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1. INTRODUCTION 
The attempts to go beyond the Standard Model have largely concentrated on the 

solutions to the 'hierarchy problem', the difficulty in field theory in keeping the observed 
states light in the presence of new physics at a very large mass scale (such as the Grand 
Unification scale, Mx, or the Planck scale, MPlanck, where gravity becomes strongly in­
teracting). There are just two possible solutions to this problem, compositeness where the 
protection from the large mass scale occurs because some or all of the observed states 
are composite with soft form factors when coupling to the states beyond the Standard 
Model, or supersymmetry where the light states are prevented from getting a mass by a 
new symmetry, supersymmetry (SUSY). In these lectures, I will start with a review of 
the structure of effective field theories, in which there is a new scale of physics at a high 
scale, as the most direct introduction to the hierarchy problem and its solutions. I shall 
then present an overview of the two competing solutions, SUSY and compositeness. The 
remainder of the lectures is devoted to some of the detailed predictions of supersymmetry 
and a stage of (SUSY) unification beyond the Standard Model. The latter is certainly 
worth some study as these ideas offer the only quantitative prediction for the parameters 
of the Standard Model which come from physics beyond the Standard Model. 

1.1 Motivation: effective field theories 
It is very natural, given the success of the Standard Model, to ask why Nature 

should choose such a structure and what, if anything, lies beyond? Attempts at unification 
broadly divide into schemes in which one or more of the states of the Standard Model 
are composite and schemes in which the symmetry of the Standard Model is extended to 
enlarge the gauge group, and/or add supersymmetry and, most ambitiously, to include 
gravity in the unification. In this lecture I shall try to motivate extensions of the Standard 
Model via a 'bottom-up' approach in which the detailed structure of the low-energy theory 
is used to limit the possible forms of unification, rather than the 'top-down' approach 
which starts with a specific model for unification. 

I find it quite remarkable that much of the Standard Model can be constructed 
starting from the assumption that it is an effective field theory descending from a funda­
mental theory at some high scale, M [1]. This follows because the effective Lagrangian 
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describing the light fields, ¢light, obtained on integrating out the heavy fields [with mass 
of O(M)] may be written in a Taylor series ordered in inverse powers of M 

1 
.C(c/Jlight,c/Jheavy)--+ ,eeff(¢light) = ~nanO~n(M)dn-4 , (1) 

where oc;;. is a local combination of light fields labelled by its engineering dimension. The 
best-known example of this is the Fermi theory of weak interactions generated by a term 
such as GF(JlrJ.lv)(vrJ.le) which applies at energy scales much less than theW-boson mass 
and comes from integrating out the heavy W boson. 

It may be seen from Eq. (1) that low-dimension terms dominate for energies<< M. 
This means the dominant terms of the effective theory describing scalar and fermion fields 
define a renormalizable theory. 

(2) 

If this effective Lagrangian has any light fields the large mass terms of Eq. (2) must 
be absent. The implications of this condition for the possible types of field are 

• Light fermions If L has a chiral symmetry, light fermions are possible: 

'1/JL--+ eia'I/JL, '1/JR--+ '1/JR forbids M7/J7/J = M(7/JL7/JR + 7/JR'I/JL) , (3) 

where the subscripts L and R refer to the helicity components. 

• Light vector bosons If L has a local gauge symmetry, light bosons are possible: 

AJ.l --+ AJ.l + oJ.lA forbids M 2 AJ.lAJ.L . ( 4) 

In this case the leading dimension terms have dn = 4 and define a renormalizable, 
local, gauge field theory of the gauge bosons interacting with scalars or fermions. One 
can even say more about the nature of the gauge boson coupling to fermions. The 
general coupling has the form AJ.L(a7fLrJ.L7/JL + b7fRrJ.L'I/JR). We have just argued that 
a light fermion should have no mass term M7/J7/J in this effective theory. Thus, if the 
fermion is massive, it must get its mass from spontaneous symmetry-breaking from 
a term 7/JL'I/JRif! where if! is a scalar field which acquires a vacuum expectation value 
( vev), v. If the gauge symmetry is unbroken by this vev and the corresponding gauge 
boson is massless, then, necessarily, the transformation properties of '1/JL and 7/JR under 
this gauge symmetry must be the same to allow the mass term. This implies a = b in 
the coupling of the massless gauge boson to the massive fermion, i.e. massless gauge 
bosons couple in a vectorlike manner. On the other hand, if the gauge symmetry is 
spontaneously broken by the vev of if!, then there is no requirement that a = b and 
hence massive gauge bosons may have parity-violating couplings1). 

• Light Scalars If L has a spontaneously-broken global symmetry there are light 
Goldstone bosons: 

(5) 

but¢ cannot carry gauge quantum numbers, otherwise a M'2¢ 2 term is allowed with 
M' '"'"'gM where g is the gauge coupling. 

1) This is likely but not inevitable - there are left-right symmetric models in which the 
massive boson couples in a parity-conserving way. 
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1.2 Supersymmetry 
The only possible symmetry capable of keeping a Higgs boson light (as is needed in 

the Standard Model ) is supersymmetry (plus a chiral symmetry). As discussed below, 
a supersymmetry transformation transforms a scalar state into its fermion partner and 
thus relates their masses: 

1 0 

¢ (J = 0) ~ 7/J (J = 2) reqmres m1/J = m<P . (6) 

Thus, if the fermion mass m1/J is forbidden by a chiral symmetry as discussed above, 
the scalar mass will also vanish. 

The conclusion of all this is that an effective field theory describing scalar, fermion, 
and vector fields, light on a scale M associated with an underlying fundamental theory, 
must be a renormalizable gauge field theory -just the structure of the Standard Model 
-in which the massless gauge bosons have vectorlike couplings (as do the gluons and the 
photon) while the massive gauge bosons may have parity-violating couplings. However, 
to accommodate the light scalars needed for spontaneous symmetry-breaking, a stage of 
supersymmetric unification beyond the Standard Model is necessary and the breaking 
of this supersymmetry must not be much larger than the electroweak breaking scale 
(otherwise the scalar mass will be too large). 

1.3 Do we really need supersymmetry? 
Our arguments seem to imply that all scalars should be heavy ... but what about 

the observed scalar mesons the 1r, K, rJ, etc? These are not present in the original QCD 
Lagrangian but appear as bound states of quarks. The arguments presented above for the 
absence of light scalar states apply to elementary scalars present in the original Lagrangian 
which have pointlike interactions. The distinction becomes clear only when calculating 
radiative corrections, for example to the scalar mass. The graph of Fig. 1 gives 

h2 J d4 k (1 - /'5) m; (27r)4 (k2)(k + r) Tr( 2 (k + p)k) 

~ -- dk2 h2 111.2 
167r2 

~ _!!!__A2 
167r2 

(7) 

where A is a cut-off imposed to render the integral finite. In effective field theories 
it has a physical meaning, namely the scale at which new physics occurs. Clearly if 
A 2 ~ M]c, M~zanck then the scalar ¢ will be very heavy and not appear in the low-energy 
Lagrangian. This is the 'hierarchy problem'. For composite scalars such as the rJ the calcu­
lation changes, since now at each vertex there should be included form factors describing 
the overlap of the composite scalar with the elementary fermions from which they are 
made. Taking this form factor to have the physically reasonable form exp( -k2 

/ A~cv) we 
have 

100 -~ 
~ o e AQCD 

~ A~cD. (8) 
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Figure 1: Graph generating scalar mass through a fermion loop. 

