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On the spectrum of gauge periodic point

perturbations on the Lobachevsky plane

J. Br�uning and V. A. Geyler

Introduction

Let H be the periodic Schr�odinger operator with a uniform magnetic �eld

on the Euclidean plane R2; the spectral structure of H depends drastically

on the ux � of the �eld through an elementary cell of the period lattice: If �

is a rational number, then the spectrum of H has a band structure, whereas

for irrational � regions with Cantor spectrum may appear [1]. The situation

is di�erent in the case of the Lobachevsky plane. Indeed, if the group of pe-

riods of H is the modular group SL(2;Z); then the spectrum of H has band

structure for any value of the ux � [2],[3]. This result is obtained under the

condition that the periodic perturbation of the free magnetic Hamiltonian is

the operator of multiplication by a periodic function. On the other hand, an

interesting class of periodic Schr�odinger operators is obtained by so-called

point perturbations since these perturbations give a broad collection of ex-

plicitly solvable models [4], [5]. In particular, the point perturbations of the

two-dimensional magnetic Schr�odinger operator are widely used in theoreti-

cal physics to investigate the transport properties of two-dimensional systems

[6], [7].

In the present paper, the results of the articles [2], [3] are extended to

periodic point perturbations of magnetic Schr�odinger operators on the Lob-

achevsky plane. It is proved that these operators have band spectrum, too, if

the associated C�-algebra has the Kadison property. This result seems to be

relevant in studying how the geometry of a two-dimensional electron system

inuences its spectral and transport properties [8], [9].
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1. The free Hamiltonian

We consider a two-dimensional complete Riemannian manifold X of negative

curvature (the Lobachevsky plane). We suppose that X is realized as the

Poincar�e upper half-plane, H,

H = fz = x+ iy 2 C : y > 0g; (1.1)

endowed with the metric

ds2 =
a2

y2
(dx2 + dy2); (1.2)

thus, the curvature of X is equal to R = �1=a2. The geodesic distance

between points z = x+ iy; z0 = x0 + iy0 2 X has the form

d(z; z0) = a cosh�1
"
1 +

jz � z0j2

2yy0

#
; (1.3)

and the volume form is given by

d� =
a2

y2
dx ^ dy: (1.4)

By de�nition, a constant uniform magnetic �eld B perpendicular to X is

a 2-form

B = B
a2

y2
dx ^ dy; B 2 R; (1.5)

where B is the strength of the �eld. The form B is exact, i.e. B = dA, where

the 1-form A is called a vector potential of B. The vector potential A is

de�nded up to a gauge term; we shall use the so-called Landau gauge,

A =
Ba2

y
dx: (1.6)

The Hamiltonian of a free quantum-mechanical particle (of mass m and char-

ge e) moving in the plain X subjected to the external �eld B has the form

[10]

H0 =
y2

2ma2

8<
:
 
�i~

@

@x
�
e

c

b

y

!2

� ~2
@2

@y2

9=
; ; (1.7)
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where we write

b := Ba2 (1.8)

(as usual, c denotes the velocity of light and ~ is the Planck constant). In

what follows we use a system of units in which e = c = ~ = 1 and m = 1=2:

In this case, H0 is a self-adjoint operator in L2(X) namely the closure of the

symmetric operator � 0;

� 0 =
1

a2

(
�y2

 
@2

@x2
+

@2

@y2

!
+ 2iby

@

@x
+ b2

)
; (1.9)

with domain D(� 0) = C1
0 (X): It is well known (see e.g. [11]) that D(H0) �

C(X): It is useful to note that with

Df := df + iA ^ f; f 2 C1
0 (X); (1.10a)

we obtain

� 0 = D�D: (1.10b)

The spectrum of H0, specH0, consists of two parts. The �rst one is the pure

point spectrum formed by the �nitely many eigenvalues (the Landau levels)

�l =
1

a2

"
1

4
+ b2 �

�
l +

1

2
� jbj

�2#
; 0 � l < jbj �

1

2
: (1.11)

The second part of the spectrum is the absolutely continuous spectrum which

�lls out the whole semi-axis
h
1
a2

�
1
4
+ b2

�
;1

�
[12].

The main role in this paper is played by the resolvent,R0(�) = (H0��)�1,
of H0. The integral kernel of R0(�) (i.e., the Green's function G0(z; z0; �) of

H0) is determined in [10]; it has the form

G0(z; z0; �) =
��t

4�
exp(ib')

�(t+ b)�(t� b)

�(2t)
F

�
t+ b; t� b; 2t;

1

�

�
: (1.12)

Here F (�; �;; z) is the Gauss hypergeometric function,

� := cosh2
d(z; z0)

a
; (1.13)

' := 2arctg
x� x0

y + y0
; (1.14)
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and t = t(�); � 2 CnspecH0; is uniquely de�ned by the conditions

� =
t(1� t) + b2

a2
; Re t > 1=2: (1.15)

In the following lemma, we collect the properties of G0 which are needed

below.

Lemma 1 For any z 2 X there exists the limit

lim
z0!z

�
G0(z; z0; �)�

1

2�
log d(z; z0)

�
=: q(�): (1.16)

This limit does not depend on z, in fact

q(�) = �
1

4�

h
 (t+ b) +  (t� b) + 2CE � log 4a2

i
: (1.17)

Here  (z) = [log �(z)]0; and CE is the Euler constant.

