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Abstract

Using a one-loop approximation for the effective potential in the Higgs
model of electrodynamics for a charged scalar field, we argue for the exis-
tence of a triple point for the renormalized (running) values of the selfin-

teraction λ and the ”charge” g given by (λrun, g2) = (− 10
9

π2, 4
3

√
5
3
π2) ≈

(−11, 17). Considering the beta-function as a typical quantity we esti-
mate that the one-loop approximation is valid with accuracy of deviations

not more than 30% in the region of the parameters: 0.2
<∼ α, α̃

<∼ 1.35.
The phase diagram given in the present paper corresponds to the above-
mentioned region of α, α̃. Under the point of view that the Higgs particle
is a monopole with a magnetic charge g, the obtained electric fine struc-
ture constant turns out to be αcrit ≈ 0.185 by the Dirac relation. This
value is very close to the αlat

crit ≈ 0.20 which in a U(1) lattice gauge theory
corresponds to the phase transition between the ”Coulomb” and confine-
ment phases. Such a result is very encouraging for the idea of an approx-
imate ”universality” (regularization independence) of gauge couplings at
the phase transition point. This idea was suggested by the authors in
their earlier papers.



1 Introduction

The Standard Model (SM) describes well all experimental results known to-
day. Most efforts to explain the SM are devoted to Grand Unification Theories
(GUTs). The supersymmetric extension of the SM consists of taking the SM
and adding the corresponding supersymmetric partners [1]. The precision of
the LEP data allows us to extrapolate three running constants αi(µ) of the SM
(i=1,2,3 for U(1), SU(2), SU(3) groups) to high energies with small errors and
we are able to perform the consistency checks of GUTs.

In the SM based on the group

SMG = SU(3)c ⊗ SU(2)L ⊗ U(1)Y (1)

the usual definitions of the coupling constants are used:

α1 =
5
3

α

cos2 θMS

, α2 =
α

sin2 θMS

, α3 ≡ αS =
g2

S

4π
, (2)

where α and αs are the electromagnetic and strong fine structure constants,
respectively. All of these couplings, as well as the weak angle, are defined here
in the Modified Minimal Subtraction scheme (MS) (see Reviews of Particle
Physics). Using experimentally given parameters and the renormalization group
equations (RGE), it is possible to extrapolate the experimental values of three
inverse running constants α−1

i (µ) to the Planck scale:

µPl = 1.22 · 1019 GeV. (3)

The comparison of the evolutions of the inverses of the running coupling con-
stants in the Minimal Standard Model (MSM) (with one Higgs doublet) and in
the Minimal Supersymmetric Standard Model (MSSM) (with two Higgs dou-
blets) shows the possibility of the existence of the grand unification point at
µGUT ∼ 1016 GeV only in the case of the MSSM (see Ref.[2]). But the absence
of supersymmetric particle production at current accelerators and additional
constraints arising from limits on the contributions of virtual supersymmetric
particle exchange in a variety of the SM processes indicate that at present there
are no unambiguous experimental results requiring the existence of supersym-
metry.

Scenarios based on the Anti-Grand Unification Theory (AGUT) was devel-
oped in Refs.[3]-[14] as a realistic alternative to SUSY GUTs (see Ref.[13]).
AGUT suggests the following assumption: supersymmetry does not exist up
to the Planck scale. There is no new physics (new particles, superpartners)
up to around an order of magnitude under this scale, and the renormalization
group extrapolation of experimentally determined couplings to the Planck scale
is contingent to not encountering new particles.
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AGUT suggests that at the Planck scale µPl, considered as a fundamental
scale, there exists the more fundamental gauge group G, containing Ngen copies
of the Standard Model group SMG:

G = SMG1 ⊗ SMG2 ⊗ . . .⊗ SMGNgen ≡ (SMG)Ngen , (4)

where the integer Ngen designates the number of quark and lepton generations.
SMG by definition is the following factor group:

SMG = S(U(2)× U(3)) =
U(1)× SU(2)× SU(3)

{(2π,−12×2, ei2π/313×3)n|n ∈ Z} . (5)

If Ngen = 3, then the fundamental gauge group G is:

G = (SMG)3 = SMG1 ⊗ SMG2 ⊗ SMG3, (6)

or the generalized G:
G = (SMG)3 ⊗ U(1)f (7)

which follows from the fitting of fermion masses (see Ref.[11]). The group G =
(SMG)3 ⊗ U(1)f is a maximal gauge transforming (nontrivially) the 45 Weyl
fermions of the SM (which it extends) without unifying any of the irreducible
representations of the group of the latter. Anomalies are absent in this theory.

The AGUT approach was used in conjunction with the Multiple Point Prin-
ciple (MPP) proposed several years ago by D.L.Bennett and H.B.Nielsen [7]-[9].
Another name for the same principle is the ”Maximally Degenerate Vacuum
Principle” (MDVP). According to this principle, Nature seeks a special point –
the multiple critical point (MCP) – where the group G undergoes spontaneous
breakdown to the diagonal subgroup:

G→ Gdiag.subgr. = {g, g, g ‖ g ∈ SMG} (8)

which is identified with the usual (low-energy) group SMG.
The idea of the MPP has its origin in the lattice investigations of gauge theo-

ries. In particular, Monte Carlo simulations on the lattice of U(1)–, SU(2)– and
SU(3)– gauge theories indicate the existence of a triple point. Using theoreti-
cal corrections to the Monte Carlo results on the lattice, it is possible to make
slightly more accurate predictions of AGUT for the SM fine-structure constants.
The MPP assumes that the SM gauge couplings do not unify and predicts the
following values of the fine structure constants at the Planck scale in terms of
the phase transition (critical) couplings taken from the lattice gauge theories:

