
A Free Interactive Matching Program�

J.-F. Ostiguyy , Fermi National Laboratory, Batavia, IL

Abstract

For physicists and engineers involved in the design and
analysis of beamlines (transfer lines or insertions) the lat-
tice function matching problem is central and can be time-
consuming because it involves constrained nonlinear op-
timization. For such problems convergence can be diffi-
cult to obtain in general without expert human intervention.
Over the years, powerful codes have been developed to as-
sist beamline designers. The canonical example is MAD
(Methodical Accelerator Design) developed at CERN by
Christophe Iselin[3]. MAD, through a specialized com-
mand language, allows one to solve a wide variety of prob-
lems, including matching problems. Although in principle,
the MAD command interpreter can be run interactively, in
practice the solution of a matching problem involves a se-
quence of independent trial runs. Unfortunately, but per-
haps not surprisingly, there still exists relatively few tools
exploiting the resources offered by modern environments to
assist lattice designer with this routine and repetitive task.
In this paper, we describe a fully interactive lattice match-
ing program, written in C++ and assembled using freely
available software components. An important feature of the
code is that the evolution of the lattice functions during the
nonlinear iterative process can be graphically monitored in
real time; the user can dynamically interrupt the iterations
at will to introduce new variables, freeze existing ones into
their current state and/or modify constraints. The program
runs under both UNIX and Windows NT.

1 INTRODUCTION

Until just a few years ago, research software was difficult to
localize and the distribution mechanisms were inefficient,
making it difficult to build upon work done by others. The
internet has dramatically altered this state of affairs. Be-
fore attacking a problem, it is now the norm to acquire and
study existing source code. In this paper, I describe the
BeamLine Interactive Matching Program (BLIMP), an in-
teractive lattice design application assembled with various
freely available software components. The objective is not
to compete with commercial products, but rather to provide
an application that can be modified and adapted to meet
specialized needs. There are few available non-commercial
interactive applications to perform beamline design. A
well-known example is TRACE3D, which, despite being
written in Fortran more than twenty years ago and adapted
for interactive usage around 1988 is still widely used.

The design goals for BLIMP were the following: (1)
given a nominal description of a beamline, allow a user to
specify all aspects of a matching problem interactively (2)

�Work supported by the US Department of Energy.
yEmail: ostiguy@fnal.gov

provide graphical feedback and allow the user to dynami-
cally interrupt a nonlinear iteration to change the state of
variables and constraints. As it stands now, BLIMP is still
work in progress; nevertheless, basic features have been
implemented and are fully functional.

2 THE MATCHING PROBLEM

The matching problem is a common lattice design problem.
It can be simply stated as follows: given a beamline and
a set of lattice functions specified at one extremity, deter-
mine the strength and/or longitudinal position of beamline
elements necessary for the lattice functions to assume cer-
tain specified values at one or more distinct locations. The
problem arises typically in the following situations: (a) a
beamline is needed to transfer beam from one circular ma-
chine to another (b) a beamline with special optical prop-
erties is to be inserted into the regular lattice of a circular
machine without perturbing the region lying outside of it.

In most situations of practical importance, horizontal
and vertical motion are decoupled and a beamline is to first
order, completely characterized by a set of ten quantities:
�x;y, �x;y, �x;y, �x;y and�0

x;y
, where� and� are the fa-

miliar Courant-Snyder functions,� is the phase advance
and� and�0 are respectively the dispersion and its deriva-
tive with respect to the longitudinal coordinate. The effect
of a mismatch in�0 is often ignored; it is also common not
to constrain the phase advance.

3 CODE STRUCTURE

BLIMP is written in ANSI standard C++ and makes use of
the Standard Template Library. Variables are defined inde-
pendently of basic beamline elements and can in principle
involve arbitrary linear combinations of element strengths,
making possible the definition of families of elements shar-
ing a common power source. The user can dynamically de-
fine both local and global constraints. Typically, local con-
straints involve equalities while global constraints involve
inequalities (e.g.� function smaller than a prescribed max-
imum). Figures 1 and 2 are screen shots of the user inter-
face. BLIMP has been put together by using freely avail-
able software components which are now briefly described.