Proof According to [13; 2.3.1(2)] we have for j1� zj < 1

F (�; �;�+ �; z) =
�(�+ �)

�(�)�(�)

1X
n=0

(�)n(�)n

(n!)2
[kn� log (1� z)](1� z)n; (1.18)

where (�)n = �(� + 1) : : : (� + n� 1); and

kn = 2 (n+ 1)�  (�+ n)�  (� + n): (1.19)

In view of (1.12), we have to perform the limit � ! 1. Substituting (1.17)

and (1.18) in (1.11) and taking into account that CE = � (1), we get

(1.16).

Since Re t(�) ! �1 as Re � ! �1, we obtain the following assertion

from the well known asymptotics of  (z):

Lemma 2 Re q(�)! �1 as Re � !�1:

Lemma 3 For every " > 0 and � 2 C with Re � < 0, there exist constants

c1("; �) = c1 > 0 and ~c1("; �) = ~c1 > 0 such that

jG0(z; z0; �)j � c1 exp(�~c1d(z; z
0)); (1.20)

whenever d(z; z0) � ":

Moreover, if " is �xed then c1(�) = o(1) and ~c1(�)!1 as Re � ! �1:
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Proof If Re � < 0, then from formula 2.12 (1) in [13] we get for jzj < 1

F (t+ b; t� b; 2t; z) =
�(2t)

�(t+ b)�(t� b)

1Z
0

st�b�1(1 � s)t+b�1(1� zs)�t�bds:

(1.21)

The assumptions imply Re t > jbj+1=2 and z 2 R; jzj < 1: Then we estimate

������
1Z
0

st�b�1(1 � s)t+b�1(1� zs)�t�bds

������
=

������
1Z
0

st�b�1=2
�
1� s

1 � zs

�t+b�1=2
(1 � zs)�1=2(s(1� s))�1=2ds;

������
� (1 � jzj)�1=2

1Z
0

sRe t�jbj�1=2(s(1 � s))�1=2ds;

and the last integral converges to 0, by dominated convergence. Substituting

this in (1.11), we conclude the proof.

Lemma 4 Let K be a compact subset of X and z0 a �xed point of X. Then

for every " > 0 and � 2 C;Re � < 0; there exist constants c2(K; z0; "; �) =:

c2 > 0 and ~c2("; �) =: ~c2 > 0 such that

supfjG0(z; z0; �)j : z0 2 Kg � c2 exp(�~c2d(z; z0)); (1.22)

whenever d(z;K) � ":

Moreover, if K; z0; and " remain �xed then c2(�) = o(1) and ~c2(�)!1
as Re � ! �1:

Proof Let z; z0 2 X such that z0 2 K; d(z;K) � ". Then d(z; z0) � " and

d(z; z0) � d(z; z0)� d(z0; z
0) � d(z; z0)� k; (1.23)

where k = supfd(z0; z0) : z
0 2 Kg: Substituting (1.23) in (1.19) completes

the proof.

5



We now recall that a bounded linear operator, L, in the space L2(X) is called

a Carleman operator if L has an integral kernel L(z; z0) such that

Z
X

jL(z; z0)j2d�(z0) <1

for almost every z 2 X [14, Thm. 11.6].

Lemma 5 For any � 2 CnspecH0, the resolvent R0(�) is a Carleman ope-

rator. Moreover, the integral

Z
X

jG0(z; z0; �)j2d�(z0) (1.24)

does not depend on z.

Proof The last statement of the lemma is valid because, for a �xed �,

the value jG0(z; z0; �)j depends on d(z; z0) only. Fix z0 2 X and denote by

B"(z0) the metric ball around z0 in X of radius ".

Taking into account Lemma 1 we obtain with " = "(z0; �)Z
B"

jG0(z0; z
0; �)j2d�(z0) <1; (1.25)

and with Lemma 3,

Z
B1

jG0(z0; z
0; �)j2d�(z0) <1:

It is known that the area of the circle Bn is equal to 2�(cosh n
a
� 1): Hence,

area (Bn+1nBn) = 0(en) as n ! 1: According to Lemma 3 we can �nd a

number �0; Re �0 < 0; such that

Z
Bn+1nBn

jG0(z0; z
0; �0)j

2d�(z0) = 0(e�2n); (1.26)

implying Z
XnB1

jG0(z0; z
0; �0)j

2d�(z0) <1:
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Therefore, R0(�0) is a Carleman operator. It is known that the space of

Carleman operators in L2(X) is a right ideal in the algebra L(L2(X)) of all

bounded linear operators in L2(X)[14]. Using the Hilbert identity

R0(�) = R0(�0) + (� � �0)R
0(�0)R

0(�) (1.27)

we see that R0(�) is a Carleman operator for any � 2 CnspecH0.

Lemma 6 Let K be a compact subset of X and z0 any point in X. Then

for any � 2 C;Re � < 0; there exist constants c3(K; z0; �) = c3 > 0 and

~c3(�) = ~c3 > 0 such that

2
4Z
K

jG0(z; z0; �)j2d�(z0)

3
5
1=2

� c3 exp(�~c3d(z; z0)): (1.28)

Moreover, ~c3(�)!1 as Re � !�1: If K and z0 are �xed, then c3(�) = 0(1)

as Re � ! �1:

Proof This is an easy consequence of Lemmas 4 and 5.