αi(µPl) =
αcrit

i

Ngen
=
αcrit

i

3
(9)

for i = 2, 3 and

α1(µPl) =
αcrit

1
1
2Ngen(Ngen + 1)

=
αcrit

1

6
(10)
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for U(1).
This means that at the Planck scale the fine structure constants αY ≡ 3

5α1,
α2 and α3, as chosen by Nature, are just the ones corresponding to the Multiple
Critical Point (MCP) which is a point where all action parameter (coupling)
values meet in the phase diagram of the regularized Yang-Mills (SMG)3 – gauge
theory. Nature chooses coupling constant values such that a number of vacuum
states have the same energy density. Then all (or just many) numbers of phases
convene at the MCP and different vacua are degenerate.

The extrapolation of the experimental values of the inverses α−1
Y,2,3(µ) to the

Planck scale µPl by the renormalization group formulae (under the assumption
of a ”desert” in doing the extrapolation with one Higgs doublet) leads to the
following result:

α−1
Y (µPl) = 55.5; α−1

2 (µPl) = 49.5; α−1
3 (µPl) = 54. (11)

Using the AGUT prediction given by Eq.(10) and the first value of Eq.(11) we
have the following AGUT estimation for the U(1) fine structure constant at the
phase transition point:

α−1
crit ∼ 9. (12)

Previously we have also speculated and made supportive calculations [12]-
[14] that the dependence of the cut-off procedure is rather small: phase tran-
sition coupling constants would not differ very much using one or the other
regularization. So we hope that there exists what one might call ”an approxi-
mate universality”.

For the second-order phase transitions the exact universality would be ex-
pected, but for the first-order phase transitions, which we really hope for in
the mentioned works, such an exact universality would be quite unexpected.
However, we still believe that an approximate one really exists. Indeed, the
main purpose of the present article is to calculate the phase transition cou-
plings and to confirm this desired ”approximate universality”. The point is
that the cut-off considered in the previous works for MPP coupling calculations
was connected with the existence of artifact monopoles in the theory: there are
artifact monopoles in the lattice gauge theory and also in the Wilson loop action
model which we proposed [12].

The idea now is: instead of using the cut-off, we introduce physically existing
monopoles as fundamental fields into the theory. Then one may not use the cut-
off, but can rather think of any cut-off, although essentially it should no longer
matter. In other words, we consider a theory with monopoles and look for a,
or rather several, phase transitions connected with the monopoles forming a
condensate in the vacuum. Writing such a monopole theory in the dual field
formulation, we deal with the usual Higgs model.

Below, using the Zwanziger formalism [15]–[17] for the dual Abelian gauge
theory describing the system with two (dual and non-dual) gauge fields and
both magnetic and electric charges (see Section 3), we confirm in Section 6 a
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rather simple expression for the effective potential in the one-loop approximation
which was obtained for the Higgsed scalar electrodynamics in Ref.[18] (see also
Ref.[19]), and investigate the phase structure of the Higgs model. But now the
Higgs scalar field is identified with the monopole field having magnetic charge
g. This means that the electric charge e is connected to the formal charge g of
this Higgs field via the Dirac relation:

eg = 2π, (13)

Then we can define the electric and magnetic fine structure constants:

α = e2/4π = π/g2, α̃ = g2/4π = π/e2. (14)

In Section 5 we investigate the renormalization group equations for α and α̃ in
the case of the existence of both charges and confirm the Dirac relation for all
renormalized effective coupling constants. Thus, for the arbitrary scale we have
the following relation:

αα̃ =
1
4

(15)

which is used in Section 7 for the calculation of the critical (phase transition)
fine structure constants.

It seems that the region of parameters α and α̃ near the phase transition
point (αcrit ≈ 0.2 and α̃crit ≈ 1.25) obtained in the lattice investigations [21]-
[23] of the U(1) gauge theory allows us to consider the perturbation theory
in both electric and magnetic sectors with accuracy of deviations <∼ 30% (see
Section 5).

In the present paper we aim to give the explanation of lattice results and,
what is more important, to show that the first-order phase transition arises in
the Higgsed monopole model already on the level of the ”improved” one-loop
approximation (see Section 7), which describes the phase transition found on the
lattice with acceptable accuracy. Thus, if the lattice phase transition coupling
roughly coincides with our Coleman–Weinberg model it cannot depend much on
lattice details. As it will be shown below, such a perturbation theory reproduces
the lattice result. Thus we get the suggested ”approximate universality” even
for first-order phase transitions.

2 Phase Transition Coupling in Lattice U(1) Gauge
Theory (Compact QED)

As was mentioned in Section 1, the idea of the MPP is based on the lattice
investigations of gauge theories. In particular, Monte Carlo simulations of the
U(1) gauge theory described by the following lattice action:

S =
∑
2

[β cosΘ(2) + γ cos 2Θ(2)] (16)
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(here Θ(2) is the plaquette variable) indicate the existence of the triple point
[21]-[23] on the phase diagram shown in Fig.1. From this triple point emanate
three phase borders: the phase border ”1” separates the totally confining phase
from the phase where only the discrete subgroup Z2 is confined; the phase
border ”2” separates the latter phase from the totally Coulomb-like phase; and
the phase border ”3” separates the totally confining and totally Coulomb-like
phases.

In the speculative ideas which were proposed to provide a mechanism for
the MPP degeneracy of vacua in nature, one typically gets the prediction that
the phase transition is first order [7]-[9] - for instance, if the world is in a state
analogous to a microcanonical ensemble leading to a mixture of phases.