3.1 MXYZTPLK/BEAMLINE LIBRARIES

The MXYZTPLK and Beamline Libraries, authored by
Leo Michelotti [1, 2], have been under development in the
Beam Physics department since 1989. MXYZTPLK is a
stand-alone library of C++ classes for performing auto-
matic differentiation and differential algebra. In an nut-
shell, automatic differentiation is the systematic applica-
tion of Liebnitz’s chain rule to evaluate derivatives of ar-

0-7803-5573-3/99/$10.00@1999 IEEE. 2710

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25268008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: BLIMP user interface. The top window is a dis-
play of the beamline. The user can grab an element and
move it interactively. In the second window, a sliding cur-
sor is displayed for each variable that has been defined.
Each variable can have constrained limits. The third win-
dow shows local constraints. Each of these constraints is
editable. The bottom right window is a text browser that
contains a description of the beamline elements. The user
uses this window to select elements (variables) or locations
(constraints).

Figure 2: BLIMP displaying lattice functions. The plots
are dynamically connected to the variable sliding cursors;
changes are reflected in real time in the plot window(s).

bitrary order to machine precision. The Beamline class li-
brary built on top of MXYZTPLK, is a rich set of classes
supporting lattice related calculations. Beamlines are rep-
resented by doubly linked lists whose nodes can either
point to other beamlines or to basic elements such as
dipoles, quadrupoles, RF cavities etc. Beamlines can be
edited, concatenated, cloned, flattened (i.e. no hierarchi-

cal structure) etc. Most quantities of interest to accelera-
tor physicists can be computed, including lattice functions,
dispersion and chromaticity. Both field and alignment er-
rors can be included if necessary. Maps of arbitrary order
can in principle be computed to machine precision in ei-
ther 4-dimensional (i.e. transverse) phase space or full 6-
dimensional phase space. The desire to compute high order
maps actually provided much of the motivation for devel-
oping the automatic differentiation library. BLIMP uses
functionality from the Beamline class library to compute
lattice functions, track individual particles or distributions
and compute maps.

3.2 NONLINEAR OPTIMIZER

Numerical nonlinear optimization is a vast and highly spe-
cialized field. Nevertheless, problems can generally clas-
sified according to (1) whether or not the objective func-
tion can be expressed as a continuous, differentiable func-
tion of the independent variables and (2) the nature of the
external constraints that need to be enforced, if any. For
matching problems, the objective function are usually dif-
ferentiable functions of the elements strengths and posi-
tions. In that case, variants of the gradient and Newton
methods are most efficient. The Newton method has the
advantage of quadratic convergence if the extremum is suf-
ficiently close; the rate of convergence for gradient meth-
ods tends to be less favorable. However, because it is typi-
cally more expensive to compute and invert a Hessian ma-
trix than to compute a gradient vector, a common strategy is
to start with a gradient iteration and switch to a Newton it-
eration only within close proximity of the extremum. Con-
straints are most easily handled by adding penalty terms
to the objective function. These penalty terms must ob-
viously be differentiable; quadratic terms are useful for
equality constraints while exponential terms can be used
for inequality constraints. When inequality constraints ap-
ply to independent variables, a useful technique is to use
an inverse trigonometric transformation and to consider the
transformed variables as free.

At the moment, BLIMP uses the facilities of the MI-
NUIT library from CERN [4], a good general purpose op-
timization library. It supports the optimization strategies
described above and is freely available for research insti-
tutions. Unfortunately MINUIT suffers from various lim-
itations associated with its Fortran heritage. Among the
most problematic issues are the following: all I/O involves
the Fortran I/O subsystem which cannot be mixed with the
C/C++ I/O in a portable way; the objective function must
be passed to the library as a static function and there is
therefore no straightforward way of using functors objects.
The BLIMP optimization code is encapsulated into anOp-
timizer class; this should allow an alternative to MI-
NUIT to be substituted with minimal side effects.

2711

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

3.3 GRAPHICAL USER INTERFACE

The choice of a user interface toolkit has been driven by
two requirements: (1) object orientation and (2) need for
portability between various flavors of UNIX and Windows
NT. The Fast Light Toolkit (FLTK) [5] satisfies both re-
quirements and is available under the terms of the GNU
Public Library License. FLTK also provide support for
OpenGL (or MESA, a free compatible alternative).BLIMP
takes advantage of the facilities offered by OpenGL to effi-
ciently display the beamline at different scales.