2. �-Equivariance

Let � be a group of isometries of the plane X. The �eld B is invariant with

respect to � but the Hamiltonian H0 is not. To obtain the invariance group

of H0 we must consider an extension of �, the so-called \magnetic translation

group" [15], [3]. Let us recall the construction of this group.

Denote by U the standard unitary representation of � in L2(X) :

Uf(z) = f(�1z);  2 �; f 2 L2(X): (2.1)

If �A 6= A then UH
0 6= H0U: Nevertheless, d(

�A � A) = 0 because

�B = B: Hence there exists a function ! 2 C
1(X) such that

d! = �A�A: (2.2)

Fix for every  2 � such a function !; for  = 1 we put !1 = 0: Introduce

the unitary operator

Wf := exp(i!)f; f 2 L2(X); (2.3)
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and de�ne T 0
 = WU: Then T 0

H
0 = H0T 0

 for each  2 �, by (1.10).

Unfortunately, the correspondence  7! T 0
 is not a unitary representation of

� in L2(X) but only a projective representation in the sense that

T 0
�T

0
 = �(�; )T 0

�; �;  2 �; (2.4)

where �(�; ) 2 C; j�(�; )j = 1: The family �(�; ) has the property

�(1; 2)�(12; 3) = �(1; 23)�(2; 3); (2.5)

i.e. this family is a 2-cocycle of the group � with coe�cients in U(1). This

cocycle determines a group extension of � by U(1);

1! U(1)!M(�;�)! �! 1; (2.6)

the group M(�;�) is called the magnetic translation group. An explicit con-

struction ofM(�;�) is the following:M(�;�) = ��U(1) with multiplication

de�ned by

(1; �1)(2; �2) = (12;�(1; 2)�1�2): (2.7)

Denote by [; �] the unitary operator �T 0
 ; the correspondence (; �) 7! [; �]

is then a faithful unitary representation of the group M(�;�) in L2(X); we

shall denote this representation by T . H0 is invariant with respect to T ; we

will refer to this fact as the gauge-periodicity of H0.

We need the following lemma.

Lemma 7 Let L be a linear integral operator in L2(X) with kernel L(z; z0); z;

z0 2 X: The operator L is invariant with respect to T if and only if for any

 2 � the following relation holds a.e.:

exp(i!(z))L(
�1z; z0) = exp(i!(z

0))L(z; z0) ; (2.8)

or, equivalently,

L(z; z0) = exp[i(!(z)� !(z
0))]L(�1z; �1z0): (2.9)

Proof Let f 2 D(L);  2 �; then we have

[; 1]Lf(z) = exp(i!(z))

Z
X

L(�1z; z0)f(z0)d�(z0); (2.10)
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L[; 1]f(z) =
Z
X

L(z; z0) exp(i!(z
0))f(�1z0)d�(z0) =

=

Z
X

L(z; z0) exp(i!(z
0))f(z0)d�(z0): (2.11)

Comparing (2.10) and (2.11), we get (2.8).

From now on, we impose the following requirements on the group �:

(�1) � acts properly discontinuously on X,

(�2) the orbit space �nX is compact.

Fix once and for all a fundamental domain F of �; i.e. a subset F � X such

that: (a) F = IntF; (b) F is a compact set, (c) the restriction to F of the

canonical projection X ! �nX is a bijective mapping.

To construct a gauge periodic point perturbation of H0 we choose a �nite

subset K � F and denote by � the orbit of K : � = � � K: The de�nition
of � implies that each element � 2 � has a unique representation of the

form � = x, where  2 � and x 2 K: De�ne a unitary representation T d of

M(�;�) in the discrete space l2(�) by the rule

T d
(;�)'(�) = � exp(i!(�))'(

�1�) (2.12)

where (; �) 2 M(�;�); ' 2 l2(�): We denote the operator T d
(;�) by [; �],

too.

The proof of the following lemma is similar to that of Lemma 7 and is

omitted.

Lemma 8 Let L be a densely de�ned closed linear operator in the space

l2(�) having in the standard basis of this space the matrix (L(�; �))�;�2�:

The operator L is T d-invariant if and only if for any  2 � the following

relation holds:

exp(i!(�))L(
�1�; �) = exp(i!(�))L(�; �); (2.13)

or, equivalently,

L(�; �) = exp[i(!(�)� !(�))]L(
�1�; �1�): (2.14)

The following lemma is signi�cant for the sequel.
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Lemma 9 There exist constants c� > 0 and ~c� > 0 such that for any �0 2 �

and r 2 R; r > 0; we have

#f� 2 � : d(�; �0) � rg � c� exp(~c�r): (2.15)

Proof Let d� be the minimal word length metric with respect to a �xed

�nite set of generators in �. It is known (see [16]) that for some constants

k > 0; ~k > 0 we have

#f 2 � : d�(; 0) � rg � k exp(~kr); (2.16)

where 0 2 � is arbitrary. Moreover, there exists a constant k1 > 0 such that

d�(1; 2) � k1(inffd(1z; 2z
0) : z; z0 2 Fg+ 1): (2.17)

Let �0 be a point of �; then �0 = 0x0; for some 0 2 �; x0 2 K: Hence for

r > 0

# f� 2 � : d(�; �0) � rg = #f(; x) 2 � �K : d(x; 0x0) � rg

�
X
x2K

#f 2 � : d(x; 0x0) � rg: (2.18)

Now d(x; 0x0) � r implies d�(; 0) � k1(r + 1); by (2.17), so the proof

follows from (2.16).

