the euclidean signature. As noted in [8], the

decoupling limit of the euclidean and lorentzian cases are not the same.
2In the following we will not write the RR fields.
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h−1i = sin
2 θif

−1
p + cos

2 θi ,

Bi,i+1 =
sin θi
cos θi

f−1p hi ,

e2φ = g2f (3−p)/2p

2m−1∏
i odd

hi , (2.4)

where cp = 2
7−2pπ

9−3p
2 Γ(7−p

2
). The energy coordinate u is related to the radial coor-

dinate r by u = r/l2s and g
2
YM = (2π)

p−2gslp−3s .
As discussed above, in order to obtain a noncommutative field theory we need to

take a limit of infinite B field as ls → 0. In this limit we keep fixed the parameters
u, ḡs, bi, x̄i,i+1 defined by

3

u =
r

l2s
, ḡs = gsl

p−3−2m
s ,

bi = l
2
s tan θi , x̄i,i+1 =

bi

l2s
xi,i+1 , (2.5)

where by xi,i+1 we mean xi, xi+1.

In the limit (2.5), the supergravity solution (2.4) reads

l−2s ds
2 =

( u
R

) 7−p
2

(
2m−1∑
i odd

hi(dx
2
i+ dx

2
i+1) + · · ·+ dx2p+1

)
+

(
R

u

) 7−p
2

(du2+ u2dΩ28−p) ,

R(7−p) = cpḡ2YMN
2m−1∏
i odd

bi , a7−pi =
b2i
R(7−p)

,

Bi,i+1 =
l2s
bi

a7−pi u
7−p

1 + a7−pi u7−p
, hi =

1

1 + a7−pi u7−p
,

e2φ = ḡ2s

(
R

u

)(7−p)(3−p)/2 2m−1∏
i odd

b2i

1 + a7−pi u7−p
, (2.6)

where

ḡ2YM = (2π)
(p−2)ḡs ∼ gslp−3−2ms (2.7)

is the gauge coupling of the noncommutative gauge theory.

The curvature of metric (2.6) in string units

l2sR ∼
1

geff
, (2.8)

where geff is a dimensionless effective gauge coupling of the noncommutative field

theory given by

g2eff ∼ ḡ2YMN
2m−1∏
i odd

biu
p−3 . (2.9)

3For simplicity we will denote in the rest of the paper the rescaled coordinate x̄i by xi.
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When geff � 1 the perturbative field theory description is valid, while when geff � 1
the supergravity description is valid. The l2sR expansion corresponds to the strong
coupling expansion in 1/geff of the noncommutative gauge theory. We note that the

curvature of metric (2.6) in string units is proportional, up to a bounded factor, to

the curvature in string units of the background with B = 0.

It is convenient to define dimensionless effective non commutativity parameters

aeffi = aiu ∼
(
biu
2

geff

) 2
7−p
, i = 1, 3, . . . , 2m− 1 . (2.10)

At large distances L � √bi/geff we have aeffi � 1, the noncommutative effects
are small and the effective description of the worldvolume theory is in terms of a

commutative field theory. In this regime the supergravity solutions (2.6) reduce

to the low energy backgrounds considered in [16]. The noncommutativity of the

worldvolume theory is relevant at distances L ≤ √bi/geff where aeffi ≥ 1. The
noncommutativity effects can be neglected at energies

u�
(
ḡ2YMNb

−1
i

2m−1∏
j 6=i
bj

) 1
7−p

, i = 1, 3, . . . , 2m− 1 . (2.11)

The effective string coupling eφ in (2.6) reads

eφ ∼ g
7−p
2
eff

N
∏2m−1
i odd (1 + (a

eff
i )

7−p)1/2
. (2.12)

Keeping geff and a
eff
i fixed we see from (2.12) that eφ ∼ 1/N . Thus the string loop

expansion corresponds to the 1/N expansion of the noncommutative gauge theory.

Note also that at large u (UV) the dilaton in (2.6) reads

eφ ∼ u(7−p)(p−2m−3)/4 , (2.13)

which blows up for p > 2m + 3. At small u (IR) the dilaton blows up for p < 3

independently of the B field.

We define two scales which will be useful for the discussion in the following

sections. One scale is the energy scale where the effective string coupling is of order

one while the noncommutative effects are negligible. It reads

u ∼
(

N
p−3
7−p

ḡ2YM
∏2m−1
i odd bi

) 1
p−3

. (2.14)

The second scale is the energy scale where the effective string coupling is of order

one while the noncommutative effects are large aeffi � 1. It reads

u ∼
(
ḡ
14−2p+4m
3−p+2m
YM N

2m−1∏
i odd

bi

) 1
7−p

. (2.15)
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Finally, the supergravity action with the background (2.6)

l−8s

∫ √−ge−2φR ∼ N p+1
2 , (2.16)

as for the B = 0, suggesting that the number of degrees of freedom at large N is the

same for the noncommutative and commutative field theories [12].

2.3 Phase diagrams

Summarizing the above discussion, the effective dimensionless expansion parameters

of the Dp-branes system in the background of non-zero B fields are the number

of branes N , the effective gauge coupling geff and the effective noncommutativity

parameters aeffi , i = 1, 3, . . . , 2m−1. For each Dp-brane we can plot a phase diagram
as a function of these dimensionsless parameters. Different regions of these phase

diagrams will have a good description in terms of different variables. Such analysis

when B = 0 was done in [16].

D2 branes. Consider the supergravity solution of N D2-branes in the presence of

B field (2.6). In this case m = 1, only the B12 component is non-zero. Thus,

ds2 = l2s

[
u5/2

R5/2

(
−dt2 + dx

2
1 + dx

2
2

1 + a5u5

)
+
R5/2

u5/2
(du2 + u2dΩ26)

]
,

B12 =
l2s
b

a5u5

1 + a5u5
,

e2φ ∼ (ḡ10YMNb
5)1/2

u5/2(1 + a5u5)
, (2.17)

where B12 is the B field scaled in accord with the coordinates rescaling. When

aeff � 1 the noncommutativity effects are small and we have a good description in
terms of a commutative field theory. This is valid at low energies u� (ḡ2YMN/b)1/5.
Consider the flow from high energies to low energies. The effective dimensionless

coupling (2.9) is now g2eff ∼ ḡ2YMNb/u. When geff � 1 we have a good description
in terms of noncommutative N = 8 perturbative noncommutative super Yang-Mills
(NCSYM). The energy range for this description to be valid is u � ḡ2YMNb. When
geff ∼ 1, that is u ∼ ḡ2YMNb, we have a transition to the type IIA supergravity de-
scription. The type IIA supergravity description is valid when both the curvature in

string units (2.8) and the effective string coupling (2.12) are small. This implies large

N (or large noncommutativity parameter aeff ). When the effective string coupling

is large the good description is in terms of an eleven dimensional theory. This de-

scription is obtained by uplifting the D2 brane solution (2.17) to eleven dimensions.