1.4 Composite Higgs 
But can the Higgs scalars of the Standard Model be composite? The answer is 'yes' 

and to demonstrate this forcibly note that with no Higgs scalar the W and Z bosons would 
still be massive! We know that the chiral symmetry of QCD is broken spontaneously with 
the pions and the pseudo Goldstone bosons associated with this breaking 

< uu >=< dd >= O(Abcv) 
SU(2)L ® SU(2)R SU(2)L+R 0 

7r
9 Goldstones (9) 

The pions, being made of quarks, will couple to theW and Z boson. Indeed using 
PCAC we know there is a coupling (g2/1r/2)W1LEJJLe. Using this to evaluate the graphs of 
Fig. 2 gives 

1 1 g2 J';q2 1 1 
q2 + q2" 4q2 ° q2 + ... = q2- (92/'11")2 

which is the propagator of a massive state with mass 

Mw = g2f1r 
2 0 

(10) 

(11) 

Here f1r ~ 100 MeV is related to AQcD· Inserting the numerical values for the couplings in 
this equation gives Mw ~ 100 MeV, far too small, and in any case the 1r's exist and have 
not been 'eaten' by theW and Z. However, this result does suggest that the mechanism 
could work if there is a new composite scale. 

w w g w w g w g w 
"'\J'V'\.. + ~- 1./'\/V + ~-~- -4/"\J\J + 0 •• 

Figure 2: Graphs generating W mass when chiral symmetry is spontaneously broken. The 
line labeled e is the pion Goldstone mode. 

1.5 Technicolour 
We suppose there is a new strong 'technicolour' interaction with gauge group SU(Nrc). 

We also suppose there is a pair of techniquarks U, D which transform in the same way 
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under SU(2) 0 U(1) as the u, d quarks. If technicolour is spontaneously broken in a 
manner analogous to QCD 

- - 3 < UU >=< DD >= O(Arc) 

SU(2)L 0 SU(2)R SU(2)L+R 

1rrc Goldstones (12) 

the W and Z will acquire mass 

M - 92!1r,TC 
w- 2 . (13) 

Now, provided Arc and J1r,TC are scaled up appropriately CJ1r,TC, Arc::::::: 250 GeV), Mw 
will be correct and the techni-interaction will be strong at a scale of 0(1 TeV). This is the 
idea behind technicolour. An immediate implication is that there will be technihadrons 
at 0(1 TeV) and pseudo Goldstone techni-1r's etc. from 2 GeV upwards. I shall return to 
a discussion of techni-phenomenology shortly. 

1.6 Top-quark condensate 
One can even realize the composite Higgs idea without introducing any new fermions 

at all. The basic idea is that a strong binding force between top quarks (due to new physics 
at a high scale, Ac) may cause a dynamical breakdown of the electroweak symmetry 
through the formation of a top-quark condensate, without the need for an elementary 
Higgs scalar. In these theories there is still a massive scalar field left after symmetry 
breaking but it is a composite state, a top-quark-top-antiquark bound state [2]. 

1. 7 Introduction to supersymmetry 
There are several reasons why supersymmetry has been widely suggested as a likely 

extension of the Standard Model. In the first place supersymmetry provides the only pos­
sible (finite) symmetry beyond those based on Lie groups. It is also a necessary ingredient 
in string theories which many people think the best candidate for a 'Theory of Everything' 
unifying all the fundamental forces including gravity. While these points may suggest we 
consider supersymmetry as an underlying symmetry of Nature, the only reason we have 
for expecting a low-energy realization of the symmetry is the 'hierarchy problem', the dif­
ficulty discussed above of keeping the electroweak scale small compared to the unification 
scale without having the interactions become strong. 

In these lectures I shall try to explain how supersymmetry explains the 'hierarchy 
problem' and determine the constraints the solution places on the supersymmetric spec­
trum. I shall also discuss what the phenomenology of the new supersymmetric states is 
likely to be and the prospects for finding experimental evidence for supersymmetry. First, 
however, I turn to a very brief introduction to supersymmetry. 

The simplest possible supersymmetry algebra is given by the anticommutation re­
lations involving spinorial generators Q00 , two-dimensional Weyl spinors [3]. 

{ Qa, Ql'} = { Qc;, Q{3} = 0 

{Qa,Q{3} = 2a~13 P~ 
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where ci are the 2 x 2 Pauli matrices and a0 is the unit matrix. The appearance of 
the momentum operator shows that the full supersymmetry algebra should include the 
generators of the Poincare group giving a super-Poincare algebra. 

The (massless) representations of supersymmetry are easily obtained from Eq. (14) 
and consist of just two states of helicity ,\and,\+ 1/2. This immediately follows from the 
fact that, from Eq. (14), only one product of generators is non-vanishing. When building 
supersymmetric (SUSY) models the only multiplets that lead to consistent theories are 
left-handed 'chiral' supermultiplets with helicity (0,1/2) pairs, vector supermultiplets with 
helicity (1/2,1) pairs, and the gravitino supermultiplet with helicity (3/2,2) together with 
the conjugate fields. 

It may now be seen how the hierarchy problem is solved in supersymmetric theories. 
Supersymmetric mass terms relate scalar and fermions within a supermultiplet as in 
Eq. (6). If the fermion mass is forbidden by a chiral symmetry (i.e. if the left- and right­
handed states have different gauge quantum numbers), supersymmetry ensures that the 
scalar mass will also vanish. Radiative corrections may induce a scalar mass, but only 
at O(MsuSY) where MsuSY is the scale of supersymmetry breaking. Thus if MsuSY = 

0(1 TeV) << Mcur, MPlanck the hierarchy problem is solved. However, this implies that 
the zoo of SUSY states cannot be heavier than this scale, i.e. they are certainly in the 
range accessible to the next generation of accelerators. 

The supersymmetry algebra of Eq. (14) may be extended by introducing more than 
one SUSY generator, Q~=l, .. ,N. These N-extended algebras are not used to construct low­
energy supersymmetric theories because they have only non-chiral representations and 
thus lead to 'mirror' families of quarks and leptons, with the identical gauge couplings, 
but opposite helicity to their Standard Model partners. For example, because there are 
now two non-zero products of generators, the N = 2 algebra has the representation with 
helicities (-1/2,0,1/2). Since there is no evidence for such mirror states, essentially all 
work on low-energy SUSY has concentrated on the N = 1 supersymmetry case. In the 
next section I shall discuss how a N = 1 SUSY version of the Standard Model is built. 

1.7.1 The supersymmetric spectrum 
If the Standard Model is to be incorporated in a field theory with N = 1 su­

persymmetry, it is first necessary to assign the states of the Standard Model to N = 1 
supersymmetric representations. Let us start with the SU(3) x SU(2) x U(1) vector bosons. 
The only super-multiplet available that contains vectors is the vector supermultiplet con­
taining states of helicity 1 and 1/2. Thus we must assign the vector bosons to sector 
multiplets transforming in the same way as the vectors under SU(3) x SU(2) x U(1); this 
is shown in Table 1. It is clear that this means we have to introduce gauginos, spin-1/2 
fermionic partners of the gauge bosons, which transform under the gauge group in exactly 
the same way as their vector partners. 

Turning now to the assignment of the quarks and leptons to supermultiplets, it 
appears that there is the option of assigning them to vector supermultiplets, with vector 
partners, or to chiral supermultiplets, with scalar partners. However, the former possibility 
is not available, unless we increase the size of the gauge group, for the transformation 
properties of the quarks and leptons is different from the gauge bosons of the Standard 
Model (cf. Table 1). Thus we cannot identify any of the gauginos of Table 1 with the 
quarks or leptons and we have to assign the latter to chiral supermultiplets with the 
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transformation properties of the quarks and leptons. These introduce scalar partners to 
the quarks and leptons transforming in the same way as their fermionic partners as shown 
in Table 1. 