3. Gauge periodic point perturbations

We construct a point perturbation of the operator H0 in the sense of [17].

Since D(H0) � C(X) we may de�ne the domain

D(S) := ff 2 D(H0) : f(�) = 0 for � 2 �g; (3.1)

and the operator S as the restriction of H0 to D(S); clearly, S is a symmetric

operator in L2(X): A self-adjoint extension H of S is said to be a point per-

turbation of H0 supported on � if D(H)\D(H0) = D(S): It is an important

fact that the point perturbations of H0 can be described by means of the

Krein resolvent formula [4, 5, 17]. To do so, we must �nd a Hilbert space G

isomorphic to each de�ciency subspace of S, and two holomorphic functions

B : CnspecH0 ! L(G; L2(X));
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Q : CnspecH0 ! L(G;G);

satisfying some conditions which are called Krein's (�)� and (Q)� condition

[17]; the functions B and Q are then called the Krein �- and Q-function,

respectively. Fixing a �-function and a Q-function, we determine a one-to-one

correspondence between point perturbations H of H0 and (not necessarily

bounded) self-adjoint operators A in G. This correspondence is given by the

Krein resolvent formula alluded to above:

(H � �)�1 = (H0 � �)�1 �B(�)[Q(�) +A]�1B�(�): (3.2)

We denote by HA the point perturbation H that corresponds to A via (3.2);

the resolvent of HA will be denoted by RA(�):

Now we give some explicit description of the Krein �- and Q-functions,

using Theorem 4 and Proposition 4 from [18] (the proofs of these statements

are given in [18] in the case whereX is a domain in Euclidean space, but these

proofs remain valid in the case of Riemannian manifolds X, too). Denote by

G the space l2(�) and by Q(�) the in�nite matrix (cf. Lemma 1 for the

notation)

Q(�; �; �) =

(
G0(�; �; �); �; � 2 �; � 6= �;

q(�); �; � 2 �; � = �:
(3.3)

Lemma 10 (1) There exist constants c4(�) = c4 > 0 and ~c4(�) = ~c4 > 0

such that for Re � < 0 we have

jQ(�; �; �)j � c4(�) exp(�~c4(�)d(�; �)); (3.4)

whenever � 6= �. Moreover, c4(�) = o(1) and ~c4(�)!1 as Re � ! �1:

(2) jQ(�; �; �)j ! 1 as Re � ! �1:

Proof This follows immediately from Lemmas 2 and 3.

Lemma 11 There exist a number E1 2 R such that for any � 2 CwithRe � <

E1; the matrix Q(�) determines a bounded linear operator in l2(�) (this ope-

rator is denoted by Q(�) as well).

Proof This is an immediate consequence of Lemmas 9, 10, and A2 (in

the appendix).
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For every � 2 CnspecH0 and � 2 � we denote by g�(�) the function on X

that takes each point z 2 X to G0(z; �; �): It follows from Lemma 5 that

g�(�) 2 L
2(X):

Lemma 12 There exist � 2 CnspecH0 such that the Gram matrix

(< g�(�)jg�(�) >)�;�2�

determines a bounded operator in l2(�):

Proof Let Im � 6= 0 and Re � < E1; where E1 is taken from Lemma 11.

By the Hilbert resolvent identity, we have for � 6= �

< g�(�)jg�(�) >= (� � �)�1[Q(�; �; �)�Q(�; �; �)]: (3.5)

Since the diagonal elements of the matrices Q(�) and < g�(�)jg�(�) > are

constants at any �xed �, the proof follows from Lemma 11.

Now we state the main result of this section.

Theorem 1 1. For any � 2 CnspecH0 the family (g�(�))�2� is a Riesz basis

for its own closed linear hull in L2(X):

If B(�) : l2(�)! L2(X) is de�ned by

B(�)' =
X
�2�

'(�)g�(�); ' 2 l2(�); (3.6)

then B(�) is a Krein �-function of the pair (S;H0):

2. There exists E0 2 R such that for any � 2Cwith Re < E0 the matrix

Q(�) determines a Krein Q-function of the pair (S;H0): Hence for any f 2
L2(X) we have

RA(�)f = R0(�)f �
X
�2�

0
@X
�2�

[Q(�) +A]�1(�; �)

1
A < g�(�)jf > g�(�): (3.7)

Proof In view of Lemmas 11 and 12 the theorem follows immediately

from Theorem 4 and Proposition 4 of [18].
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We are interested in T -invariant point perturbations, HA, only. The follo-

wing proposition provides a necessary and su�cient condition for T -invariance.

Proposition 1 The operator HA is T -invariant if and only if the operator

A is T d-invariant.

To prove this proposition we need the following lemma.