When uplifting to eleven dimensions we can distinguish two cases. In the first case

the effective string coupling becomes large before the noncommutative effects can be

neglected while in the second case it becomes large after the noncommutative effects

6
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N = 8 SCFT Up lifted D2-brane IIA D2-brane Perturbative NCSYM

ḡ2YMb ḡ2YMN
1/5b ḡ2YMNb

u

Figure 1: The different descriptions of the D2 branes theory with non-zero B field as a

function of the energy scale u. We see the flow from N = 8 NCSYM at high energy to
N = 8 SCFT at low energy. The plot is for the case β � 1 and therefor when we up-lift
to eleven dimensions the noncommutativity effects are negligible. When β � 1 the plot is
similar, however the transition to eleven dimensions occurs at u ∼ ḡ14/15YM N

1/5b1/5 and then

the noncommutative effects are not negligible.

become negligible. It is convenient to define a dimensionless parameter β which is

the ratio between the energy scale at which the effective string coupling is of order

one while the noncommutative effects are negligible and the energy scale at which the

dimensionless noncommutative parameter aeff is of order one. It reads β = ḡ4YMb
3.

Then the first case corresponds to β � 1 and the second case to β � 1. Finally, at
energies u � ḡ2YMb the good description is in terms of the eleven dimensional M2
branes background. In figure 1 we plot the transition between the different descrip-

tions as a function of the energy scale u. We see the flow from N = 8 NCSYM at
high energy to N = 8 SCFT at low energy.
D4 branes. We will consider now N D4 branes in the presence of a non-zero B

field. The rank 2m of the B field can be two or four.

The case m = 1. When aeff � 1 the noncommutativity effects are small and
we have a good description in terms of a commutative field theory. This is valid

at low energies u � (ḡ2YMN/b)
1/3. Consider the flow from low energies to high

energies. The effective dimensionless coupling (2.9) is now g2eff ∼ ḡ2YMNbu. When
geff � 1 we have a good description in terms of a maximally supersymmetric five
dimensional Yang-Mills theory. The energy range for this description to be valid is

u � 1/ḡ2YMNb. When geff ∼ 1, that is u ∼ 1/ḡ2YMNb we have a transition to the
type IIA supergravity description. The type IIA supergravity description is valid

when both the curvature in string units (2.8) and the effective string coupling (2.12)

are small. This implies large N or large noncommutativity parameter aeff . When

the effective string coupling is large the good description is in terms of an eleven

dimensional theory. This description is obtained by uplifting the D4 brane solution

to eleven dimensions. As in the D2 brane case, when uplifting to eleven dimensions

we can distinguish two cases. In the first case the effective string coupling becomes

large before the noncommutative effects become significant while in the second case

it becomes large after the noncommutative effects become significant. The the ratio

between the energy scale at which the effective string coupling is of order one and the

energy scale at which the dimensionless noncommutative parameter aeff is of order

one reads now β = 1/ḡ4YMb. The first case corresponds to β � 1 and the second case

7
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Perturbative SYM IIA D4-brane Up lifted D4-brane IIA D4-brane

1

ḡ2YMNb

N

ḡ2YMb
ḡ
10/3
YM N

1/3b1/3

u

Figure 2: The different descriptions of the D4 branes theory with B field (m = 1) as a

function of the energy scale u for β � 1.
Perturbative SYM IIA D4-brane

1

ḡ2YMNb

u

Figure 3: The different descriptions of the D4 branes theory with B field (m = 1) as a

function of the energy scale u for β � 1.

to β � 1. When β � 1 we up lift to eleven dimensions at energy u ∼ N1/3/ḡ2YMb.
As we increase the energy the noncommutative effects become large and the effective

string coupling decreases. It becomes small again at energies u� ḡ10/3YM N
1/3b1/3 and

we have a good description by the type IIA supergravity background. In figure 2 we

plot the transition between the different descriptions as a function of the energy scale

u. Finally, when β � 1 we do not have to up lift to eleven dimensions. The reason
being that the effective string coupling is kept small by the large noncommutative

effects. This is described in figure 3.

The case m = 2. The case m = 2 is similar to to the m = 1 case and we will

briefly discuss it. For simplicity consider the case b1 = b3 = b. It is again convenient

to define the dimensionless parameter β which now reads β = 1/ḡ4YMb
3. The phase

diagram for the cases β � 1 and β � 1 are similar to the m = 1 case above. The
energy scales at which the transitions occur are, of course, modified.

D5 branes. Consider now the theory of N D5 branes of type IIB string theory in

the presence of a B field. The rank of the B-field can be up to six, m = 1, 2, 3.

The case m = 1. The noncommutativity effects are small and we have a good

description in terms of a commutative field theory at low energies u� (ḡ2YMN/b)1/2.
Consider the flow from low energies to high energies. The effective dimensionless

coupling (2.9) is now g2eff ∼ ḡ2YMNbu2. When geff � 1 we have a good description in
terms of a maximally supersymmetric six dimensional Yang-Mills theory. The energy

range for this description to be valid is u � (1/ḡ2YMNb)1/2. When geff ∼ 1, that
is u ∼ (1/ḡ2YMNb)1/2 we have a transition to the type IIB supergravity description.
The type IIB supergravity description is valid when both the curvature in string

units (2.8) and the effective string coupling (2.12) are small. As before, this implies

large N or large noncommutativity parameter aeff . When effective string coupling

is large the good description is in terms of an S-dual ten dimensional theory. We

8
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Perturbative SYM IIB D5-brane IIB NS5-brane

(
1

ḡ2YMNb

)1/2 (
N1/3

ḡ2YMb

)1/2
u

Figure 4: The transition between the different descriptions of the D5 brane theory with