In the Higgs monopole model considered in this paper you find a priori
formally first-order transitions, but it is possible to give some estimates showing
that this may not always be expected to be true at the end. We shall leave this
problem for the next paper.

In search for a lattice formulation of QED with a second order phase transi-
tion, the simple Wilson action was generalized to Eq.(16) by including a double
charge term with coupling γ [20] in the expectation that the phase transition
would be driven towards second-order at sufficiently small negative values of γ.

The recent lattice simulations of compact QED [23]-[31] have still not suc-
ceeded in agreement when they clarify the order of the phase transition near
β = 1. However, simulations on the hyper-torus, up to γ = - 0.4, revealed the
reappearance of a double peak on large enough lattices [28]. In addition, for
γ between + 0.2 and - 0.4 the critical exponent ν has been found to decrease
towards 1

4 (which corresponds to the first-order phase transition [30]) with in-
creasing lattice size for toroidal as well for spherical geometry. In some cases
stabilization of the latent heat has been observed. Now we have rather strong
indications that, at least in the region up to γ = - 0.4, the phase transition is
of first order.

Fig.1 represents this situation showing, the tricritical point at some negative
value of the parameter γ. Of course, it remains desirable to check this result on
still larger lattices.

In Ref.[21] the behaviour of the effective fine structure constant α(β) (here
β = 1/e20, and e0 is the bare electric charge) were investigated in the vicinity
of the phase transition point for the case γ = 0, and the following values of the
fine structure constants at the phase transition point was obtained:

αlat
crit ≈ 0.20, α̃lat

crit ≈ 1.25, at βcrit ≈ 1.011. (17)

Considering the Villain lattice action which corresponds to the extended
Wilson action (16) with γ ≈ − 0.22, the authors of Ref.[23] revised the values
of the renormalized electrical coupling α obtained in Ref.[21] and presented :

αlat ≈ 0.1836, α̃lat ≈ 1.36 in the vicinity of the phase transition point. (18)
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The compact lattice QED is essentially related to the monopoles. The phase
transition ”Coulomb - confinement” is known to be associated with the con-
densation of magnetic monopoles [23],[29],[32]-[34]. Monopole vacuum loops
renormalize the fine structure constant α by an amount proportional to the
susceptibility of the monopole gas [34]. The enhancement factor of this renor-
malization was estimated in Ref.[12]:

K =
αcrit(Monte Carlo)

αcrit(theory without monopoles)
≈ 1.66. (19)

The power law scaling behaviour of the monopole mass and condensate was
observed in Ref.[23]. Using their results we have extracted the ratio of the
monopole mass to the monopole condensate ρ =< 0|Φ|0 > (Φ is a monopole
field) in the confinement phase, a little bit away from the phase transition point
(but near to it):

m

ρ
≈ 2.4. (20)

By this ”little bit away” we allude to the fact that m/ρ varies rather little except
for β being shorter than ∆β ≈ 0.04 away from βcrit. That is, the ratio (20)
takes place in the slowly varying region when approaching the phase transition.

In the lattice gauge theory monopoles are not physical objects: they are
lattice artifacts driven to infinite mass in the continuum limit.

Also in Ref.[12], instead of the lattice hypercubic regularization, we have
considered rather new regularization using non-local Wilson loop action in the
approximation of circular loops of radii R ≥ a. It was shown that the critical
fine structure constant is rather independent of the regularization method. Its
value is given by the following expression:

αcrit ≈ 0.204, (21)

in correspondence with the Monte Carlo simulation result (17),(18) on the lat-
tice. Such a phase transition coupling ”universality” is needed too much for the
fine structure constant predictions claimed from the MPP. But independently
of the Multiple Point Model, the ”approximate universality” (if it takes place)
is an important phenomenon for the phase transition in any gauge field theory.

3 The Zwanziger Formalism for the Abelian Gauge
Theory with Electric and Magnetic Charges

In the lattice gauge theories and in the nonlocal Wilson loop model mentioned
in Section 2, monopoles are artifacts of the regularization. Let us assume
now a physically existing fundamental regulator. The new idea is to consider
monopoles as fundamental fields. With the aim of confirming the universality of
the critical couplings in this case, we have investigated for a phase transition the
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quantum field theory with electric and magnetic charges considering monopoles
as Higgs scalar particles.

A version of the local field theory of electrically and magnetically charged
particles is represented by Zwanziger formalism [15],[16] (see also [17]) which
considers two potentials Aµ(x) and Bµ(x) describing one physical photon with
two physical degrees of freedom. Now and below we call this theory QEMD
(”quantum electromagnetodynamics”).

In QEMD the total field system of the gauge, electrically (Ψ) and magnet-
ically (Φ) charged fields is described by the partition function which has the
following form in Euclidean space:

Z =
∫

[DA][DB][DΦ][DΦ̄][DΨ][DΨ̄]e−S (22)

where
S = SZw(A,B) + Sgf + Se + Sm. (23)

The Zwanziger action SZw(A,B) is given by:

SZw(A,B) =
∫
d4x[

1
2
(n · [∂ ∧ A])2 +

1
2
(n · [∂ ∧B])2 +

+
i

2
(n · [∂ ∧A])(n · [∂ ∧B]∗)− i

2
(n · [∂ ∧B])(n · [∂ ∧ A]∗)], (24)

where we have used the following designations:

[A ∧B]µν = AµBν −AνBµ, (n · [A ∧B])µ = nν(A ∧B)νµ,

G∗
µν =

1
2
εµνλρGλρ. (25)

The actions Se and Sm:

Se,m =
∫
d4xLe,m(x) (26)

describe, respectively, the electrically and magnetically charged matter fields,
and Sgf is the gauge-fixing action.