Lemma 13 For any � 2 CnspecH0 and  2 �

[; 1]B(�) = B(�)[; 1]: (3.8)

In other words, B(�) is an interwining operator for the representations T

and T d:

Proof From (2.8) we have

[; 1]g�(�) = exp(i!(�))g�(�); (3.9)

hence for ' 2 l2(�) we get

[; 1]B(�)' =
X
�2�

'(�)[; 1]g�(�)

=
X
�2�

'(�) exp(i!(�))g�(�)

=
X
�2�

'(�1�) exp(i!(�))g�(�) = B(�)[; 1]':

Proof of Proposition 1: Take E0 2 R from Theorem 1, then for � 2

CwithRe � < E0 the operator Q(�) is T d-invariant, by Lemmas 7 and 8.

Consequently, [Q(�) + A]�1 is T d-invariant if and only if A is T d-invariant.

Hence the proposition follows from Lemma 13 and from the fact that R0(�)

is T -invariant.

In what follows we consider only self-adjoint extensions, HA, that are inva-

riant with respect to the representation T . For applications in physics, the

most interesting case arises if A is a diagonal matrix in the standard basis of

the space l2(�) [4], [6], [7]; only these operators appear as the limits of Hamil-

tonians with short-range potentials [4]. In this case, the invariance property
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of A implies that there are only �nitely many values among the diagonal

elements of A. From now on we restrict ourselves to this class of operators.

It follows from Lemma A2 and Lemma 8 that these operators are bounded.

Moreover, Theorem A1 in the appendix implies the following assertion.

Theorem 2 There is a number EA 2 R with the following properties:

(1) for any � 2 CwithRe � < EA, the operator Q(�) + A has a bounded

inverse.

(2) If Re � < EA then there are constants c5(�) = c5 > 0 and ~c5(�) = ~c5 > 0

such that for any �; � 2 �

j[Q(�) +A]�1(�; �)j � c5 exp(�~c5d(�; �)): (3.10)

Moreover, c5(�) = 0(1) and ~c5(�)!1 as Re � !�1:

Corollary 1 The operator HA is semibounded from below.

4. The main result

First we recall the notion of the twisted group C�-algebra C�(�;�) of the

pair (�;�) [19], [20], [21]. Let

C0(�) = fa : �! C : ahas �nite support g: (4.1)

De�ne an associative multiplication in C0(�) by the rule

(a � b)() =
X
�2�

�(��1; �)�1a(�)�1b(�); (4.2)

and a �-operation by

a�() = �(�1; )�(1; 1)a(�1): (4.3)

There is an injective �-homomorphism, I, of C0(�) into the operator algebra

L(l2(�)) that takes each a 2 C0(�) to ~a = Ia, where

~a(')() =
X
�2�

�(��1; �)�1a(��1)'(�): (4.4)
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The twisted group C�-algebra C�(�;�) is de�ned as the completion of C0(�)

with respect to the norm kak := kIakl2(�): The algebra C
�(�;�) has a stan-

dard trace, � , de�ned by

� (a) = a(1): (4.5)

Now denote by �; for  2 �; the operator in l2(�) de�ned by

(�')(�) = �(�; )'(�): (4.6)

As usual, let � denote the element of l2(�) with �(�) = ��:

Lemma 14 (1) For any �;  2 � we have

��� = �(�; )��; (4.7)

i.e. � is a unitary projective representation of � in l2(�):

(2) For any ' 2 l2(�);

'() = �(1; )�1(�')(1): (4.8)

(3)

� = �(; �1)�1��1�1: (4.9)

(4) For any a 2 C0(�) and  2 �

�~a = ~a� : (4.10)

Proof (1)

���'(�) = �(�; �)�'(��) = �(�; �)�(��; )'(��)

= �(�; )�(�; �)'(��) = �(�; )��'(�):

(2)

�'(1) = �(1; )'():

(3)

��1�1(�) = �(�; �1)�1(�
�1) = �(; �1)�(�):

(4)

(~a�')(�) =
X
�

�(���1; �)�1a(���1)(�')(�)

=
X
�

�(���1; �)�1�(�; )a(��)�1'(�); (4.11)
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(�~a')(�) = �(�; )~a'(�)

= �(�; )
X
�

�(���1; �)�1a(���1)'(�)

= �(�; )
X
�

�(���1; �)�1a(���1'(�): (4.12)

Using (2.5) we obtain

�(���1; �)�(�; ) = �(���1; �)�(�; ); (4.13)

and statement (4) is proved.

Now we de�ne a \canonical" isomorphism

� : L2(X)! l2(�) 
 L2(F ) = l2(�; L2(F )) (4.14)

by the rule

(�f)() = rF ([; 1]f = rF (T
0
 f); (4.15a)

where rF denotes the restriction to F : rF f = f jF , as in [2].

We also record the explicit form of the inverse:

��1f =
X
2�

�T
0�
 eF (f()); (4.15b)

where eF : L2(F )! L2(X) denotes extension by zero and � is the characte-

ristic function of �1F . We extend � to a projective unitary representation,

~�, in l2(�) 
 L2(F ) by the formula

~� = � 
 1: (4.16)

Then the action of � on l2(�; L2(F )) is, again, given by (4.6).

Let K be the algebra of compact operators in the space L2(F ):We denote

the tensor product C�(�;�)
K byA:K has a natural trace, trF , which gives,

with (4.5), the canonical trace

~� := � 
 trF

on A. The isomorphism � de�nes a canonical embedding IK of A in the

C�-algebra L(L2(X)) = L(l2(�)
 L2(F )): Denote by ~A the image IK(A).
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Lemma 15 (Cf. [2],[21]). For any  2 � we have

�[; 1]��1 = ~� : (4.17)

Proof Let f 2 L2(X), then

(~��f)(�) = �(�; )�f(�) = rF (�(�; )[�;1]f); (4.18)

(�[; 1]f)(�) = rF ([�;1][; 1]f):

Taking into account the multiplication rule (2.7), we get the result.