Table 1 
SUSY states in the MSSM 

Spin Name SM partner 
g 1/2 gluino gluon 
w+- 1/2 Wino W boson 
z 1/2 Zino Z boson 
{j 0 squark quark 
z+- 0 slepton lepton 
D 0 sneutrino neutrino 
H 1/2 Higgsino Higgs boson 

Finally, we must assign the Higgs bosons of the Standard Model to a supermultiplet. 
Having spin 0, they can only be assigned to a chiral supermultiplet and thus they must 
have fermionic partners called Higgsinos. However, the introduction of an SU(2) doublet of 
fermions of definite helicity introduces an anomaly to the SU(2) x U(1) gauge theory. This 
is unacceptable, and to avoid it we are forced to introduce two Higgs chiral supermultiplets 
with opposite hypercharge (so that the Higgsinos have cancelling contributions to the 
anomaly) as shown in Table 1. It turns out that both Higgs multiplets are needed in 
supersymrnetry to give quarks and leptons a mass, so this is indeed the minimal choice 
(i.e. attempts to identify the H2 supermultiplet with a lepton supermultiplet without 
introducing an H 1 would have failed). 

To summarize, the supersymmetric version of the Standard Model requires more 
than twice the number of particles: gauginos, partners for each of the gauge bosons, and 
squarks and sleptons, scalar partners for each of the quarks and leptons, and two Higgs 
doublets with fermionic 'Higgsino' partners. 

1.7.2 Couplings in the supersymmetric model 
Since the gauge multiplet structure of the new supersymmetric states is the same as 

that of their Standard Model partners, the interaction of gauge bosons with these states 
is fixed. Supersymmetry relates these gauge couplings to new couplings involving two 
superpartners in place of the original states (for example a quark-quark-gluon vertex is 
related to a squark-quark-gluino vertex). Thus the gauge-related interactions are fixed, 
given the multiplet structure of Table 1, and may be found, for example, in Ref. [3]. 

The remaining coupling that must be specified to complete the definition of the 
supersymrnetric model corresponds to the Yukawa couplings and those couplings related 
to them by supersymmetry. These are most conveniently given by the 'F' term of the 
superpotential which is a polynomial in the chiral field ¢ (and does not involve their 
complex conjugates). 

In terms of P the associated Yukawa interactions are given by ~i,j ~~~J:; IB 'lj;(l/;j, 
where the subscript B means the chiral fields <I>i are to be replaced by their scalar compo­
nents ¢i, and 'l/Ji are the corresponding fermionic components. There are scalar couplings 
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related to these Yukawa couplings which are given by ~i I Z{ 1~- The couplings needed 
to give quarks and leptons a mass are contained in the superpotential given by 

(15) 

where land e (q and ud) are the left-handed components of lepton-doublet and antilepton­
singlet (quark-doublet and antiquark-singlet) chiral superfields, respectively, and h1,2 are 
Higgs superfields. 

The model with the minimal-multiplet content of Table 1, with only these terms in 
the superpotential, is known as the minimal supersymmetric standard model (MSSM). 
(As we shall see there are additional trilinear terms allowed by the gauge symmetry which 
give rise to non-standard supersymmetric versions of the Standard Model.) Note that each 
term in Eq. (15) gives three separate Yukawa couplings. For example the first term gives 

(16) 

where we denote by a supertwiddle the scalar partners to the quarks and leptons, namely 
the squarks and sleptons. The first term is the usual term in the Standard Model needed 
to give charged leptons a mass. The new couplings associated with the supersymmetric 
states, related to the first term by the operation of the supersymmetry generator, are 
given by the second and third terms. 

Note that the last two terms involving the new supersymmetric states involve them 
in pairs. This is a general feature of the MSSM which preserves an R-parity [4], R = 

(-1) 8 +L+S, under which the new supersymmetric states are all odd, while the Standard 
Model states are even. This has a profound effect on the phenomenology of the MSSM, 
for the new SUSY states may only be produced in pairs and the lightest supersymmetric 
state (the LSP) is stable. 

There is one further coupling needed to complete the couplings of the minimal su­
persymmetric version of the Standard Model. In order to generate a mass for the Higgsinos 
associated with the Higgs doublets, H1,2 , it is necessary to add a term to the superpotential 
given by 

(17) 

In addition to giving a mass J-L to the Higgsinos, this term plays an important role in 
determining the Higgs scalar potential and the pattern of electroweak symmetry-breaking. 
As we shall discuss in more detail in Section 3.3.5, the scalar term following from Eq. (17) 
aligns the vacuum expectation values (vevs) of the two Higgs fields so that the photon is 
left massless, obviously a crucial ingredient for a viable theory. 

Before concluding this section let me just comment on the possible alternatives 
to the MSSM. In particular the couplings of Eq. (16) are not the only ones allowed by 
SU(3) 0 SU(2) 0 U(1). The following terms are also allowed in the superpotential [5, 6] 

(18) 

As before, each of these terms gives three Yukawa couplings; for example the first 
term gives 

126 



(19) 

It may be seen that these involve a single SUSY state and thus break the R-parity 
of the Standard Model. If any of the couplings are present, they have a significant effect 
on the phenomenology of SUSY for they allow for the production of a single SUSY state, 
and also the LSP is no longer stable. As a result, the normal SUSY signal, namely, missing 
energy and momentum from the escape of the neutral LSP, is no longer the case. Why 
then are these terms excluded in the construction of the MSSM? 

The first point to note is that if the terms proportional to A and X are simultaneously 
present, the nucleon is unstable because these terms violate lepton and baryon number, 
respectively. Since the Born amplitude is proportional to (AX)/mJ, and the squark mass 
is at most in the TeV range, the decay rate is quite unacceptably fast. The cure is to 
forbid these new terms by a discrete symmetry, known as matter parity, under which the 
quark and lepton superfields appearing in the superpotential change sign while the Higgs 
superfields are left invariant. Thus the last three terms of Eq. (18) change sign under this 
symmetry and are forbidden while the terms of Eq. (15) are invariant and allowed [7, 8]. 
Clearly this forbids all the terms of Eq. (18) and leaves just the couplings of the MSSM. 
Thus the matter parity leads to the R-parity of the MSSM. 

However, there are more possibilities to stabilize the proton than to forbid all the 
terms of Eq. (18) [5]. Provided the terms proportional to A and X are not simultaneously 
present, the Born term generating nucleon decay will be absent. It is possible to eliminate 
one or other of these operators by symmetries other than matter parity, provided one 
allows for the possibility that quarks and leptons transform differently [9]. Although this 
is not possible if the theory is embedded in SU(5), in which the quarks and leptons 
transform under discrete symmetries in the same way, it is possible in other GUTs and 
also in string unification, which need not be embedded in a GUT. Indeed a study of all 
ZN symmetries (N < 5) shows that it is easy to obtain any of the following, all of which 
inhibit nucleon decay [10] 

• Matter 'parity' >. = ~' = 5:11 = 0; f::l.B = f::l.L = 0 
• Lepton 'parity' ~' = 5:11 = 0; f::l.B =/:- 0, f::l.L = 0 
• Baryon 'parity' >. = 0; f::l.B = 0, f::l.L =/:- 0 . 

I shall not pursue these models further here, but wish to stress that such models should 
be considered when determining general tests for supersymmetry. 