B field (m = 1) as a function of the energy scale u when β � 1.
Perturbative SYM IIB D5-brane

(
1

ḡ2YMNb

)1/2
u

Figure 5: The transition between the different descriptions of the D5 brane theory with

B field (m = 1) as a function of the energy scale u when β � 1.

distinguish two cases. In the first case the effective string coupling becomes large

before the noncommutative effects become significant while in the second case it

becomes large after the noncommutative effects become significant. The the ratio

between the energy scale at which the effective string coupling is of order one and the

energy scale at which the dimensionless noncommutative parameter aeff is of order

one reads now β = 1/ḡ2YM . The first case corresponds to β � 1 and the second case
to β � 1. When β � 1 we use the S-dual description when u ∼ (N/ḡ2YMb)1/2 . As
we increase the energy the noncommutative effects become large and the effective

string coupling approaches the value 1/β = ḡ2YM . In figure 4 we plot the transition

between the different descriptions as a function of the energy scale u. When β � 1
the effective string coupling is kept small by the large noncommutative effects and

we do not need the S-dual description. This is described in figure 5.

The case m = 2. For a simplicity of the discussion we will assume b1 = b3 = b.

The noncommutativity effects are small and we have a good description in terms

of a commutative field theory at low energies u � (ḡ2YMN)1/2. Consider the flow
from low energies to high energies. The effective dimensionless coupling (2.9) is

now g2eff ∼ ḡ2YMNb2u2. When geff � 1 we have a good description in terms of a
maximally supersymmetric six dimensional Yang-Mills theory. The energy range for

this description to be valid is u � (1/ḡ2YMNb2)1/2. When geff ∼ 1, that is u ∼
(1/ḡ2YMNb

2)1/2 we have a transition to the type IIB supergravity description. When

the effective string coupling is large we have to pass to the S-dual description. As in

the previous analysis, we distinguish two cases. In the first case the effective string

coupling becomes large before the noncommutative effects become significant while in

the second case it becomes large after the noncommutative effects become significant.

The the ratio between the energy scale at which the effective string coupling is of

order one and the energy scale at which the dimensionless noncommutative parameter

aeff is of order one reads now β = 1/ḡ2YMb. The first case corresponds to β � 1

9
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Perturbative SYM IIB D5-brane IIB NS5-brane IIB D5-brane

(
1

ḡ2YMNb
2

)1/2 (
N

ḡ2YMb
2

)1/2
ḡ3YMbN

1/2

u

Figure 6: The transition between the different descriptions of the D5 brane theory with

B field (m = 2) as a function of the energy scale u when β � 1.
Perturbative SYM IIB D5-brane

(
1

ḡ2YMNb
2

)1/2
u

Figure 7: The transition between the different descriptions of the D5 brane theory with

B field (m = 2) as a function of the energy scale u when β � 1.

and the second case to β � 1. When β � 1 we use the S-dual description when
u ∼ (N/ḡ2YMb2)1/2. As we increase the energy the noncommutative effects become
large and the effective string coupling decreases. At energy scales u� ḡ3YMbN1/2 we
can use the type IIB description again. In figure 6 we plot the transition between the

different descriptions as a function of the energy scale u. When β � 1 the effective
string coupling is kept small by the large noncommutative effects and we do not need

the S-dual description. This is described in figure 7.

The case m = 3. The case of m = 3 is similar to to the m = 2 case and we will

briefly discuss it. We consider the euclidean signature and again assume b1 = b3 =

b5 = b. It is again convenient to define the dimensionless parameter β which now

reads β = 1/ḡ2YMb. The phase diagram for the cases β � 1 and β � 1 are similar to
the m = 2 case above. The energy scales at which the transitions occur are modified.

D6 branes. With a vanishing B field the worldvolume theory of N D6 branes

of type IIA string theory does not decouple from the bulk. This can be seen, for

instance, by the fact that in the decoupling limit we keep g2YM = gsl
3
s = fixed as

ls → 0. This means that the eleven dimensional Planck length lp = g1/3s ls is kept
fixed and that gravity does not decouple.

Consider now N D6 branes of type IIA in the presence of a B field. In this

case the rank of the B field can be up to six, m = 1, 2, 3. The effective string

coupling (2.13) at large u reads eφ ∼ u(3−2m)/4. When m = 1 we expect to have an
eleven dimensional description in the UV. Note that in the decoupling limit we keep

gsl
3−2m
s =fixed as ls → 0. Therefor for m = 1 the the eleven dimensional Planck

length lp → 0 and we expect gravity to decouple. For m = 2, 3 the effective string
coupling is small at all energy scales and there is no need for an eleven dimensional

description at high energy. The ten dimensional Planck scale l
(10)
p = g

1/4
s ls → 0 and

we expect gravity to decouple. In the following we will analyse the phase diagram of

the D6 branes system.
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The background in the limit (2.5) takes the form

l−2s ds
2 =

u1/2

R1/2

(
2m−1∑
i odd

hi(dx
2
i + dx

2
i+1) + · · ·+ dx27

)
+
R1/2

u1/2
(du2 + u2dΩ22) ,

R = cpḡ
2
YMN

2m−1∏
i odd

bi , ai =
b2i
R
,

Bi,i+1 =
l2s
bi

aiu

1 + aiu
, hi =

1

1 + aiu
,

e2φ ∼
(
ḡ2YM

∏
i bi

N3

)1/2
u3/2

2m−1∏
i odd

1

1 + aiu
. (2.18)

The case m = 1. The noncommutativity effects are small and we have a good

description in terms of a commutative field theory at low energies u � ḡ2YMN/b.
Consider the flow from low energies to high energies. The effective dimensionless

coupling (2.9) is now g2eff ∼ ḡ2YMNbu3. When geff � 1 we have a good description
in terms of a perturbative maximally supersymmetric seven dimensional Yang-Mills

theory. The energy range for this description to be valid is u � (1/ḡ2YMNb)1/3.
When geff ∼ 1, that is u ∼ (1/ḡ2YMNb)1/3 we have a transition to the type IIA su-
pergravity description. When effective string coupling is large the good description

is in terms of an eleven dimensional theory. As before, we distinguish two cases. In

the first case the effective string coupling becomes large before the noncommutative

effects become significant while in the second case it becomes large after the non-

commutative effects become significant. The the ratio between the energy scale at

which the effective string coupling is of order one and the energy scale at which the

dimensionless noncommutative parameter aeff is of order one reads now β = b/ḡ4YM .