Now we denote by

M(�;�) := fB 2 L(l2(�) 
 L2(F )) : B~� = ~�B for  2 �g (4.19)

the commutant of (~�)2�: From Lemmas 14, (4) and 15 we obtain

~A �M(�;�): (4.20)

Besides, Lemma 15 implies that

RA(�) 2 M(�;�); � 2 CnspecHA; (4.21)

where RA is given by (3.7) (recall that we consider only T -invariant operators

HA).

Now, following [2] we de�ne the Fourier coe�cients for B 2 M(�;�): For

any  2 � the Fourier coe�cient B̂() is the operator in L2(F ) given by

B̂()(u) = ~�B(�1 
 u)(1); u 2 L2(F): (4.22)

Lemma 16 (Cf. [2], [21]).

(1) For any B 2 M(�;�) and f 2 l2(�; L2(F )) we have

Bf() = �(1; )�1
X
�

�(�; ��1)�1�(; ��1)B̂(��1)(f(�)): (4.23)

(2) Let  2 �; B 2 L(L2(F )); then

\(~� 
B)(�) = �(1; �)�(�; 1)�1(�(�)
B): (4.24)

(3) For B 2 M(�;�), we have

kBk �
X
2�

kB̂()k: (4.25)
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Proof (1) Let f 2 l2(�; L2(F )): Then, from (4.9)

f =
X
�2�

�� 
 f(�)

=
X
�2�

�(�; ��1)�1~���1(�1 
 f(�)): (4.26)

Hence

Bf =
X
�

�(�; ��1)�1~���1B(�1 
 f(�)); (4.27)

(Bf)(1) =
X
�

�(�; ��1)�1~���1B(�1 
 f(�))(1): (4.28)

In view of Lemma 14, (2) and (1), we have

(Bf)() = �(1; )�1
X
�

�(�; ��1)�1~� ~���1B(�1 
 f(�))(1)

= �(1; )�1
X
�

�(�; ��1)�1�(; ��1)~���1B(�1 
 f(�))(1)

= �(1; )�1
X
�

�(�; ��1)�1�(; ��1)B̂(��1)(f(�));

and (4.23) is proved.

(2) By (4.22),

\(~� 
B)(�)(u) = ~��(~� 
B)(�1 
 u)(1)

= �(1; �)(~� 
B)(�1 
 u)(�)

= �(1; �)~�(�1)(�)
B(u): (4.29)

On the other hand, by (4.4),

~�(�1)(�) =
X
�2�

�(���1; �)�1�(��
�1)�1(�)

= �(�; 1)�1�(�): (4.30)

Substituting (4.30) in (4.29), we obtain (4.24).

(3) The proof is similar to the proof of Lemma 3 in [2].

Lemma 17 [2] Let B 2 M(�;�): If for all  2 �, the operator B̂() is

compact and
P

2� kB̂()k <1, then B 2 ~A:

Proof Cf. the proof of the Corollary of Lemma 3 in [2].
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Now let us state the main result of the paper.

Theorem 3 Let A be a T d-invariant self-adjoint operator in l2(�) with dia-

gonal matrix. Then for any � 2 CnspecHA the resolvent RA(�) belongs to
~A:

Proof First note that it is enough to prove that RA(E) 2 ~A for E

ranging over some semi-axis (�1; E0): Indeed, let this property be satis�ed

but RA(�) =2 ~A for some �0 2 CnspecHA: By the Hahn-Banach Theorem,

there exists a continuous linear functional 	 2 L(L2(X))0 such that 	(B) = 0

for each B 2 ~A and 	(RA(�0)) 6= 0: But this contradicts the analyticity of

the function � 7! 	(RA(�)):

Now note that R0(�) 2 ~A for any � 2 CnspecH0: In fact, the proof given

in [2], [3] for the fact that e�tH0 2 ~A for each t � 0 carries over to the case

at hand without major changes. Using the Laplace transform, we show that

R0(E) 2 ~A for any E < 0 and hence for each � 2 CnspecH0:

Thus, it remains to prove that V (E) := R0(E)�RA(E) 2 ~A if E ranges

over some semi-axis (�1; E0):

By Theorem 1,2) we can �nd a number E0 2 R such that for any f 2
L2(X) we have

V (�)f =
X
�2�

0
@X
�2�

M(�; �; �) < g�(��)jf >

1
A g�(�); (4.31)

whenever Re � < E0. Here we have written

M(�; �; �) = [Q(�) +A]�1(�; �): (4.32)

Moreover, by (3.10) there are constants c0 and ~c0(�) such that

jM(�; �; �)j � c0 exp(�~c0(�)d(�; �)); (4.33)

c0 is independent of �, and ~c0(�) ! 1 as Re � ! �1: So we can suppose

that

~c0(�) > 3~c�; (4.34)

where ~c� is the constant from Lemma 9.