2. SUSY VERSUS COMPOSITE THEORIES: AN OVERVIEW 
In this section I shall briefly review the implications of the extensions of the Stan­

dard Model for the precision tests of the theory that have been extensively performed 
using the recent high-precision data from LEP and SLAC. I shall also discuss the con­
straints on the Standard Model parameters, the masses and mixing angles, that may 
come from these extensions. 

2.1 Top-quark condensate 
As mentioned above, if the top quark is strongly bound, a top-quark condensate 

may form breaking the electroweak symmetry just as happens for technicolour. The top­
quark condensate represents the extreme example of dynamical symmetry-breaking with 
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minimal new physics. In the following discussion we parametrize the effect, at low energies, 
of the new strong interaction binding the top quark by a four-fermion interaction with 
coupling proportional to A;2 • 

• Precision tests In the limit where the scale, Ac, of the new physics becomes much 
larger than the electroweak breaking scale it is found [2] that the low-energy theory 
contains just the states of the Standard Model including a (composite) Higgs scalar 
field which appears elementary at energy scales much less than Ac. The couplings of 
this effective Higgs field are identical to those of the Standard Model Higgs and the ef­
fective low-energy theory is indistinguishable from the Standard Model [11]. Thus the 
expectation is that, for a large unification scale, there should be negligible deviation 
from the Standard Model predictions in agreement with current measurements. 

• Tnt The top-quark condensate generates Wand Z masses via Fig. (3b). Evaluating 
this graph gives 

(20) 

-
< 1 t t 1 v: .. w 

1 > < 1 

w 
q, qj 

(a) (b) 

Figure 3: Quark and W, Z masses from a top-quark condensate. 

This form will give an acceptable W mass for mt:::; 200 GeV, (consistent with present 
LEP bounds) only for a very large cut-off scale A > 0(1010 GeV)! The top mass is 
generated by the graph of Fig. (3a). Equivalently, it is determined by the effective 
top-quark coupling, gt(J.1)tLtR4P, describing the interaction, below the scale Ac, ofthe 
bound-state scalar doublet 4> which contains the Goldstone mode and massive scalar 
state discussed above. This is an effective coupling which, at low scales, replaces the 
four-fermion coupling and generates the top-quark mass when¢ develops a vev. Since 
this coupling is generated by the new strong interaction, it is large at the scale Ac. 
However, this is corrected at low scales due to large radiative corrections proportional 
to log( A 2 /mz). These corrections may be calculated via the renormalization group 
(RG) for the effective top-quark coupling which is identical to the renormalization 
group for the top-quark coupling in the Standard Model [12]. The RG equations for 
the running coupling gt(J.1) and the QCD running coupling g3 (J.1) are 
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16 2 dln(93) __ 
7 2 

7r - 93 dt 

16 2 d ln (9tf 93) _ 9 2 2 
7r d - - 9t - 93 . 

t 2 
(21) 

The last term of Eq. (21) vanishes for 9F = ~9~ corresponding to an infra-red, stable 
fixed point at which Tnt ~ 100 GeV. How close to this fixed point the couplings get 
depends on the initial conditions and the 'distance' (A/ J.-L) over which the couplings 
run. For initial conditions 9F >> ~9~ there is an effective, low-energy fixed point 
with a larger value of 9t corresponding to the value 'Tnt= 230 GeV. For 9F < ~9~ the 
effective fixed-point structure is ineffective as one cannot cross the real fixed point 
corresponding to 'Tnt = 100 GeV. However, as we have discussed, in the top-quark 
condensate model a large initial Yukawa coupling is necessary, so the effective fixed 
point governs the top-quark mass. The focusing effect of the RG equation is shown 
in Fig. 2.1, where it may be seen that, for widely varying initial values, the top mass 
at low energy scales is very close to the effective fixed point. 

-E 
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2 4 6 8 10 12 14 16 18 20 

Log~ 

Figure 4: The running top-quark mass as a function of the scale 1-L· (A) A= 1015 GeV. 
(B) A= 1019 GeV. 

Similarly one may analyse, using the RG, the running of the coefficient A of the 
effective four-scalar interaction A I <P 14 , and hence determine the radiatively corrected 
scalar mass. The RG flow is shown in Fig. 5 and using it yields the predictions 

mt 230 ± 30 GeV 

270± 30 GeV. (22) 

• Light fermion masses and mixing angles The light-quark and lepton masses 
and mixing angles can be accommodated in this scheme through the introduction 
of four-fermion interactions coupling the top quark and top antiquark to the light 
quarks as in Fig. (3a). These interactions are postulated to come from new physics 
at the scale Ac and, with suitable choice for their coefficients, they can generate the 
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observed structure. However, this is only a reparametrization of the theory and offers 
no understanding of this sector of the theory. 

5 

4 

3 -C1 

2 

1 

: 0 : .. 
0 

0 
0 1 2 3 4 5 

~ 

Figure 5: Full RG trajectories showing the joint evolution of the top-quark coupling 9t 
and the quartic scalar coupling .\. 

Is the top-quark condensate scheme a reasonable alternative to the Standard Model? 
Obviously the top mass of Eq. (22) is too large in comparison with the recent LEP bounds, 
but it is possible to reduce it in versions which implement the mechanism in slightly 
different models, for example with a fourth generation, or with two Higgs doublets, or 
with supersyrnrnetry .... However, in my opinion, there is a fatal flow with the scheme as 
implemented above, for it has a fine-tuning problem. The problem is that the expectation 
for the scale of electroweak breaking (and the associated top-quark mass) in a composite 
model of the Higgs is naturally of order of the composite scale A; in order to make it 
much less than Ac it is necessary to fine-tune the parameters of the theory. Recent work 
on top-quark condensation has been directed towards reducing the fine-tuning problem by 
reducing Ac. However, now the predictive power is lost, for the RG corrections discussed 
above become irrelevant. In this case the top mass and Higgs mass are determined by the 
( uncalculable) strong interaction dynamics. 

2.2 Technicolour 
In technicolour theories electroweak breaking is generated by a condensate of new 

quarks, 'techniquarks Ti', which are bound by a new 'technicolour interaction' and form a 
condensate [13]. As the techniquarks transform as electroweak doublets, this condensate 
breaks the electroweak symmetry in a manner analogous to the top-quark condensate. 
However, the technicolour models have the advantage that they avoid the need for fine­
tuning. 

Any attempt to study a composite structure is hindered by the inherently non­
perturbative nature of the problem. Initial work on technicolour models attacked this 
problem by using QCD as a model theory and just scaling the results of QCD up in 
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energy. However, much of the recent work on technicolour models has concentrated on 
elucidating possible differences between them and QCD in the hope that they will cure 
the problems encountered when trying to build realistic technicolour theories [14]. I have 
no time to review the details of technicolour models here, but shall concentrate on the 
expectation of these models for low-energy physics. 

• Precision tests Unlike the top-quark condensate case technicolour models do not 
reduce to the Standard Model owing to the new 'technifermion' states. These states 
contribute to radiative corrections and so change the predictions of the Standard 
Model for precision measurements. In the case that technicolour behaves like QCD, 
present measurements rule out even one technifamily. However, this conclusion is 
sensitive to non-QCD-like effects and to new (light) states which may be associated 
with the new physics such as Majorana neutrinos, Z bosons, etc. so it may be possible 
to accommodate a technicolour scheme, but not in its simplest guise. In particular 
it has been argued [15] that all precision measurements are satisfied by a SU(2) 
technicolour model with a light technineutrino (with mass 50-100 GeV) and a light 
technilepton (with mass 150 GeV). 