At the same time we present the generating functional with external sources
J

(A)
µ , J

(B)
µ , η and ω:

Z[J (A), J (B), η, ω] =

=
∫

[DA][DB][DΦ][DΦ̄][DΨ][DΨ̄]e−S+(J(A),A)+(J(B),B)+(η̄,Φ)+(Φ̄,η)+(ω̄,Ψ)+(Ψ̄,ω)

(27)
where

(J,A) =
∫
d4xJµ(x)Aµ(x), and (η̄,Φ) =

∫
d4xη̄(x)Φ(x), etc. (28)
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Let us consider now the Lagrangian Lm describing the Higgs scalar monopole
field Φ(x) interacting with the dual gauge field Bµ(x):

Lm(x) = −1
4
(∂ ∧B)2 +

1
2
|D̃µΦ|2 + U(Φ), (29)

where
D̃µ = ∂µ − igBµ (30)

is a covariant derivative for the dual field;

U(Φ) =
1
2
µm

2|Φ|2 +
λm

4
|Φ|4 (31)

is the Higgs potential for monopoles.
The complex scalar field:

Φ = φ+ iχ (32)

contains Higgs and Goldstone boson fields φ(x) and χ(x), respectively.
Now we have a number of possibilities to describe electrically charged fields

(below we give the Lagrangian expressions in Minkowski space). They can be:
a) fermions (electrons) described by the Dirac Lagrangian:

Le = L(f)
e = Ψ̄γµ(iDµ − µe)Ψ, (33)

b) Klein–Gordon (complex) scalars:

Le = L(s)
e =

1
2
[|DµΨ|2 − µe

2|Ψ|2], (34)

or c) Higgs scalars:

Le = L(Hs)
e =

1
2
|DµΨ|2 − U(|Ψ|) (35)

where
Dµ = ∂µ − ieAµ, (36)

and
U(|Ψ|) =

1
2
µ2

e|Ψ|2 +
λe

4
|Ψ|4 (37)

is the Higgs potential for the electrically charged field.
Using the generating functional (27) it is not difficult to calculate the prop-

agators of the fields considered in this model.
Three ”bare” propagators of the gauge fields Aµ and Bµ:

Q0(A)
µν =< AµAν >=

δ2Z[J (A), J (B), η, ω]

δJ
(A)
µ δJ

(A)
ν

,
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Q0(B)
µν =< BµBν >=

δ2Z[J (A), J (B)η, ω]

δJ
(B)
µ δJ

(B)
ν

,

Q0(AB)
µν =< AµBν >=

δ2Z[J (A), J (B), η, ω]

δJ
(A)
µ δJ

(B)
ν

(38)

were calculated by the authors of Ref.[17] in the momentum space:

Q0(A,B)
µν (q) =

1
q2

(
δµν +

q2 +MA,B
2

M2
A,B

qµqν

(n · q)2 −
1

(n · q) (qµnν + qνnµ)
)
, (39)

and
Q0(AB)

µν =
i

q2
εµνρσ

qρnσ

(n · q) . (40)

The parameters M(A,B) are connected with the gauge. The gauge-fixed action
chosen in Ref.[17]:

Sgf =
∫
d4x[

M2
A

2
(nA)2 +

M2
B

2
(nB)2] (41)

has no ghosts.
All Lagrangians (33)–(35) have the interaction term je

µAµ where je
µ is the

electric current. The interactions in the Lagrangian (29) are given by jm
µ Bµ

(here jm
µ is the magnetic current) as well as by the ”seagull” term g2BµBµΦ̄Φ.

The equivalent seagull terms are present in the Lagrangians (34) and (35). The
interaction between the electric and magnetic charges is carried out via the
propagator Q(AB)

µν .

4 Dual Symmetry

Duality is a symmetry appearing in free electromagnetism as invariance of the
free (static) Maxwell equations:

∆ · ~B = 0, ∆× ~E = 0, (42)

∆ · ~E = 0, ∆× ~B = 0, (43)

under the interchange of electric and magnetic fields:

~E → ~B, ~B → −~E. (44)

Letting
F = ∂ ∧ A = −(∂ ∧B)∗, (45)

F ∗ = ∂ ∧B = (∂ ∧ A)∗, (46)

9



it is easy to see that the following equations:

∂λFλµ = 0 (47)

with the Bianchi identity:
∂λF

∗
λµ = 0, (48)

equivalent to Eqs.(42), (43) are invariant under the Hodge star operation on the
field tensor:

F ∗
µν =

1
2
εµνρσFρσ (49)

(here F ∗∗ = −F ).
This Hodge star duality applied to the free Zwanziger Lagrangian (24) leads

to its invariance under the following duality transformations:

F ↔ F ∗, (∂ ∧A) ↔ (∂ ∧B), (∂ ∧ A)∗ ↔ −(∂ ∧B)∗. (50)

Introducing the interacting Maxwell equations:

∂λFλµ = je
µ, (51)

∂λF
∗
λµ = jm

µ , (52)

with the local conservation laws for electric and magnetic charge:

∂µj
e,m
µ = 0, (53)

we immediately see the invariance of these equations under the exchange of the
electric and magnetic fields (Hodge star duality) provided that at the same time
the electric and magnetic charges and currents (and masses of the electrically
and magnetically charged particles if they are different) are also interchanged:

e↔ g, je
µ ↔ jm

µ (54)

(and µe ↔ µm). We shall consider this symmetry as the generalized duality.
The quantum field theory with electric ei and magnetic gi charges is self-

consistent if both charges are quantized according to the famous Dirac relation
[38]:

eigj = 2πnij (55)

when nij is an integer. Considering nij = 1 in Eq.(55) we obtain the Dirac
quantization condition (13) in terms of the elementary electric and magnetic
charges.