To see that V (�) is in ~A it is enough, in view of the de�nition and Lemma

17, to show that
[V (�)() is compact in L2(F ); (4.35a)
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and X
2�

k[V (�)()k <1: (4.35b)

We compute with (4.22), (4.31), (4.16), and (4.6), for � 2 L2(F );

[V (�)() = �(1; ) exp(i!)
X

�;�2�

M(�; �; ��) < g�(��);�
�1(��1 ) > rF (g�(�)�

�1):

(4.36)

Using (4.15b) and Lemma 6 we obtain

j < g�(��);�
�1(��1 ) > j = j < g�(��); eF (�) > j

= j
Z
F

G0(z0; �; ��)�(z0)d�(z0)j

� c3e
�~c3(�)d(�; �0) k�kL2(F ) ; (4.37a)

where we may, again, assume that

~c3(�) > 3~c�: (4.38)

Finally, we see with Lemmas 6 and 7 that

krF (g�(�) � 
�1kL2(F ) �

2
4Z
F

jG0(�; �1(z0); �)j2d�(z0)

3
5
1=2

� c3e
�~c3(�)d(�; �0): (4.39)

Now we write � = ��; � = ��0 with �; �0 2 K and �; � 2 �; and further

� =: ��0; 0 := � and �ndX
�;�02K

X
�2�

X
�0;02�

e�3~c�(d(��;��
0�0)+d(��;�0)+d(��;�0))

=
X

�;�02K

�2�

e�3~c�d(��;�0)
X

�0;02�

e�3~c�(d(�
0�0;�)+d(0�;�0))

� c4 <1; (4.40)

by Lemma 9 and A1. Now we use (4.38) and (4.39) in (4.36) to see, simi-

larly, that the sum is norm convergent; since all summands are operators of

rank one, the compactness of[V (�)() follows. The summation (4.40) proves

(4.35b) and the theorem is proved.
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Corollary 2 Let E1; E2 2 RnspecHA and E1 � E2: Then the spectral pro-

jector P[E1;E2] of the operator HA belongs to ~A:

Proof Indeed, we may write for E =2 specHA : P[E1;E2] =  (RA(E))

where  is a continuous function with compact support.

Fix now a number E0 2 R such that E0 < inf specHA; and consider the

function

N(E) =

(
�P[E0;E]; E � E0

0; E < E0:

Then this function is independent of the choice of E0. The values of N(E)

are constant on each gap of the spectrum of HA. Therefore these values label

in a natural way the gaps of HA [22].

Corollary 3 (Gap Labelling Theorem). The value of the function N(E) on

a gap of specHA belongs to � �(K0C
�(�;�)), a countable set of real numbers

(here K0B denotes the K0-group of a C�-algebra B).

Recall that the pair (�;�) is said to have the Kadison property if there

exist a constant cK > 0 such that � (P ) � cK for every nonzero self-adjoint

projection P in C�(�;�)
K: It now follows as in [2], [16], [21]:

Corollary 4 If the pair (�;�) has the Kadison property then the spectrum

of HA has band structure.

Appendix

In this appendix, we provide some general results concerning a discrete metric

space, �, with metric d. We suppose that the following condition on the

\volume growth" of metric balls is ful�lled (cf. (2.15)):

There are constants c� > 0 and ~c� > 0 such that for any �0 2 � and any

r 2 (0;1) we have

#f� 2 � : d(�; �0) � rg � c� exp(~c�r): (A1)

Lemma A1 Let � : �! C be a function such that

j�(�)j � c exp[�(1 + �)~c�d(�; �)]; (A2)
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where c and � are positive constants and � is any �xed element of �. Then

X
�2�

j�(�)j � c � c� � �
�1: (A3)

Proof See [23].

Lemma A2 (Schur's test). Let (L(�; �))�;�2� be an in�nite matrix such that

for some c0 > 0 we have

sup
�2�

X
�2�

jL(�; �)j � c0; sup
�2�

X
�2�

jL(�; �)j � c0: (A4)

Then the matrix L(�; �) determines a bounded linear operator L in the space

l2(�) and

kLk � c0: (A5)

Proof See [23], [14].

Theorem A1 Let (Kn)n�0 be a sequence of bounded linear operators in the

space l2(�), having the matrices (Kn(�; �))�;�2� with respect to the standard

basis l2(�). Suppose that the following conditions are satis�ed:

(1) if � 6= �; then

jKn(�; �)j � a exp(�bnd(�; �)); (A6)

where a is independent of n and lim
n!1

bn =1;

(2)

inf
�2�

jKn(�; �) j ! 1 as n!1: (A7)

Then, for any � 2 (0; 1) there is n0 2 N such that for every n � n0 the

operator Kn has a bounded inverse, Ln := K�1
n : The matrix (Ln(�; �))�;�2�

of this operator admits the estimate

jLn(�; �)j � 2cn exp(��bnd(�; �)); (A8)

where

cn = (inf
�2�

jKn(�; �)j)
�1: (A9)
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Proof We introduce operators Dn; Sn by

Dn(�; �) := Kn(�; �)��� ; Sn(�; �) := Kn(�; �) �Dn(�; �):

Moreover, we �x � 2 (0; 1) and determine n0 2 N such that for n � n0

inf
�2�

jKn(�; �)j � 1 and (1� �)bn � 2~c�: (A10)