3.4 PLOTTING

BLIMP uses the SciPlot scientific plot widget[6]. SciPlot
was written for the Xt toolkit and therefore uses an event
model that is incompatible with FLTK. This difficulty was
circumvented by running plot widgets in separate threads.
At the moment, this is the only part of BLIMP that does not
compile under Windows NT without modifications. One
interesting aspect of the plotting functionality in BLIMP
is that all user interface control elements are dynamically
connected to the various plots, allowing a user to dynami-
cally observe the sensitivity of a solution to small param-
eter variations, or to explore the parameter space before
attempting a non-linear optimization.

4 APPLICATIONS

We now describe two applications that motivated the devel-
opment of BLIMP.

4.1 PHASE TROMBONE

The Fermilab Recycler ring is a new machine for antipro-
tons accumulation and recycling scheduled to be commis-
sioned in the spring of 1999. The Recycler has the distinc-
tion of being the first machine to make large scale utiliza-
tion of permanent magnet technology. The machine oper-
ates at fixed energy of 8 GeV with a lattice based on fixed
field combined function magnets. The tune of the machine
is adjusted by varying nine electromagnetic quadrupoles
grouped in five symmetric families within a region where
�x;y = �0

x;y
= 0. Four hard constraints must be met i.e.

at the symmetry point�x;y = 0 and the two phase ad-
vances set to the desired values; an additional softer re-
quirement is to prevent the beta functions from exceeding
a maximum value. Since this region is part of a matched
insertion, the lattice functions outside the insertion remain
unperturbed when the tune is adjusted. The maximum tun-
ing range is approximately�1=2. Since the settings of the
quadrupole families is different for each tune, it is antici-
pated that BLIMP will be useful to both to adjust and diag-
nose the phase trombone.

4.2 LOW BETA INSERTION

In a low-beta insertion, the objective is to use a pair of
quadrupole doublets or triplets to focus counter-circulating

beams into a very small size interaction region. In general,
the insertion has to match the lattice functions of the ring at
both extremities; the phase advance is unconstrained. At
the interaction point,�x;y must assume specified values
and the beam envelope must go through a minimum i.e.
�0

x;y
= 0. It is also often required for the dispersion to be

as small as possible and one usually demands�x;y = 0.
Constraining�0 may also be desirable. The result is 24 lo-
cal constraints. In practice, low insertions are symmetric
and one can concentrate one one-half of the insertion, re-
ducing the number of constraints to 16, possibly 14 if�0 is
ignored. Global constraints are usually introduced to limit
the amplitude of the beta functions inside the high gradient
quadrupoles.

Low beta insertions are notoriously nonlinear. Without
experience, it is difficult for a novice to find a satisfactory
solution and interactivity is certainly no substitute for ex-
perience. However, the ability to quickly experiment with
different strategies and stop the iterations dynamically is
proving to be a significant advantage.

5 CONCLUSION

BLIMP is still work in progress, although it is certainly al-
ready useful as it stands. In the immediate future, the pro-
gram will acquire the ability to read and write in a “stan-
dard” beamline specification format. Even though the for-
mat used at this moment is application specific it is a very
simple matter to describe a simple beamline with a few
dozen elements. A beamline editor allowing the user to
specify or modify beamlines interactively would also be an
interesting improvement. All source code should eventu-
ally become freely available to the accelerator community,
at least for non-commercial use. Please contact the author
for further informations.

6 REFERENCES

[1] L. Michelotti, “MXYZPLTK Version 3.1 User’s Guide: A
C++ Library for Differential Algebra”, Fermilab Publication
FN 535-REV, October 1995

[2] L. Michelotti, “MXYZPLTK and Beamline: C++ Objects
for Beam Physics”, Advanced Beam Dynamics Workshop on
Effects of Errors in Accelerators, their Diagnosis and Correc-
tion, AIP Conf. Proceedings No 225, 1992

[3] C. Iselin and H, Grote, “The MAD Program (Methodical Ac-
celerator Design), User’s Reference Manual, CERN/SL/90-
13(AP), Geneva, Switzerland

[4] F. James, “MINUIT Minimization Package Reference Man-
ual Version 94.1”, CERN Program Library D506, Computing
and Networks Division CERN Geneva, Switzerland

[5] Information about FLTK is available at the following URL:
www.fltk.org

[6] Information about the SciPlot wid-
get is available at the following URL:
www.ae.utexas.edu/˜rwmcm/SciPlot.html

[7] Fermilab Recycler Ring Technical Design Report Revision
1.2, November 1996

2712

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