If the fundamental electric charge e is so small that it corresponds to the
perturbative electric theory, then magnetic charges are large and correspond to
the strongly interacting magnetic theory, and vice versa. But below we consider
some small region of e, g values (we hope that it exists) which allows us to
employ the perturbation theory in both the electric and magnetic sectors.
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When nontrivial dyons – particles with both electric and magnetic charges
simultaneously – are present, then the analogue of the Dirac relation becomes
a bit more complicated and it then reads:

eigj − ejgi = 2πnij (56)

which is duality invariant (see for example the review [39] and the references
there).

The relation (56) has the name of the Dirac–Schwinger–Zwanziger [15],[38],[40]
quantization condition. But the dyon theory is not exploited in this paper.

Now we are ready to calculate the effective potential. But first we prefer
to consider the Dirac relation and the renormalization group equations for the
renormalized electric and magnetic fine structure constants.

5 Renormalization Group Equations for the Elec-

tric and Magnetic Fine Structure Constants.
The Dirac Relation

It is well known that in the absence of monopoles, the Gell-Mann–Low equation
has the following form:

d(logα(p))
dt

= β(α(p)) (57)

where
t = log(p2/M2), (58)

p is a 4-momentum and α = e2/4π.
The Gell-Mann–Low function β(α) depends on the Lagrangian describing

theory. As the was first shown in Refs.[35], at sufficiently small charge (α < 1)
the β−function is given by series over α/4π:

β(α) = β2(
α

4π
) + β4(

α

4π
)
2

+ ... (59)

The first two terms of this series were calculated in a QED long time ago in
Refs.[35],[36]. The following result was obtained in the framework of the per-
turbation theory (in the one- and two-loop approximations):

a)

β2 =
4
3

and β4 = 4 − for fermion (electron) loops (60)

and
b)

β2 =
1
3

and β4 = 1 − for scalar particle loops. (61)

11



This result means that for both cases a) and b) the β-function can be represented
by the following series arising from Eq.(59):

β(α) = β2(
α

4π
)(1 + 3

α

4π
+ ...) (62)

and we are able to exploit the one-loop approximation (given by the first term
of Eqs.(59) and (62)) up to α ∼ 1 (with accuracy ≈ 25% for the α ' 1).

It is necessary to comment that three- and higher loop approximations de-
pend on the renormalization scheme. We do not discuss this problem in the
present paper.

The Dirac relation and the renormalization group equations (RGE) for the
electric and magnetic fine structure constants α and α̃ were investigated in detail
by the authors in the recent paper [37] where the same Zwanziger formalism was
developed for QEMD. The following result was obtained:

d logα(p)
dt

= −d log α̃(p)
dt

= β(e)(α)− β(m)(α̃). (63)

It is easy to see that these RG-equations are in accordance with the Dirac
relation (15) and with the generalized duality considered in Section 4.

In Eq.(63) the functions β(e)(α) and β(m)(α̃) are described by the contri-
butions of the electrically and magnetically charged particle loops, respectively.
Their analytical expressions coincide with the usual well-known β–functions of
QED given by Eq.(59), at least on the level of the two-loop approximation.

It is necessary to give some explanations how the result (63) was obtained.
J.Schwinger had shown [40] that the Dirac relation (13) is valid not only for

the ”bare” e0 and g0, but also for the renormalized effective charges e and g:

eg = e0g0 = 2π. (64)

Eq.(64) confirms the equality:

d logα(p)
dt

= −d log α̃(p)
dt

(65)

and means that the Dirac relation is valid for all scales, e.g. for all t in RGE
(63).

If the derivative d logα(p)/dt in QEMD is also only a function of the effective
fine structure constants as in the Gell-Mann–Low theory then we can write, in
general, the following RGE:

d logα(p)
dt

= β1(α) + β2(α̃) + C, (66)

d log α̃(p)
dt

= β̃1(α) + β̃2(α̃) + C̃. (67)
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In Eqs.(66),(67) the terms containing the product αα̃ are absent due to the Dirac
relation (15). Applying to Eqs.(66),(67) the duality symmetry (the invariance
under the interchange α ↔ α̃) and using Eq.(65) (which is the consequence of
the Dirac relation) it is not difficult to establish the following relations:

β1(α) = −β2(α) = −β̃1(α) = β̃2(α),

C = C̃ = 0. (68)

This result confirms the validity of RGE (63) with the function β(m)(α̃) given
by the same analytical expressions as the β(e)–function in α.

From Eqs.(59) and (62) we see that it is possible to consider the perturbation
theory for β(e)(α) and β(m)(α̃) simultaneously if both α and α̃ are sufficiently
small. Then the functions β(e,m) are given by the usual series similar to (59)
and calculated in QED. If we are limited by the two-loop approximation, we
have the following equations (63) for the cases a) and b):

d logα(p)
dt

= −d log α̃(p)
dt

= β2
α− α̃

4π
(1 + 3

α+ α̃

4π
+ ....). (69)

It is not difficult to see that two first terms of this series (one-loop and two-
loop contributions) coincide with previous results of the perturbative QED, but
we have the difference on the level of higher-order approximations when the
monopole (electric particle) loops begin to play a role in the electric (monopole)
loops.