• 'Tnt Quark masses in technicolour theories result from a coupling of the Standard 
Model quark to the techniquark via a new 'Extended technicolour' (ETC) interac­
tion. Thus chiral symmetry-breaking, initiated in the techniquark sector via the tech­
niquark condensate, is communicated to the quark and lepton sector via radiative 
corrections involving ETC boson exchange as in Fig. 2.2. 

f 

f 
Figure 6: Light-quark mass generation in ETC theories via the coupling of the light 
quark, J, to the technicolour state, F, via an ETC boson, VtF· 

If (in analogy with QCD) one calculates this diagram assuming the absence of large 
corrections due to the strong technicolour interaction, one finds that the quark masses 
are given by 

(23) 

where ATe and AETe are the scales at which the technicolour and extended tech­
nicolour interactions become strong. Since AETe > ATe the prediction is that the 
quarks (and leptons) should be much lighter than the W boson. Thus a heavy top 
quark does not fit easily into this picture. To accommodate it requires some new 
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ingredient such as a combination of ti and TT condensates or non-QCD-like strong 
technicolour interactions which change the estimate of the radiative corrections gen­
erating the quark masses following from Fig. 2.2. 

• Light fermion masses and mixing angles Apart from the top quark the remaining 
quark and lepton masses can be well described by Eq. (23). Mixing angles can be 
generated by ETC exchange graphs too, but the flavour-changing neutral currents 
generated by Born graphs involving ETC boson exchange turn out to be unacceptably 
large if the mass of the ETC bosons are chosen to give the correct light fermion masses 
in Eq. (23) [16]. To avoid this conflict, non-standard technicolour behaviour is needed 
changing the structure of Eq. (23) [15]. 

In summary, while technicolour theories are not dead, their saviour requires pos­
tulating non-QCD-like behaviour for the new technicolour interaction. As a result it is 
difficult, if not impossible, to extract reliable predictions from a theory due to the un­
certainty in the strong-interaction effects. When compared to the predictive succes of 
supersymmetric models discussed below, it is difficult to avoid the conclusion that tech­
nicolour model-builders are swimming against the tide! 

2. 3 Supersymmetry 
The alternative to a non-perturbative extension of the Standard Model involves a 

new symmetry, supersymmetry, to protect the Higgs scalar from large radiative corrections 
[3, 17]. As discussed above, the Minimal version of the Supersymmetric Standard Model 
(the MSSM) assigns the states of the Standard Model to supermultiplets which carry 
their SU(3) 0 SU(2) 0 U(1) gauge quantum numbers. As a result, the spectrum of states 
is extended to include supersymmetric partners of the gauge bosons, the quarks and the 
leptons, namely the (fermion) gauginos, the (scalar) squarks and sleptons, respectively, 
together with two Higgsino (fermion) superpartners of the two Higgs scalar electroweak 
doublets needed in SUSY. 

The solution to the hierarchy problem requires that these new states be light 
[< 0(1 TeV)]. However, this implies that the zoo of SUSY states cannot be heavier 
than this scale, i.e. they are certainly in the range accessible to the next generation of 
accelerators. 

• Precision tests A feature of the MSSM is that in the limit MsuSY --+- oo, the 
MSSM --+- Standard Model with a light Higgs boson, m~ < 146 Ge V [18]. In this 
limit the predictions for the precision tests become those of the Standard Model, 
in agreement with current experiment within current errors. As the supersymmetric 
states become lighter, the predictions change in a way that depends on the details of 
the supersymmetric spectrum. For example, it is possible to maintain the excellent 
agreement with the SandT parameters while changing the prediction for Z--+- bb to 
bring it into exact agreement with the current mean value by a careful choice of the 
ino masses [19]. 

• Tnt By itself the MSSM does not determine the top mass. However, low-energy su­
persymmetry really only makes sense in the context of a unified theory (a GUT or 
a compactified string theory) and in this case there are large radiative corrections 
involving powers of log(Mx / Mw) where Mx is the GUT or compactification scale. 
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These favour a value for mt close to the quasi-infra-red fixed-point (IRFP) given by 
ffit::::::: 200sin,B where tan,B = vdv2 and v1,2 are the vevs of the two Higgs fields. At 
present we do not know ,B so the fixed-point result is still viable. 

• Light fermion masses and mixing angles These are not determined in the MSSM 
(radiative corrections are small as the initial values are far from the IRFP) but, just 
as in the Standard Model, the Yukawa couplings of the theory may be chosen to 
give the observed masses and mixing angles. If one is to make predictions for these 
quantities, it is necessary to extend the symmetries of the model. 

2.4 Phenomenology of the MSSM 
As we have seen, the spectrum of supersymmetric states is constrained by the hi­

erarchy problem to be quite low and accessible to experimental detection. The effects of 
supersymmetry may be detected either by their virtual effects on processes involving just 
the Standard Model states, or by direct production of the new states. We start with a 
discussion of the most important virtual effects of SUSY that have been identified. 

2.4.1 New flavour-changing gauge interactions 
The discussion of gauge-related interactions given in Section 1. 7.2 applied to the 

current eigenstates. Owing to the non-degeneracy of quarks, we know that the charged, 
weak, gauge interactions can change flavour when expressed in terms of quark-mass eigen­
states. There is an equivalent source of flavour-changing interactions in the new squark 
and slepton sector which we shall now discuss [3]. 

The connection between the current quark (or lepton) basis and the mass eigenstate 
quark (or lepton) basis is given by unitary transformations, V~·~. In terms of these the 

' 
Cabibbo-Kobayashi-Maskawa mixing matrix is VcKM = V~tvf. In general we have to 
define different unitary rotations V~·~ diagonalizing the squarks. Thus the interaction of 
thew bosons with squarks will be d~scribed by a new matrix VcKM = v~tvf. Perhaps 
more significant is the immediate implication that SUSY theories have flavour-changing 
neutral currents (FCNC). For example, the gluino-squark-quark vertex has interactions 
given by vf!KM = vt:R vi,R and Uc~M = v~;R VY,R for the down and the up sectors, 
respectively. If SUSY were exact, vf!KM = Uc~M and the FCNC would vanish. How­
ever, SUSY is not exact and this equality is broken at some level. The expectation for 
the resulting mixing matrices depends sensitively on the structure of the model at high 
scales, up to the Grand Unified or Planck mass. In the minimal-unification scheme the 
expectation is quite simple, namely V2 R = V£ Rl v~ = v~ and vi = V£ [20]. The . . 
reason for this asymmetrical result is that, owing to the large top Yukawa coupling, there 
are significant radiative corrections to the down-squark mass matrix proportional to the 
up-quark mass matrix. These dominate over the original (non-radiative) supersymmetric 
contribution which is just given by the down-quark mass matrix. The radiative contribu­
tion is diagonalized by the same rotation that diagonalizes the up-quark mass matrix and 
hence vi= V£. Using this gives Uc~M = 1 and uf!KM = VcKM· Non-minimal models 
may give both matrices non-vanishing, but the expectation is still [21] that they have the 
same order of magnitude as VcKM· 

Although these effects introduce new sources of FCNC, it turns out that for SUSY 
masses in the range expected these do not lead to unacceptably large effects. For example, 
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the box diagram of Fig. 7 gives a contribution to the KL- Ks mass difference due to 
wino FCNC. There is an equivalent graph involving gluinos, and since the gluino has QCD 
strength couplings it may be expected that this is the dominant contribution. However, 
in the minimal unification scheme discussed in Section 3.3.5, the gluinos and squarks are 
the heaviest states due to their QCD interactions, and their large mass suppresses this 
contribution. Using u~KM = UcKM, the limit from the observed KL-Ks mass difference 
is [22], for the dominant contribution coming from the first two generations, 

m?:.- m~ 10-4 
d s < --

(Max(mli, m~))2 - M~ · 
(24) 

Since the J, s mass difference comes from the quark-mass difference in the first 
two generations, this bound is satisfied for squark, gluino masses of more than 30 GeV 
and agrees with the expectation for squark masses following from the unification analysis 
discussed below. Similar conclusions follow for the Wino contribution of Fig. 7. 