The first case corresponds to β � 1 and the second case to β � 1. When β � 1
we use the eleven dimensional supergravity description when u ∼ N/(ḡ2YMb)1/3. The
eleven dimensional curvature is small for every N when u > N/(ḡ2YMb)

1/3

l2pR11 ∼ e2φ/3
1

geff
<
1

N2
, (2.19)

and vanishes for u � N/(ḡ2YMb)1/3.Thus, similar to the case without a B field [16],
the eleven dimensional supergravity solution can be trusted in the UV for any N .

Unlike the B = 0 case, the metric at large u is not the flat eleven dimensional one.

As we discussed above, since the eleven dimensional Planck length goes to zero in the

decoupling limit we expect gravity to decouple from the branes worldvolume theory.

Thus, it is plausible that a seven dimensional worldvolume theory without gravity

does exist.

When β � 1 the phase diagram is similar, however the transition to eleven
dimensions occurs at u ∼ Nb/ḡ6YM and then the noncommutative effects are not

11
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Perturbative SYM IIA D6-brane Up lifted D6-brane

(
1

ḡ2YMNb

)1/3 N(
ḡ2YMb

)1/3
u

Figure 8: The transition between the different descriptions of the D6 brane theory with

B field (m = 1) as a function of the energy scale u when β � 1. When β � 1 the plot is
similar. However, the transition to the eleven dimensional description is at u ∼ Nb/ḡ6YM .

negligible. Similarly, the eleven dimensional supergravity solution can be trusted in

the UV for anyN . In figure 8 we plot the transition between the different descriptions

as a function of the energy scale u.

The case m = 2. For a simplicity of the discussion we will assume b1 = b3 = b.

The noncommutativity effects are small and we have a good description in terms of

a commutative field theory at low energies u� ḡ2YMN . Consider the flow from low
energies to high energies. The effective dimensionless coupling (2.9) is now g2eff ∼
ḡ2YMNb

2u3. When geff � 1 we have a good description in terms of perturbative
seven dimensional Yang-Mills theory. The energy range for this description to be

valid is u � (1/ḡ2YMNb2)1/3. When geff ∼ 1, that is u ∼ (1/ḡ2YMNb2)1/3 we have
a transition to the type IIA supergravity description. As in the previous analysis,

we distinguish two cases. In the first case the effective string coupling becomes large

before the noncommutative effects become significant while in the second case it

becomes large after the noncommutative effects become significant. The the ratio

between the energy scale at which the effective string coupling is of order one and

the energy scale at which the dimensionless noncommutative parameter aeff is of

order one reads now β = 1/ḡ4YMb. The first case corresponds to β � 1 and the
second case to β � 1. When β � 1 we use the eleven dimensional description when
u ∼ N/(ḡ2YMb2)1/3. As we increase the energy the noncommutative effects become
large and the effective string coupling decreases. At energy scales u � ḡ10YMNb2 we
can use the type IIA description again. The ten dimensional curvature is small for

every N when u > ḡ10YMNb
2

l2sR10 <
1

N2
, (2.20)

and vanishes for u � ḡ10YMNb2.Thus, the ten dimensional supergravity solution can
be trusted in the UV for any N . Note, however, the metric at large u is not flat. In

figure 9 we plot the transition between the different descriptions as a function of the

energy scale u.

When β � 1 the effective string coupling is kept small by the large noncom-
mutative effects and we do not need the eleven dimensional description. The ten

dimensional curvature is small for every N when u > N/(ḡ2YMb
2)1/3 and the ten

dimensional supergravity solution can be trusted in the UV for any N . This is de-

scribed in figure 10. The interaction lagrangean between the brane modes and the
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Perturbative SYM IIA D6-brane Up lifted D6-brane IIA D6-brane

(
1

ḡ2YMNb
2

)1/3 N(
ḡ2YMb

2
)1/3 ḡ10YMNb

2

u

Figure 9: The transition between the different descriptions of the D6 brane theory with

B field (m = 2) as a function of the energy scale u when β � 1.

Perturbative SYM IIA D6-brane

(
1

ḡ2YMNb
2

)1/3
u

Figure 10: The transition between the different descriptions of the D6 brane theory with

B field (m = 2) as a function of the energy scale u when β � 1.

bulk modes is proportional to positive powers of κ10 = gsl
4
s which goes to zero in

the decoupling limit. Thus we expect all the interaction terms to vanish in this limit

and gravity to decouple from the branes worldvolume theory. Thus, it is plausible

to expect that a seven dimensional worldvolume theory without gravity does exist.

It was noted in [8] that such a theory will have a negative specific heat.

The case m = 3. The case m = 3 is similar to to the m = 2 case and we will

briefly discuss it. We assume b1 = b3 = b5 = b. It is again convenient to define the

dimensionless parameter β which now reads β = 1/ḡ4YMb
3. The phase diagram for

the cases β � 1 and β � 1 are similar to the m = 2 case above. The energy scales at
which the transitions occur are modified. As for the m = 2 case, the scalar curvature

vanishes at large u, however, the metric at large u is not flat. The decoupling from

the bulk argument is as in the m = 2 case.

Dp-branes (p > 6) Consider now the decoupling limit for Dp-branes with p > 6.