Then D�1
n and Sn are bounded in l2(�) in view of Lemmas A1 and A2 and,

clearly,

Kn = Dn(1 +D�1
n Sn);

Ln = K�1
n = (1 +D�1

n Sn)
�1D�1

n =: TnD
�1
n :

Thus, the theorem follows if we prove the estimate

jTn(�; �)j � 2 exp(��bnd(�; �)): (A11)

Now

Tn(�; �) =
X
j�0

(�1)j(D�1
n Sn)

j(�; �);

and it is enough to show that, with some constant A � 1,

j(D�1
n Sn)

j(�; �)j � (aAcn)
je��bnd(�;�); (A12)

since cn ! 0 as n ! 1 . This estimate is obvious for j = 0; 1; inductively,

we �nd with (A5) and (A7)

j(D�1
n Sn)

j+1(�; �)j = j
X
�2�

Kn(�; �)
�1Sn(�; �)(D

�1
n Sn)

j(�; �)j

�
X
�2�

cnae
�bnd(�;�)(Aacn)

je��bnd(�;�)

� Aj(cna)
j+1e��bnd(�;�)

X
�2�

e�(1��)bnd(�;�):

In view of (A8) and Lemma A1, the last sum has the bound c�. The assertion

(A10) for j + 1 follows if we put A := maxf1; c�g:

Remark Theorem A1 strengthens Theorem 2.1 from [23]. The estimate

there is insu�cient for proving our results.

23



Bibliography

1. B. Hel�er, J. Sj�ostrand: Semi-classical analysis for Harper's equation.

III: Cantor structure of the spectrum. Bull. Soc. Math. France 117

Suppl. No 39 (1989).

2. J. Br�uning, T. Sunada: On the spectrum of gauge-periodic elliptic ope-

rators. Ast�erisque 210 (1992), 65-74.

3. T. Sunada: Euclidean versus non-euclidean aspects in spectral theory.

Progr. Theor. Phys. Suppl. No 116 (1994), 235-250.

4. S. Albeverio, F. Gesztesy, H. Holden, R. H�egh-Krohn: Solvable models

in quantum mechanics. Springer-Verlag, New York etc., 1988.

5. B. S. Pavlov: The theory of extensions and explicitly-soluble models.

Russian Math. Surv. 42 No 6, (1987), 127-168.

6. S. A. Gredescul, M. Zusman, Y. Avishai, M. Ya. Azbel: Spectral pro-

perties and localization of an electron in a two-dimensional system with

point scatterers in a magnetic �eld. Phys. Reps. 288 (1997), 223-257.

7. V. A. Geyler: The two-dimensional Schr�odinger operator with a uni-

form magnetic �eld and its perturbation by periodic zero-range poten-

tials. St.-Petersburg Math. J. 3 (1992), 489-532.

8. Y. Nagaoka, M. Ikegami:Quantum mechanics of an electron in a curved

surface. Solid State Sci. V. 109, Springer-Verlag, New York etc., 1992,

P. 167-173.

9. C. L. Foden, M. L. Leadbeater, J. H. Burroughes, M. Pepper: Quan-

tum magnetic con�nement in a curved two-dimensional electron gas. J.

Phys.: Condens. Matter 6 (1994), L 127-L 134.

10. A. Comtet: On the Landau levels on the hyperbolic plane. Ann. Phys.

173 (1987), 185-209.

11. Y. Colin de Verdier: Pseudo-Laplaciens I. Ann. Inst. Fourier 32 (1982),

275-286.

24



12. A. Comtet, P. J. Houston: E�ective action on the hyperbolic plane in a

constant external �eld. J. Math. Phys. 26 (1985), 185-191.

13. H. Bateman, A. Erd�elyi: Higher transcendental functions. V. 1, McGraw-

Hill. 1953.

14. P. R. Halmos, V. S. Sunder: Bounded linear operators on L2-spaces.

Springer-Verlag, New York etc., 1978.

15. J. Zak: Group-theoretical consideration of Landau level broadening in

crystals. Phys. Rev. 136 (1964), A 776-A 780.

16. J. Br�uning, T. Sunada: On the spectrum of periodic elliptic operators.

Nagoya Math. J. 126 (1992), 159-171.

17. M. G. Krein, H. K. Langer: Defect subspaces and generalized resolvents

of an Hermitian operator in the space ��. Funct. Anal. and its Appl.

5 (1971), 217-228.

18. V. A. Geyler, V. A. Margulis, I. I. Chuchaev: Potentials of zero radius

and Carleman operators. Siberian Math. J. 36 (1995), 714-726.

19. L. Auslander, C. C. Moore: Unitary representations of solvable Lie

groups. Mem. Amer. Math. Soc. No 62 (1966).

20. J. A. Parker, I. Raeburn: On the structure of twisted group C�-algebras.

Trans. Amer. Math. Soc. 334 (1992), 685-717.

21. T. Sunada: A discrete analogue of periodic magnetic Schr�odinger ope-

rators. Contemp. Math. 173 (1994), 283-299.

22. J. Bellissard: Gap labelling theorems for Schr�odinger operators. From

Number theory to Physics. Eds. M. Waldschmidt et al. Springer-Verlag,

Berlin etc. 1992, P. 538-630.

23. M. A. Shubin: Pseudo-di�erence operators and their Green's functions.

Math. USSR. Izvestiya 26 (1986), 605-622.

25