-
d 

w s • I •• 
- I 

I 

u,c,t t ~ u,c,t 
s •I 1 .. d - l-1 e w 

a b 

Figure 7: Graphs generating flavour-changing processes in supersymmetry. 

Finally, in the slepton sector there are new lepton-number-violating processes com­
ing from the fact that the sneutrinos, unlike the neutrinos, are massive and need to be 
diagonalized when determining the structure of the charged currents. The graph of Fig. 7 
generates the process J-L---+ e1 and, imposing the experimental limits found for this process, 
gives the bounds [22] (assuming mixing angles of the same order as the CKM angles) 

m~- m~ 10-3 
e p. <--

(Max(m~,m~))2- M~ · 
(25) 

This gives a similar bound to that found for the gluino but, given the minimal model 
expectation for the mass spectrum, is a more severe limit. However, the choice of mixing 
angle used in this bound is quite arbitrary, so the only reasonable message to be drawn 
from the calculation is that lepton-number violation in the MSSM may easily be within 
the experimental bounds. 

2.4.2 New sources of CP violation in SUSY 
In the Standard Model the source of CP violation is the complex nature of the CKM 

matrix giving the CKM phase 8 = Argdet(UcKM ). (The effect ofT reversal on a constant, 
C, is TCT_ 1 = C* so complex couplings act as a source ofT or CP violation.) 
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In the MSSM there are additional complex couplings which may give rise to CP­
violation [23]. With the minimal unification scheme of Section 3.3.5 there are two further 
complex couplings giving rise to CP-violating phases, namely ¢A = Arg(Am~12 ) and 
¢B = Arg(Bm~12 ) [23]. Finally there is the effective theta parameter 0 specifying the 
strong CP violation. In this case it is given by 0 = ()- Arg(det.\1)\d)- 3Arg(m1;2) where 
the A's are the matrices ofYukawa couplings. These new sources of CP violation contribute 
to CP violation in various processes, the neutron and electron dipole electric moments, 
rare Kaon decays, rare B decays etc. The most sensitive of these to the SUSY CP-violation 
effects turns out to be the dipole electric moments. 

The analysis of these moments starts with the I:!.S = 0 CP-violating Hamiltonian, 
written in terms of the elementary quark and gluon degrees of freedom as 

(26) 

where the Oi are the quark/gluon operators and Ci("g, J-L) the coefficients expresses in 
terms of the running strong coupling, which takes account of large radiative corrections, 
and the renormalization scale, f-L· It was pointed out by Weinberg [24] that a significant 
contribution comes from the gluonic operator 

(27) 

where G~v is the gluon field strength, (;~!3 = tJ.Lva!3Ga,J.Lv and the Lorentz indices have been 
suppressed in Eq. (27). Subsequently, two further operators were indentified as significant 
[25], the colour dipole operator 

(28) 

and the electric dipole operator 

0 - FJ.Lv "Y = qcrJ.LvQ • (29) 

In SUSY these operators are all generated. For example, the coefficient Cq of the 
colour dipole operator is 

C = 2Amug~ 
q 47rm~ sin(¢) ' 

(30) 

where ¢ gets contributions from both ¢A and ¢B. The net contribution is estimated to 
be [25, 26] a:;,ot ~ w-22 sin(¢)ecm which, when compared to the experimental bound 
I dn I< w-25ecm requires sin(¢) < 10-3. This is a strong constraint on the magnitude of 
Arg(Am1;2) and Arg(Bm1;2) and the question arises how natural is such a value in the 
context of a SUSY model? The expectation for many supergravity/string models is that 
these phases are very small, for A and B vanish at the Planck scale (if both A and B 
were related to trilinear terms in the superpotential they would vanish in the so-called 
no-scale models). Although radiative corrections will still generate a non-zero value for 
Arg(Am~12) at low scales, an estimate of these effects shows it is very small of 0(10-11

) [26] 
and gives a neglible contribution to dn. A similar result has been found in the case of the 
electron dipole electric moment [27]. The conclusion is that these dipole moments are 
quite sensitive to the new sources of CP violation in SUSY models. 
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2.4.3 Superparticle searches in the MSSM 
The spin-1/2 sector has gluinos with mass M9 = m 1; 2 at the unification scale 

radiatively corrected as in Fig. 11. The charginos w±' fi± mix via the 2 X 2 mass matrix 

( 
M2 V'iMw sin (3 ) 

J2Mw sin(3 J.L 

and the neutralinos ( B' w3' .Hp' .Hg) mix via the 4 X 4 matrix 

0 
0 M2 

( 

M1 

-Mz cos (3sinBw Mz cos/3 cosBw 
Mz sinf3sinBw -Mz sin/3 cosBw 

- M z cos (3 sin Bw M z sin (3 sin Bw ) 
Mz cos (3 cos Bw -Mz sin (3 cosBw 

-j.L 

-j.L 0 

(31) 

(32) 

where Ow is the weak angle, M 1,2 (= m 1; 2 at the unification scale) are the triplet and 
singlet neutralino supersymmetry-breaking masses and tan f3 = v2/v1 , the ratio of the 
Higgs vevs. 

In the MSSM the LSP, A, is stable and its character determines much of the phe­
nomenology of supersymmetry. A stable LSP should be neutral, otherwise, given the 
expected initial abundance from cosmological origins, it should have been found in nu­
clear matter. Thus we expect the LSP to be either a neutralino or a sneutrino, and, given 
the favoured spectrum discussed in Section 3.3.5, it is more likely to be a neutralino. It 
is often assumed that the LSP following from diagonalizing the matrix of Eq. (32) is the 
photino, ')', but this need not be the case. In the limit M 1, M 2 - 0 (i.e. m 1; 2/mo << 1) 
the photino is indeed the LSP but in the limit J.L - 0 the LSP is the Higgsino. More 
generally one should allow for general mixing, denoting the mass eigenstates as xi. 

2.4.4 Bounds on SUSY states 
The vast bulk of supersymmetric (SUSY) phenomenology assumes the 'Minimal 

Supersymmetric Standard Model' (MSSM) which conserves what is known as R-parity 
[4]. In this model all the new states, the superpartners of the Standard Model states, are 
R-parity-odd while all the Standard Model states are R-parity-even. As a result, the new 
supersymmetric states can only be produced in pairs and a supersymmetric state cannot 
decay only to conventional states. This has a profound effect on the phenomenology of 
such states; in particular all experimental searches for the new supersymmetric states rely 
on pair production and most searches involve missing transverse momentum (pr) as a 
signal for the production of the 'LSP' the lightest supersymmetric state which must be 
stable and neutral (for cosmological reasons). 

• For weakly interacting sparticles the bounds are dominated by LEP following from 
the decay of the Z into a pair of sparticles. Thus My~ Mz/2 for y = l, fi, il, ij, ij, W. 
For neutralinos one may still have lighter sparticles provided they couple less strongly 
to the Z. 