In a ten dimensional description the interaction lagrangean between the brane modes

and gravity is proportional to positive powers of κ10 = gsl
4
s . In an eleven dimensional

description the interaction is proportional to positive powers of the eleven dimen-

sional Planck length lp. Consider first the D7 branes. In the decoupling limit we

hold gsl
4−2m
s fixed as ls → 0. Therefor, when m > 0 we see that κ10 → 0 in this

limit, which indicates that the worldvolume theory decouples from gravity. In the

D8 branes case we hold gsl
5−2m
s fixed as ls → 0. Again, when m > 0 we see that

κ10 → 0 in this limit. When m = 1 the effective string coupling is small in the UV
and the ten dimensional description is sufficient. When m > 1 the effective string

coupling is large in the UV and we will need an eleven dimensional description. Note

that lp → 0 when m > 1 which indicates that again gravity decouples from the brane
worldvolume theory. For D9 branes we hold gsl

4−2m
s fixed as ls → 0 which ensures

again that κ10 → 0 and indicates the decoupling of gravity.
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2.4 Non extremal Dp-branes

Consider the non-extremal Dp-branes solution with non zero B field. The metric in

the decoupling limit reads:

l−2s ds
2 =

( u
R

) 7−p
2

(
2m−1∑
i odd

hi(dx
2
i + dx

2
i+1) + · · ·+

(
1−

(uT
u

)7−p)
dx2p+1

)
+

+

(
R

u

) 7−p
2
(

du2

1− (uT/u)7−p + u
2dΩ28−p

)
, (2.21)

where uT is related to the energy density of the brane above density extremality ε by

u7−pT ∼ ḡ4YM
2m−1∏
i odd

b2i ε . (2.22)

This should correspond to decoupled theories at finite temperature with ε being the

energy density of the field theory. As discussed in [8] the thermodynamic quantities

are as in the case without a B field. More precisely, they are the same as in the

B = 0 case with g2YM → ḡ2YM
∏2m−1
i odd bi. Later we will analyse the Wilson loops of

this system.

3. Fivebranes

In this section we will discuss possible noncommutative deformations of the M5

branes and NS5 branes worldvolume theories.

3.1 M5 branes

Consider N coinciding M5 branes in the presence of a nonzero C field with m = 1, 2.

The supergravity solution reads4

ds211 = f
−1/3


(2m−1∏

i odd

hi

)−1/3(2m−1∑
i odd

hi(dx
2
i + dx

2
i+1) + dx

2
6

)
+

(
2m−1∏
i odd

hi

)2/3
dx25


+

+ f 2/3

(
2m−1∏
i odd

hi

)−1/3
(dr2 + r2dΩ24) ,

f = 1 +
πNl3p∏
i cos θir

3
,

h−1i = sin
2 θif

−1 + cos2 θi ,

C5,i,i+1 = tan θi f
−1 hi , Ci,i+1,6 = sin θ4−i cos θi f−1 hi . (3.1)

4In the following we will not write the component of the C field associated with the M5 branes

charge.

14



J
H
E
P
1
1
(
1
9
9
9
)
0
0
7

Let us discuss first the case when the worldvolume coordinate x5 is compactified

on a circle of radius R0. In the decoupling limit we send lp → 0 and keep following
quantities fixed:

u =
r

l3p
R0 , R̄0 =

R0

l
3m/(m+1)
p

,

bi =
l3p
R0
tan θi x̄i,i+1 =

R0bi
l3p
xi,i+1

x̄6 = x6 x̄5 =

∏
i biR

m
0

l3mp
x5 . (3.2)

This decoupling limit is consistent with the D4 branes decoupling limit where we use

the relation l2sR0 = l
3
p. The same scaling of the coordinates x was derived in [5] for

the case of m = 2 and bi = b.

In the limit (3.2), the supergravity solution reads:

l−2p ds
2
11 =

(∏
i

hi

)1/3
u

(πN)1/3
∏
i biR̄

m+1
0

(∑
i

h−1i (dx
2
i+ dx

2
i+1) + dx

2
6+
∏
i

h−1i dx
2
5

)
+

+

(∏
i

hi

)1/3
(πN)2/3

u2
(du2 + u2dΩ24) ,

hi = 1 + a
3
iu
3 , a3i =

b2i
πNR̄m+10

∏
j bj
. (3.3)

The C field (up to numerical factors) takes the form

m = 1 : C346 ∼
l3p

b2R̄20
a3u3 , C125 ∼

l3p

b2R̄20

a3u3

1 + a3u3
,

m = 2 : Ci,i+1,6 ∼
l3p

b3i R̄
3
0

a3iu
3

1 + a3iu
3
, Ci,i+1,5 ∼

l3p

bi
∏
j bjR̄

3
0

a3iu
3

1 + a3iu
3
. (3.4)

This background is the ten dimensional D4 branes solution up lifted to eleven di-

mensions. At low energies compared to 1/R0 the description of the system is in

terms of the D4 brane theory, as discussed in the previous section. We might have

expected that at high energies (large u) we will have a good description in terms of

a noncommutative (0, 2) theory in six dimensions. The curvature reads

l2pR11 ∼
1

N2/3
∏2m−1
i odd (1 + a

3
iu
3)1/3

, (3.5)

and we can trust the supergravity solution. However, the size of the compact direc-

tion, x5, is controlled
∏2m−1
i odd h

−2/3
i u/N1/3 which decreases in the UV. Therefor, at

large u we are back in the ten dimensional D4 branes background, as discussed in

the previous section and we do not find a six dimensional field theory description of

the UV.
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Let us discuss now the M5 branes in the background of a nonzero C field without

wrapping a circle. Consider the supergravity solution (3.1) and let us keep the

following quantities fixed as lp → 0

un−1 =
r

lnp
, b

q/2
i = l

q
p tan θi . (3.6)

For the moment we will consider n > 1, q as arbitrary positive integers. We get

f = 1 +
πN

∏
i b
q/2
i

lmq+3n−3p u3n−3
,

hi =
bqi

l2qp

1

1 +
bqi
l
2q
p
(1 +

πN
∏
i b
q/2
i

l
mq+3n−3
p u3n−3

)−1
. (3.7)

The condition for a finite metric solution and a constant nonzero C field at infinity

require (m − 2)q ≤ 3(1 − n) < mq. Keeping finite the tension of the strings that
arise from M2 branes stretched between the M5 branes requires n = 3, namely

u2 = r/l3p =fixed. This implies m = 1, q = 6. The background reads

l−2p ds
2
11 =

u2

(πN)1/3
h1/3(h−1dx21,2,5 + dx

2
3,4,6) +

(πN)2/3

u2
h1/3(4du2 + u2dΩ24) ,

h = 1 + a6u6 ,

C346 =
l3p
b3/2
a6u6 , C125 =

l3p
b3/2

a6u6

1 + a6u6
, (3.8)

where a6 = b3/πN and we rescaled the coordinates x3,4,6 → l3p/b3/2x3,4,6 and x1,2,3 →
b3/2/l3px1,2,3. Note that the decoupling limit leading to (3.8) differs from (3.2).