According to Eq.(69) the one-loop approximation works with an accuracy of
deviations <∼ 30% if both α and α̃ obey the following requirement:

0.25 <∼ α, α̃
<∼ 1. (70)

For the compact (lattice) QED Eqs.(17) and (18) demonstrate that α and α̃ ,
considering in the vicinity of the phase transition point, almost coincide with
the borders of the requirement (70) given by the perturbation theory for β–
functions. We can expect that these phase transition couplings may be de-
scribed by the one-loop approximation with accuracy not worse than (30−50)%
although, strictly speaking, we do not know the exact behaviour of the asymp-
totic series (59) or (69).

6 The Coleman–Weinberg Effective Potential for
the Higgs Model with Electric and Magnetic

Charged Scalar Fields

The effective potential in the Higgs model of electrodynamics for a charged
scalar field was calculated in the one-loop approximation for the first time by

13



the authors of Ref.[18]. The general methods of the calculation of the effective
potential are given in Ref.[19]. Using these methods we have constructed the ef-
fective potential (also in the one-loop approximation) for the theory with electric
and magnetic charges. Such a QEMD is described by the partition function (22)
with the action S containing the Zwanziger action (24), gauge fixing action (41)
and the actions (26) for matter fields. Monopoles are considered in this theory
as Higgs scalar particles and the corresponding Lagrangian is given by Eq.(29).
Electrically charged fields can be described by the Lagrangians (33)-(35).

Let us consider now the shifts:

Φ(x) = ΦB + Φ̂(x), Ψ = ΨB + Ψ̂(x) (71)

with ΦB and ΨB as background fields and calculate the following expression for
the partition function in the one-loop approximation:

Z =
∫

[DA][DB][DΦ̂][D ˆ̄Φ][DΨ̂][D ˆ̄Ψ]×

exp{−S(A,B,ΦB +Φ̂,ΨB +Ψ̂)−
∫
d4x[

δS(Φ)
δΦ(x)

|Φ=ΦB Φ̂(x)+
δS(Ψ)
δΨ(x)

|Ψ=ΨB Ψ̂(x)]}

= exp{−F [ΦB,ΨB, g
2, e2, µ2

m, µ
2
e, λm, λe]}. (72)

Using the representation (32) and writing a similar one for the complex
scalar field Ψ:

Ψ = ψ + iζ, (73)

we obtain the effective potential:

Veff = F [φB , ψB, g
2, e2, µ2

m, µ
2
e, λm, λe] (74)

given by the function F of Eq.(72) for the constant background fields:

ΦB = φB = const, ΨB = ψB = const. (75)

Lagrangians considered in Section 3 indicate that the interaction between the
electric charges and monopoles appears in the vacuum diagrams only on the
level of the two-loop approximation and in higher orders of the perturbative
corrections to the classical potential.

Thus, in the one-loop approximation we have:

Veff = V
(m)
eff + V

(e)
eff . (76)

The potential V (e)
eff following from the Lagrangian (35) was calculated in the one-

loop approximation by authors of Ref.[18]. The same expression takes place for
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V
(m)
eff . Using from now the designations: µ = µm, λ = λm – we can present the

following expression for V (m)
eff [18],[19]:

V
(m)
eff =

µ2

2
φB

2 +
λ

4
φB

4+

1
64π2

[3g4φB
4 log

φ2
B

M2
+(µ2 + 3λφB

2)
2
log

µ2 + 3λφ2
B

M2
+(µ2 + λφ2

B)
2
log

µ2 + λφ2
B

M2
]

(77)
where M is the cut-off scale.

The same expression (77), but with µ = µe, λ = λe and with ψB instead of
φB takes place for the V (e)

eff .
The effective potential (74) has several minima. Their position depends on

e2, g2, µ2
(e,m) and λ(e,m).

It is easy to see that the first local minimum occurs at ψB = 0 and φB = 0
and corresponds to the so-called ”symmetric phase” which is the Coulomb-like
phase in our description.

There exists only one vacuum ψB = 0 for the Lagrangians (33) and (34) if we
describe the electric sector by the cases a) and b). But in all cases our model is
interested in the phase transition from the Coulomb-like phase ”ψB = φB = 0”
to the confinement phase ”ψB = 0, φB 6= 0”. Thus, in our investigation we have
to use:

V
(e)
eff = 0 and Veff = V

(m)
eff . (78)

Let us consider now the second local minimum at φB = φ0. We have the
phase transition from the Coulomb-like phase to the confinement phase if the
second local minimum at φB = φ0 is degenerate with the first local minimum
at φ0 = 0 (see solid curve in Fig.2).

To use this one-loop approximation for the effective potential calculation in
the parameter combinations giving degenerate minima – as we want – really
means that for the case when there is a compensation between the classical
(bare) and the one-loop terms, the latter are of the same order as the first ones,
and then the loop expansion is a priori not reliable. But it could of course still
be hoped that the accuracy of one-loop corrections would be sufficiently good
even in the case of the cancellation. What we are looking for is not to know the
sign of the effective potential exactly in a region where we are close to the shift
of the sign, but rather to know when one effective potential goes below zero as
a function of the gauge coupling, say. The latter could have a better chance of
being to sufficient accuracy calculable.
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7 Calculation of the Critical Coupling in the

Monopolic Model of U(1) Gauge Theory

The effective potential is given by the following expression equivalent to Eq.(77):

Veff =
µ2

run

2
φ2

B +
λrun

4
φ4

B +
µ4

64π2
log

(µ2 + 3λφ2
B)(µ2 + λφ2

B)
M4

(79)

where λrun is the running self–interaction constant given by the expression
standing before φ4

B in Eq.(77):