• For strongly interacting sparticles, g and ij, the bounds are dominated by the hadronic 
colliders and, imply mii > 150 GeV, for m 9 > mq or m 9 > 100 GeV, both at the 90% 
confidence level. To illustrate how these bounds are established and the prospects for 
finding strongly interacting sparticles at the SSC and the LHC, I shall discuss a case 
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study done for the LHC of gluino pair production and decay [28]. The basic process 
is 

pp _... 99 
_... (qqA)(qqA) = (ET )Missing+ njet . (33) 

However, if, as is expected from the radiatively corrected mass spectrum, the gluinos 
are heavier than several other superparticles, cascade decays become relatively important 
compared to the direct decay to the LSP, shown in Eq. (33). Such decays soften the 
(ET )Missing which is the characteristic signal of this process. 

Particularly at higher gluino mass, the cascade decays are very important. Using 
these various decay patterns, the cross-section has been determined via Monte Carlo 
simulations. It was found that the Standard Model background, coming principally from ti 
decays, is substantial. However, cuts, which rely on the different dependence on azimuthal 
angle of jets or on transverse energy distribution, are able to distinguish the signal from 
the background for gluinos with mass up to 1 TeV. The cascade decays also open up the 
possibility of signals which do not rely on (Ey.)Missing· For example the process 

99 _... z + z + x _... 2(z+z-) + x (34) 

was studied [28]. Although the rates are quite small [some 30 events for a 750 GeV gluino 
after imposing an (ET)Missing cut which eliminates the background] they provide a very 
clear signal, which would be a good second-generation experiment if the (ET )Missing search 
provides evidence for gluinos. The results of the Monte Carlo study of this process may 
be found in the LHC study [28]. 

2.4.5 SUSY Higgs 
Perhaps the most immediate test of SUSY will be in the Higgs sector, for any 

SUSY model requires a light Higgs ( m < 146 Ge V). In fact SUSY models require a rich 
structure of Higgs scalars, although many are expected to be much heavier, of the order 
of the SUSY-breaking scale, owing to the fact that SUSY requires two Higgs doublets, 
HI,2 . After the Higgs mechanism eliminates three components we are left with five Higgs 
states, four CP-even states H0

, h0
, H+, H- and one CP-odd state A0

. In terms of the 
original Higgs fields these are given by 

( 
VI+ )2(~ coso:- h0 sino:+ iA0 sin,B- iCO sin ,B) ) 

H- sin ,8 - c- cos ,8 

( 
H+cos,B+ G+sin,B ) 

v2 + ~(H0 sino:+ h0 coso:+ iA0 cos ,8 + iCO sin ,B) 
(35) 

where c+,-,o are the Goldstone fields which are 'eaten' by the Higgs mechanism. The 
scalar potential involving the neutral Higgs components driving the vacuum expectation 
values VI 2 has the form 

' 

2 + f2 

g 8 g (I m 12 - I Hg 12 )
2 + mi I H? 12 + 

~I Hg 12 - m~(H?Hg + h.c. (36) 
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Note that the quartic couplings are determined in terms of the SU(2) 0 U(l) couplings in 
contrast with the Standard Model where the quartic coupling is unknown. It is this fact 
that results in an upper bound for the Higgs mass. Following from this potential (and the 
one describing the charged fields) we find 

2 
mH,h 

tan2a 

We see from this that 

mi+m~ 
m2 +M2 A W 

~(m~ + M~ ± V(m~ + M~)2 - 4m~M~ cos2 2/3) 

m2 +M2 
- : M~ tan2/3. 

mA- z 

m'if;::: Mw 

ffih ~ ffiA ~ ffiH 

mh ~ Mzcos2{3 ~ MH. 

(37) 

(38) 

However, the latter inequality applies at tree level using Eq. (36). The inclusion of radiative 
correction involving a top-quark loop gives a correction proportional to h;m; where ht is 
the top Yukawa coupling of the Higgs to the top. The latter is also proportional to ffit 

so this radiative correction is proportional to mt and is large if the top quark is large. 
Including this term, the Higgs, h, can evade the bound of Eq. (38) but only by a finite 
amount, the final result being mh ~ 146 GeV. To summarize, the Higgs sector in the 
MSSM is very rich and discovery of the Higgs states would be indirect evidence for the 
MSSM. More significantly there is a strong upper bound on the lightest Higgs which must 
apply in any SUSY model irrespective of the Higgs content2>. 

3. UNIFICATION HINTS 
We have discussed the prospects for physics beyond the Standard Model which 

can be inferred from the structure of the theory at low energies without assuming any 
particular structure for the theory at high scales. Here we wish to discuss the implications 
for physics at low scales which follow from the assumption of a unifed theory at high 
scales. As we shall see, this generates a remarkably successful quantitative prediction for 
some of the parameters of the Standard Model. Indeed this is the only such prediction 
that has been reliably obtained and it is for this reason that I consider it worth while to 
devote some time to a discussion of the ideas involved. 

3.1 Grand Unification 
The original suggestion that there might be an underlying Grand Unified gauge field 

theory beyond the Standard Model was triggered by the observation of Georgi, Quinn 
and Weinberg [29] that, although the strong electromagnetic and weak interactions are 
quite different at low energies, the couplings, if continued to high energies, approach 
each other. This could be explained if there was an underlying simple gauge group with 
a single coupling constant from which the Standard Model emerged after symmetry­
breaking Grand Unification [30]. 

2) Provided, of course, the model is not extended to include significant new interactions 
involving the Higgs which could alter the radiative corrections. 
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3.1.1 SU(5) 
The prototype Grand Unified Theory is based on the group SU(5) a rank-5 group 

with just enough neutral generators to accommodate those of the rank-5 Standard Model 
[31]. In SU(5) the states of a single family are accommodated in just two representa­
tions 5 and 10. Thus the representation content of the Standard Model is simplified. The 
assignments to 5 and 10 are shown in Eq. (39) 

SU(5) ::> SU(3) ® SU(2) ® U(1) 
de 1 
d~ 

7/Js de 
3 

e 
Ve L 

0 u~ -u~ -ul -dl 

1 -u~ 0 ui -u2 -~ 
x1o u~ ue 0 -ua -d3 (39) 

../2 
- 1 

ul u2 ua 0 e+ 
dl ~ d3 e+ 0 

L 

where c denotes the charge conjugate and the numerical indices are SU(3) indices. It may 
be seen that the quarks and leptons belong to the same multiplet. Of course SU(5) must 
be broken and it is important to consider the pattern of the symmetry-breaking leading 
to the Standard Model. In the case of SU(5), this is shown in Eq. (40). 

SU(5) --+ SU(3) ® SU(2) ® U(1) --+ SU(3) ® U(1) 
< ~t4 > < Hs > 

(40) 

where one can see that the single 24-dimensional adjoint representation, ~' leads to the 
breaking of SU(5) to the Standard Model, SU(3) ® SU(2) @ U(1), and subsequently 
the electroweak breaking is triggered by a doublet contained in a 5-dimensional Higgs 
representation, H 5 . The most interesting prediction following from SU(5) is for the weak 
mixing angle relating the two coupling constants associated with SU(2) @ U(1). The 
prediction is3) 

(41) 

but this applies at the unification scale, Mx. As we shall discuss, including radiative 
corrections to the couplings to run them down to low scales, one finds that the 3/8 initial 
value leads to quite acceptable values at laboratory energies for the weak mixing angle, 
but only in a supersymmetric GUT. 