At very low energies (small u) the metric (3.8) describes the eleven dimensional

AdS7 × S4 background with a self-dual C field, providing a dual description of the
(0, 2) SCFT. As we increase u the AdS7×S4 is deformed and the C field is no longer
self-dual. The curvature reads

l2pR11 ∼
1

N2/3(1 + a6u6)1/3
, (3.9)

and we can trust the supergravity solution in the UV as well.

3.2 NS5 branes

Type IIB. The type IIB NS5 branes solution in the presence of nonzero RR fields

can be obtained from D5 branes by S-duality transformation. Under S-duality we

have:

l2s → l′2s ≡ gsl2s , gs → g′s ≡
1

gs
,

eφ → eφ′ ≡ e−φ , ds2 → ds′2 ≡ gse−φds2 . (3.10)
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Using (3.10) we get the type IIB NS5 branes background,

ds′2 =
2m−1∏
i odd

h
−1/2
i

[
2m−1∑
i odd

hi(dx
2
i + dx

2
i+1) + · · ·+ dx26 + f(dr2 + r2dΩ23)

]
,

f = 1 +
c5Nl

′2
s∏2m−1

i odd cos θi r
2
,

h−1i = sin
2 θif

−1 + cos2 θi ,

e2φ
′
= g′2sf

2m−1∏
i odd

h−1i , (3.11)

and the NS field Bij is mapped to a the RR field Aij . The decoupling limit is derived

by applying (3.10) on the decoupling limit of the D5 branes. It is defined by taking

the limit g′sl
′2
s → 0 and keeping fixed

u =
r

g′sl′
2
s

, ḡ′s = g
′−m
s l

′2−2m
s

bi = g
′
sl
′2
s tan θi , x̄i,i+1 =

bi

g′sl′
2
s

xi,i+1 . (3.12)

Keeping u fixed means keeping fixed the mass of a D-string stretched between two

NS5 branes.

In the limit (3.12) the background (3.11) reads

ds′2 =
l′2s

ḡ′s
∏
i bi

2m−1∏
i odd

h
1/2
i

[
2m−1∑
i odd

h−1i (dx
2
i + dx

2
i+1) + · · ·

+ dx26 +
c5Nḡ

′
s

u2

2m−1∏
i odd

bi(du
2 + u2dΩ23)

]
,

hi = 1 + a
2
iu
2 ,

a2i =
b2i

c5N
∏2m−1
j odd bj ḡ

′
s

,

e2φ
′
=

c5N∏2m−1
i odd biḡ

′
su
2

2m−1∏
i odd

hi . (3.13)

The Yang-Mills coupling of the worldvolume theory is g2YM ∼ g′−ms l′2−2ms . The cur-

vature of the metric reads

l′2sR ∼
1

N

1∏
i(1 + a

2
iu
2)1/2

. (3.14)

When aeffi ≡ aiu � 1 the supergravity approximation can be trusted for large
N, while when aeffi � 1 the supergravity approximation can be trusted for finite
N. When m = 1 we see that at large u the effective string coupling is small and we
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can use the NS5 brane description in the UV. When m = 2, 3 the effective string

coupling is large in the UV and we have to use the S-dual description of D5 branes.

This is precisely what we saw in the phase structure of the D5 branes system in the

previous section.

Type IIA The background of type IIA NS5 branes wrapping a circle can be ob-

tained by a T-duality transformation [17] of the type IIB NS5 branes. We compactify

the coordinate x5 on a circle and perform T-duality in x5 on the background (3.13).

The decoupled type IIA NS5 branes solution reads

ds′2 =
l′2s

ḡ′s
∏2m−1
i odd bi

2m−1∏
i odd

h
1/2
i

[
2m−1∑
i odd

h−1i (dx
2
i + dx

2
i+1) + · · ·+

2m−1∏
i odd

h−1i dx
2
5 + dx

2
6+

+
c5Nḡ

′
s

u2

2m−1∏
i odd

bi(du
2 + u2dΩ23)

]
,

hi = 1 + a
2
iu
2 ,

a2i =
b2i

c5N
∏2m−1
j odd bj ḡ

′
s

,

e2φ
′
=

c5N∏2m−1
i odd biḡ

′
su
2

2m−1∏
i odd

h
1/2
i , (3.15)

where we have rescaled x5 →
∏
i bi/(g

′
sl
′2
s)
mx5 and we have taken into account the

fact that under T-duality φ → φ − 1
2
ln(g55). Note that unlike the type IIB NS5

branes background where m = 1, 2, 3 here m = 1, 2. The 3-form field A (up to

numerical factors) takes the form

m = 1 : A346 ∼ (g
′
sl
′2
s)
2

b2
a2u2 , A125 ∼ (g

′
sl
′2
s)
2

b2
a2u2

1 + a2u2
,

m = 2 : Ai,i+1,6 ∼ (g
′
sl
′2
s)
3

b3i

a2iu
2

1 + a2iu
2
, Ai,i+1,5 ∼ (g

′
sl
′2
s)
3

bi
∏
j bj

a2iu
2

1 + a2iu
2
. (3.16)

The curvature of the metric is the same as for the type IIB NS5 branes (3.14). In

the IR the effective string coupling is large and we have to lift the solution to eleven

dimensions. The background becomes that of wrapped M5 branes. As we increase

the energy we can trust the NS5 branes background which provides a deformation

of the wrapped M5 branes background.

4. Wilson loops

In this section will use the dual string description in order to compute Wilson loops

(surfaces) for the different brane theories.
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4.1 Dp-branes

According to the AdS/CFT correspondence, the expectation value of the Wilson

loop operator of the gauge theory can be computed in the dual string description

by evaluating the partition function of a string whose worldsheet is bounded by the

loop [18, 19]. In the supergravity approximation the dominant contribution comes

from the minimal two dimensional surface bounded by the loop. The expectation

value of the Wilson loop operator is

〈W (C)〉 ∼ e−S , (4.1)

where S is the string action evaluated on the minimal surface. We will use the same

prescription in the case of a nonzero B field. The string action reads now

S =
1

2πl2s

∫
dτdσ

√
detgij +

1

2πl2s

∫
Bij∂τX

i∂σX
j , (4.2)

where gij = ∂iX
µ∂jX

νGµν is the induced metric.