λrun(φ2
B) = λ+

1
16π2

[3g4 log
φ2

B

M2
+9λ2 log

µ2 + 3λφ2
B

M2
+λ2 log

µ2 + λφ2
B

M2
]. (80)

The running squared mass of Higgsed monopoles also follows from Eq.(77):

µ2
run(φ2

B) = µ2 +
λµ2

16π2
[3 log

µ2 + 3λφ2
B

M2
+ log

µ2 + λφ2
B

M2
]. (81)

The conditions for the degenerate vacua are given by the following equations:

Veff (φ2
0) = 0, (82)

V ′(φ2
0) =

∂Veff

∂φ2
B

|φB=φ0 = 0 (83)

with the inequality

V ′′(φ2
0) =

∂2Veff

∂φ2
B

|φB=φ0 > 0. (84)

It is easy to obtain the solution of Eqs.(82) and (83) assuming that the last
term in Eq.(79) is small. Neglecting the third term in Eq.(79) we obtain:

Veff ≈ µ2
run

2
φ2

0 +
λrun

4
φ4

0 (85)

and Eq.(82) gives us the following relation:

µ2
run ≈ −λrun

2
φ2

0. (86)

Considering the derivative of Veff over φ2
B we have:

V ′(φ2
0) =

1
2
{µ2

run + λrunφ
2
0 +

∂µ2
run

∂φ2
B

|φB=φ0φ
2
0 +

1
2
∂λrun

∂φ2
B

|φB=φ0φ
4
0}. (87)

In the following calculations we replace the ”bare” constants λ and µ by λrun

and µrun assuming that only renormalized constants have a sense in the field
theory considered (it is natural to think that they will appear in higher orders
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of perturbative corrections). From now we have not only the one-loop approxi-
mation.

Using Eqs.(80), (81) and (86) we obtain:

V ′(φ2
0) =

1
4
φ2

0(
3

16π2
g4 + λrun +

9
20
λrun

2

π2
). (88)

Now it is easy to find the solution of Eqs.(82) and (83):

g4
crit = −4

3
(4π2 +

9
5
λrun)λrun. (89)

The next step is the calculation of the second derivative of the effective potential:

V ′′(φ2
0) =

V ′(φ2
0)

φ2
0

+
1
4
φ2

0

(
1 +

18
20π2

λrun

)∂λrun

∂φ2
B

|φB=φ0 . (90)

The requirement:

V ′′(φ2
0) =

∂2Veff

∂φ2
B

|φB=φ0 = 0 (91)

gives us a triple point A at the phase diagram shown in Fig.3. Three phases
– Coulomb and two confining ones – are present in this diagram. The phase
border ”1” separates the phases (confinement)1 and (confinement)2. Here we
have:

Veff (φ0) = 0 , V ′(φ0) = 0 and V ′′(φ0) < 0

– for the (confinement)1 phase.
And

Veff (φ2
0) < 0 , V ′(φ2

0) = 0 and V ′′(φ2
0) > 0

– for the (confinement)2 phase.
The phase transition border ”1” in Fig.3 corresponds to something similar

to the case presented in Fig.2 by the dashed curve, where we have two minima
at φ = φ1 and φ = φ2:

Veff (φ2
1) = Veff (φ2

2), (92)

V ′
eff (φ2

1) = V ′
eff (φ2

2) = 0. (93)

The curve ”1” in Fig.3 is calculated in the vicinity of the triple point A by
means of Eqs.(92) and (93) and is described by the following expression:

g4 =
8
3
(−7π2

9
+
λrun

5
)λrun. (94)

The phase border ”2” in Fig.3 separates the (confinement)2 and Coulomb-like
phases. This border is given by the following equations:

Veff (φ2
1,2) = 0; V ′

eff (φ2
1,2) = 0 (95)
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which coincide with Eqs.(82) and (83), but now in the region of numerically
smaller and still negative λrun we have more than two minima (see dashed
curve in Fig.2). At first, we had two minima at φ = 0 and φ = φ0. Now we
have three minima, but the previous φ0–minimum has transformed analytically
into a maximum.

The curve ”3” in Fig.3 given by Eq.(89) corresponds to the border between
the (confinement)1 and Coulomb-like phases.

The solution of Eqs.(82), (83) and (91) gives us the intersection of the curves
(89) and (94) which determines the position of a triple point. This point A in
Fig.3 is given by

λ(A)
run = −10

9
π2 (96)

and (
g(A)

)2
= g2

crit|for λrun=λ
(A)
run

=
4
3

√
5
3
π2 ≈ 17. (97)

The last result follows from Eq.(89) and corresponds to the following triple point
value of the magnetic fine structure constant:

α̃(A) ≈ 1.35. (98)

Then the Dirac relation (15) allows us to calculate the value of the triple point
electric fine structure constant:

α(A) =
π

(g(A))2
=

3
4π

√
3
5
≈ 0.185, (99)

in agreement with the Monte Carlo lattice results (17),(18) and with the Wilson
loop action model given by Eq.(21). Here we are successful in the confirmation
of the critical coupling approximate universality.

Notice that from Eq.(86) we have |µrun| > |φ0|. The estimation of their
ratio at the triple point A gives:

|µrun|
|φ0| {at the triple point A} ≈

√
λ

(A)
run

2
≈ 2.35. (100)

This value coincides with the lattice result (20) with high accuracy. Taking
into account that our Higgsed monopole model gives the first-order phase tran-
sition, it is a small wonder that we got the result corresponding to the lattice
confinement phase. At least, it is necessary to think about such coincidences.