Consider a static QQ̄ configuration. In general the quark and antiquark move

with velocity p̄ = b
l2s
p. When B = 0, in the ls → 0 limit, the velocity appears via a

multiplicative factor in QQ̄ potential, as expected by the Lorentz symmetry. When

B 6= 0 the situation is different. There is no Lorentz symmetry and the B field term
contributes. When the strings are not moving the end points of strings cannot be

fixed at a finite distance L from each other at large u [8] since they grow with u.

The endpoints of the strings can be fixed at large u as follows. As was noted in [12],

the interaction of charges of opposite sign in a magnetic field is nonlocal in the sense

that the interaction point in terms of the center of mass coordinate is shifted by a

momentum dependent term. This suggests that we should use a moving coordinates

frame in the computation.5 Indeed, as seen from (2.3), the end points of the open

strings attached to the boundary are quark and anti-quark moving with the same

velocity (2.3).

In the following we will consider Dp-branes with bi = b, i = 1, 3, . . . , 2m − 1.
However we will write the final result for arbitrary bi. We distinguish two cases. In

the first case the rank of the B field is not maximal, thus some of the coordinates are

commutative and the loop is parametrized by these. In this case the computation

proceeds exactly as in the B = 0 case. In the second case the loop is parametrized

by the noncommutative coordinates. We will discuss this case. We parametrize the

5We note that in the case m = p+1
2 we will not be able to fix the end points of the strings

at infinity. In this case, the time coordinate xp+1 is noncommutative coordinate. For a static

configuration where the potential is time independent we cannot find an appropriate shift of the

time coordinate.

19



J
H
E
P
1
1
(
1
9
9
9
)
0
0
7

string configuration by t = τ , u = σ, x1 = p̄τ , x2 = x(u). Equation (4.2) reads now

S =
1

2π

∫
dτdu

√
(1− hp̄2)

(
1 +

( u
R

)7−p
h(∂ux)2

)
+
1

2π

∫
dτdu

p̄

b
(au)7−ph∂ux ,

(4.3)

where R and h are defined in (2.6). It is minimized when

(u/R)7−ph(1− hp̄2)∂ux
L0 + (au)7−ph

p̄

b
= const. , (4.4)

where L0 is the integrand of the first term in (4.3).
At large u we have

(1/aR)7−p∂ux√
1 + (∂ux)2/(aR)7−p

+
p̄

b
= const. . (4.5)

Therefore if we choose the constant in (4.5) to be p̄/b we can fix the position of the

string at large u. With this choice equation (4.4) can be solved written as

∂ux =
p̄

b

( u
R

)− 7−p
2

(( u
R

)7−p − ( p̄
b

)2)−1/2
. (4.6)

Hence

x(u) =

∫ u
u0

p̄

b

( u
R

)−(7−p)(( u
R

)7−p
−
(u0
R

)7−p)−1/2
, (4.7)

where ∂ux|u0 →∞6
(au0)

7−p = p̄2 . (4.8)

The QQ̄ separation is defined by

L = x(u→∞) =
∫ ∞
u0

(
R

u0

) 7−p
2
(
1−

(u0
u

)7−p)−1/2 (u0
u

)7−p

=
R
7−p
2

7− pu
p−5
2
0 B

(
1

2
,
6− p
7− p

)
. (4.9)

Using (4.3) we calculate the energy of the QQ̄ system

E =
1

2π

∫ ∞
u0

b

p̄
∂ux

( u
R

)7−p
du . (4.10)

The integral (4.10) is divergent due to the quark self-energy. It can be regularized

as in [18]:

E =
1

2π
u0
1

7− pB
(
1

2
,
−1
7− p

)

= − 1
2π
u0

(
1

2
− 1

7− p
)
B

(
1

2
,
6− p
7− p

)
. (4.11)

6In order for u0 to be N independent we should take the momentum p̄ to be N dependent.
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Thus,

E ∼ −
(
ḡ2YMN

∏2m−1
i odd bi

L2

) 1
5−p

. (4.12)

When p < 5 the potential is attractive. When p = 5 L is independent of u0 and

the regularized energy is zero. In the p = 6 case we see that the QQ̄ potential is

proportional to −L2 which results in a repulsive force. The potential (4.12) is the
same as in the B = 0 case [20] with g2YM → ḡ2YM

∏2m−1
i odd bi. This is presumably

expected by the choice of the moving coordinates frame, and also by the map from

noncommutative gauge theory to the commutative one [5].

4.2 Non-extremal Dp-branes

In order to compute the expectation value of the Wilson loop operator in the gauge

theory at nonzero temperature we will use the non-extremal Dp-branes background.

We again take the previous string configuration. We get

S =
1

2π

∫
dτdu

√
(1− hK−1p̄2)

(
1+
( u
R

)7−p
hK(∂ux)2

)
+
1

2π

∫
dτdu

p̄

b
(au)7−ph∂ux .

(4.13)

where K = 1− (uT/u)7−p.
Solving the equation of motion for x(u) and fixing the end points by a constsnt

p̄/b, we have

∂ux =
p̄

b

( u
R

)− 7−p
2

K−1/2
(( u
R

)7−p
K −

( p̄
b

)2)−1/2
. (4.14)

Thus,

x(u) =

∫ u
u0

p̄

b
R(7−p)

(
u7−p − u07−p

)−1/2 (
u7−p − uT 7−p

)−1/2
, (4.15)

wher u0 is the point where the ∂ux→∞,
(au0)

7−p = (auT )7−p + p̄2 . (4.16)

Consider two cases:

a) Low momentum: (auT )
7−p � p̄2. Here the non-extremality effects are large

and we get

E ∼ −
(
ḡ2YMN

∏2m−1
i odd bi

L2

) 1
5−p
[
1 + c

(
T

L2

ḡ2YMN
∏
i bi

)(7−p)/(5−p)]
, (4.17)

where c is N independent dimensionless constant. Again, the potential (4.16)

is the same as in the B = 0 case [20] with g2YM → ḡ2YM
∏2m−1
i odd bi.

b) High momentum: (auT )
7−p � p̄2. Here the noncommutativity effects are large

and we get the noncommutative extremal case result (4.9).
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4.3 Wilson surfaces

The computation of the expectation value of a Wilson surface observable amounts

in the supergravity approximation to computing the minimal volume of a membrane

bounded at infinity by the surface Σ. Consider first the wrapped M5 branes back-

ground (3.3).

The case m = 1 When the noncommutative effects are large the background (3.3)

has three small coordinates x1, x2, x5. There are two cases to distinguish. The first

is when the membrane wraps one of this coordinates. In this case the result should

coincide with that of the D4 branes Wilson loop computation. The second case is

when the membrane is not wrapping one of these small coordinates. This case is

similar to the computation of the potential between monopole and antimonopole.

Here we expect an end fixing problem since unlike the electric charges in the B field

background there is no useful moving coordinate frame.

We start with the first case. We denote the membrane coordinates by τ, σ1, σ2.

Consider, for instance, the configuration τ = x6, bR̄
2
0σ1 = x5, σ2 = u, x2 ≡ x(u) and

x1 = p̄τ . σ1 parametrizes the compactification circle 0 ≤ σ1 ≤ 2π. The membrane
action reads

S =
1

(2π)2

∫
dτdσ1du

{√
(1− h−1p̄2)

(
1+

(
u3

πNbR̄20

)
h−1(∂ux)2

)
+
p̄

b
(au)3h−1∂ux

}
,

(4.18)

where here h = 1 + a3u3. Performing the integration on σ1 we get (4.3) for p = 4,

where R3 → πNbR̄20. This is the expected result.
Consider the second case and let the configuration be τ = x6, σ1 = x3, σ2 =

u, x4 ≡ x(u). Since the C346 component is nonzero, the C term in the membrane
action contributes and we get the action per unit length

S =
1

4π2bR̄20

∫
dτdu

{√
h

(
1 +

(
u3

πNbR̄20

)
(∂ux)2

)
+
a3

b
u3∂ux

}
. (4.19)

The equation of motion for x(u) at large u is of the form ∂ux ∼ const., and we have
an end fixing problem. As we noted above, a similar end fixing problem arises when

considering the a D2 brane ending on D4 branes in order to compute the monopole

antimonopole potential when B 6= 0.
The case m = 2. The computation here is similar to the m = 1 case when the

membrane is wrapping a small coordinate. Taking the configuration τ = x6, bR̄
2
0σ1 =

x5, σ2 = u, x2 ≡ x(u) and x1 = p̄τ , and integrating the action with respect to σ we
get (4.18).

Finally, consider the background (3.8). When the noncommutative effects are

large the background (3.8) has three small coordinates x1, x2, x5. Again we distin-

guish two types of membrane configuration. The first is when the membrane wraps
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one of this coordinates. A configuration like this is τ = x6, σ1 = x1, σ2 = u, x2 ≡ x(u)
and x1 = p̄τ . The membrane action per unit length reads

S =
1

(2π)2

∫
dτdu

{√
u2(1− h−1p̄2)

(
1 +

(
u4

πN

)
h−1(∂ux)2

)
+
p̄

b3/2
(au)6h−1∂ux

}
,

(4.20)

where h = 1 + a6u6. The equation of motion for x(u) is

u
√
1− h−1p̄2h−1 u4

πN
∂ux√

1 + h−1 u4
πN
(∂ux)2

+
p̄

b3/2
a6u6h−1 = const. . (4.21)

By choosing the constant to be p̄/b3/2, we can fix the end location of the membrane

and we have

∂ux =
p̄ πN

b3/2
u−2(u6 − u60)−1/2 , (4.22)

where a6u60 = p̄
2. The distance L which is defined as x(u→∞) reads

L =

√
πN

u0

(
1

6

∫ 1
0

dy (1− y)−1/2y−1/3
)
. (4.23)

Inserting the solution for x(u) in (4.20) we get the interaction energy per unit length

between strings of opposite orientation

E =
1

(2π)2

∫ ∞
u0

b3/2

p̄π N
u6∂ux du ∼ −N

L2
. (4.24)

This is the same result as for the Wilson surface in the B = 0 case [18].

The second case is when the membrane is not wrapping one of these small co-

ordinates. Here we expect an end fixing problem. Indeed consider the configuration

τ = x6, σ1 = x3, σ2 = u, x4 ≡ x(u). The membrane action per unit length reads

S =
1

(2π)2

∫
dτdu

√
u2h

(
1 +

(
u4

πN

)
(∂ux)2

)
+
a6

b3/2
u6∂ux . (4.25)

Writing the equation of motion for x(u) we see that ∂ux at large u goes like like u

and we have an end fixing problem.

5. Discussion

In this paper we studied the Dp-branes supergravity solutions in the presence of

a B field, the decoupling limit and various aspects of the correspondence with the

noncommutative worldvolume field theories. We analysed the phase structure of the

Dp-branes and its dependence on the rank of the B field, i.e. the dependence on
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the number of noncommutative coordinates. We provided evidence for a possible

existence of decoupled Dp-branes worldvolume theories when p ≥ 6 in presence of a
nonzero B field, but clearly more work is required in order to settle this issue [21].

As pointed out [8] the D6 branes system has a negative specific heat. This is usually

taken as a sign of instability. However, it may be that the noncommutative effects

at high energy require a modification of our field theory understanding of thermal

equilibrium. This requires further studies too. The relevance of this to M(atrix)

theory compactification on the tori T p, p ≥ 6 [22] in the presence of a nonzero B
field deserves a further study.

We discussed M5 branes in the presence of nonzero C field. In the case of M5

branes wrapping a circle we found the same decoupling limit discussed in [5] arising

from supergravity. In the UV the good description of this system is in terms of D4

branes background, and we did not find a six dimensional field theory description.

Considering M5 branes with six flat nocompact worldvolume coordinates we found

another decoupling limit and we discussed this possible deformation of the (0, 2)

SCFT. We also discussed type IIB and type IIA NS5 branes (wrapping a circle) in

the presence of nonzero RR fields.

Finally we computed the expectation value of the Wilson loop (surface) opera-

tors using the dual supergravity description. We have seen that, in some cases, in

the presence of the nonzero B (C) field there is a way to fix the string (membrane)

end point (string) by considering a moving coordinates frame in the computation.

The results for both extremal and non-extremal Dp-branes (and for the M5 branes)

are the same as in the B = 0 case with g2YM → ḡ2YM
∏2m−1
i odd bi. This is presum-

ably expected by the map from noncommutative gauge theories to the commutative

ones [5].
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