Eq.(100) shows that the mass of the monopole is large compared to the φ0

scale at which our calculation leading to the result (99) is presumably correct.
So there are no RG running due to monopoles between the φ0–scale and the
infra-red limit. In consequence, the infra-red limit coupling should not be RG
corrected by monopole contributions and will just be our value (99).
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Let us consider now if the assumption that the third term in Eq.(79) is
negligibly small is selfconsistent with our calculations.

We have the following expression equivalent to Eq.(79):

Veff =
λrun

4
φ4

B{1 +
2µ2

run

λrunφ2
B

+
µ4

16π2λrunφ4
B

log
(µ2 + 3λφ2

B)(µ2 + λφ2
B)

M4
}.

(101)
The largest value of µ2 is µ2 ≈M2, which allows us to estimate the value of the
third term in the brackets of Eq.(101) in the vicinity of the second minimum
when φB = φ0. Using the designation:

V
(3)
eff (φ2) =

µ4

64π2
log

(µ2 + 3λφ2)(µ2 + λφ2)
M4

(102)

we can consider the ratio

R = V
(3)
eff (φ2

0)/(
λrun

4
φ4

0) ≈
µrun

4

16π2λrunφ4
0

log
(µ2 + 3λφ2

0)(µ
2 + λφ2

0)
M4

. (103)

Then Eq.(86) gives us:

R =
λrun

64π2
log

(µ2 + 3λφ2
0)(µ

2 + λφ2
0)

M4

<∼ λrun

64π2
log 5. (104)

At the triple point A the value of R is determined by Eq.(96):

R(A) <∼ 0.018 log 5 ≈ 0.03. (105)

Really, we have R << 1. This result confirms the negligibility of the third term
in Eq.(79) for Veff near the second minimum shown in Fig.2.

The values (99) and (98) obtained in our Higgsed monopole model for the
triple point electric and magnetic fine structure constants correspond to the
one-loop approximation for the effective potential and can be improved by the
consideration of the higher-loop corrections. However, this result is close to
the borders of the perturbation theory requirement (70). The phase diagram
shown in Fig.3 resembles the region (70) having slight deviations. If one adds
electrically charged particles then the corrections from their contributions are
to be taken into account. But on the level of the one-loop approximation we
have only monopoles. We think that in all cases our results are guaranteed with
accuracy less than 50%. However, it seems that the idea of the approximate
universality of the critical coupling constants is confirmed.

8 Conclusions

We have used the Coleman–Weinberg effective potential for the Higgs model
with the Higgs field φ conceived as a monopole scalar field to enumerate a
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phase diagram suggesting that in addition to the phase with < φ >= 0 (i.e.
the Coulomb phase) we have two different phases with < φ > 6= 0 meaning, two
different confinement phases (confinement)1 and (confinement)2. These three
phases meet at a triple point and we calculated what we called the effective or
running λrun and g2 couplings at this triple point A:

(
λ(A)

run, (g
(A))

2)
= (−10

9
π2,

4
3

√
5
3
π2) ≈ (−11, 17). (106)

By the Dirac relation this calculated (g(A))
2

corresponds to

α(A) =
π

(g(A))2
=

3
4π

√
3
5
≈ 0.185. (107)

and
α̃(A) ≈ 1.35. (108)

It is noticed that these triple point fine structure constant values coincide
rather well with the values of the fine structure constant at the phase transition
point for a U(1) lattice gauge theory (see Eqs.(17) and (18)). But for the values
(107) and (108) giving the perturbative region of parameters:

0.2 <∼ α, α̃
<∼ 1.35 (109)

we cannot guarantee the accuracy of deviations better than 30%, as follows from
the estimation of the two-loop contributions (Section 5).

Hereby we see a strong argument for our previously hoped-for principle of
”approximate universality” for the first-order phase transitions: the fine struc-
ture constant (in the continuum) is at the/a multiple point approximately the
same one, independent of various parameters of the (lattice e.g.) regularization.

This is indeed first suggested by the agreement of the above-obtained value
α(A) = 0.185 with the phase-border value in the various different regularizations.
Secondly we could also argue:

(All) various different regularizations for U(1) electrodynamics which usually
should have artifact monopoles could, in the philosophy of going back and forth
between continuum and, say, lattice regularization, be described by the Higgs
model with φ interpreted as a monopole scalar field.

Since we showed that we could calculate the triple point in this continuum
theory all the various regularizations in which artifact monopoles are presumed
connected with the phase transitions must have approximately the same con-
tinuum parameters at the triple point.

All different versions of U(1) lattice gauge theories have normally artifact
monopoles. If they are approximated by a continuum field model it should
be the Higgs model interpreted as in the present article and our triple point
α(A) ≈ 0.185 would be the coupling at the triple point of whatever U(1) lattice
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gauge theory. This is our previously suggested ”approximate universality” which
is quite necessary for the AGUT and MPP predictions. To the point, the result
(107) obtained in our Higgsed monopole model gives:

α−1
crit ≈ 5.4 (110)

which is comparable (in the framework of our accuracy) with AGUT-MPP pre-
diction (12). The details of this problem are discussed in Refs.[7]-[9].

We have a hope that the two-loop approximation corrections to the Coleman–
Weinberg effective potential will lead to much better accuracy in the calculation
of the phase transition couplings, but this is an aim of our next papers.
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Fig. 1: The phase diagram for U(1) when the two-parameter action is used.
This type of action makes it possible to provoke the confinement Z2 (or Z3)
alone.
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Fig. 3: Phase diagram (λrun, g
4) corresponding to the Higgsed monopole model

shows the existence of a triple point A
(
λ

(A)
run ≈ −11, (g(A))2 ≈ 17

)
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