The Yukawa couplings of the theory are also restricted by SU(5) in a way that gives 
predictions for fermion masses. This may be seen from the equation 

(42) 

The mass of the electron is equal to the mass of the down quark at the unification scale. 
The same is true for the heavier generations. As we shall discuss in the last lecture these 

3) I leave it to the reader to derive this form! 
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predictions are not realistic apart from that of the third generation, so some modification 
is needed. It is possible to generate such a modification for example through the coupling 

L'y = h'~Ht?,pXsqL => mq = 3me , ( 43) 

where H45 is a 45-dimensional representation of Higgs fields. The Yukawa coupling gen­
erates a relation between quark masses, which says that the electron would be 1/3 of the 
down-quark mass, a much more acceptable relation. 

3.2 Unification and low-energy models 
In this section I shall discuss features of low-energy models that descend from a 

stage of unification be it Grand Unification or string unification, paying particular regard 
to the question whether we can determine the parameters of the Standard Model. I start 
with a quick comparison of string versus Grand Unification expectations. 

3.2.1 String versus Grand Unification 
Perhaps the most compelling argument for physics beyond the Standard Model is 

just that, while hinting at an underlying unity of the fundamental forces, the Standard 
Model stops short of achieving this unity. The three forces derive from local gauge theories 
with gauge groups SU(3), SU(2), and U(l) but no explanation is given for the origin of 
these different gauge factors nor for the choice of fermion and scalar representations. In 
addition, even without neutrino masses, there are twenty parameters needed to specify 
the model, (not a convincing ingredient for a 'Theory of Everything'). 

Grand Unified Theories (GUTs) seek to improve the situation by embedding the 
Standard Model gauge group in a larger gauge group with a single gauge-coupling con­
stant. While the enlarged symmetry may relate several of the couplings of the Standard 
Model, it usually does so at the cost of introducing even more parameters, most of which 
are associated with the extended scalar sector needed to give the spontaneous symmetry­
breaking necessary to break the GUT to the Standard Model. By contrast, unification 
based on (compactified) string theories offers the possibility of relating all couplings to a 
single parameter which is usually taken to be the Planck mass. However, this approach 
is hindered by the large number of candidate string vacua and at present it must be ad­
mitted that there is no understanding of how to select between such vacua. Given this 
ambiguity, it is probably premature to discuss any particular compactification scheme. 
Nonetheless, the effort that has gone into building specific models has not been wasted 
for it has shown how some of the prejudices for unification based on GUTs may not be 
true. I have attempted to summarize the situation in Table 2. 

One of the most important differences in superstring unification is that, even if 
the gauge group is not Grand Unified below the compactification scale, the gauge cou­
plings are related and there is a definite multiplet structure. Thus the good features of 
Grand Unification may be obtained without enlarging the gauge group and hence with­
out encountering the problems associated with the need for spontaneous breaking of that 
group. A particular example of this is the need in SU(5) for a 5 of Higgs which contains 
colour-triplet Higgs, partners of the usual Higgs doublet needed for electroweak symmetry­
breaking. The colour triplets mediate proton decay and hence must be made heavy, of the 
order of the GUT scale, while the doublets must remain light. The difficulty in explain­
ing this multiplet splitting is completely eliminated in 4D string theories without Grand 
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Unification, for in them there is no GUT requiring colour-triplet partners of the Standard 
Model Higgs doublets. 

Table 2 
Comparison of GUT and 4D superstring structures 

GUTs 4D STRlNGS 

• GAUGE GROUP 

e.g.SU(5) :::> SU(3) ® SU(2) ® U(1) G'Hidden' ® G~Visible' 
G = Es or subgroup 
G' = E 6 ••• SU(3) ® SU(2) ® U(1) 
Unification of gauge couplings 
even without a GUT 

• MATTER 

SU(5) : 5 + 10 ~ 1 family Definite multiplet structure 
S0(10) : 16 = (1 + 5 + 10) even without a GUT 

e.g. 'level-1 ': only non-exotic 
SU(3)@ SU(2) reps allowed 

• FAMILIES 

Larger gauge structure? 3 generation examples known 
... not very convincing 
• MASS HIERARCHY 

==> SUSY GUTS ::::> ( N = 1) SUSY can persist 
from superstring 
(No need for coloured Higgs) 

• LOW-ENERGY STRUCTURE 

(N = 1) SUSY (N = 1) SUSY 
B#? L#? B#? L#? 
==> Discrete symmetry needed ::::> Discrete symmetry predicted 
• PARAMETERS 

9i ~ 9GU In principle all predicted 
mb = mr,··· in terms of single parameter 
Higgs sector? Mp = MPlanck 

... many undetermined parameters. 

It is stated in Table 2 that the solution to the mass hierarchy problem in both 
GUTs and 4D string theories requires a stage of low-energy supersymmetry. The reason 
for this is that radiative corrections to scalar masses drive the electroweak breaking scale 
associated with the mass of the Higgs doublet of scalars to the largest scale in the theory. 
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Thus in GUTs the expectation is that the W and Z masses should be at least of the 
order of the GUT scale, quite unacceptably large. Even in the Standard Model, without 
the new interactions introduced by Grand Unification, one may argue that gravitational 
radiative corrections, estimated with a cut-off of the order of the Planck scale, will drive 
the electroweak breaking scale towards the Planck scale. Although the calculation of these 
radiative corrections requires renormalization and the finite part could in principle be 
cancelled by the finite piece of the counter term, this requires an arbitrary and unnatural 
fine-tuning. In a theory such as the string in which the calculation of these mass corrections 
is finite, this problem is even more severe for there is no arbitrary parameter available for 
such fine-tuning. 

3.3 Evidence of supersymmetry: unification hints 
Much of the motivation for our low-energy effective field theory descending from a 

Theory of Everything (the superstring?) relied on the existence of low-energy supersym­
metry to solve the hierarchy problem. Thus tests of the idea of an underlying unification 
must first test for the presence of supersymmetry without which the whole programme 
breaks down. To date no SUSY state has been found. However, this is not unexpected, 
for all the new states are expected to have a mass of the order of the supersymmetry 
breaking scale, and if this is large the new states will be beyond current experimental 
thresholds for production. However, the supersymmetry breaking scale cannot be taken 
to be too large without re-introducing the hierarchy problem so the new SUSY states 
should be accessible by the next generation of accelerators. Making the SUSY states too 
heavy to produce directly is not enough to avoid experimental detection, for even before 
the new SUSY states are produced in the laboratory they may manifest themselves as 
virtual corrections through radiative processes. In particular, one may worry that the 
precision tests of the Standard Model, which are in agreement with the the Standard 
Model predictions, already rule out a stage of low-energy supersymmetry. Remarkably, 
this is not the case because the effects of the new SUSY states tend to be very small and 
easily in agreement with the current experimental measurements. This happens even for 
a SUSY breaking scale, considerably less than the 1 TeV which is a rule-of-thumb limit 
coming from the requirement that the hierarchy problem be solved. This result may be 
seen as a consequence of a decoupling theorem that states that the MSSM becomes the 
Standard Model in the limit of large SUSY breaking. 

I do not have time in these lectures to review these precision tests and their con­
straints on the SUSY spectrum. However, there is another very important effect of virtual 
SUSY states which I cannot pass over for it does have experimental support and is per­
haps the main reason that supersymmetric models have been taken so seriously. This is 
the effect of SUSY states on Unification predictions. If one adds some assumptions about 
Grand Unification to the MSSM, the scale of supersymmetry breaking and the associated 
superpartner masses is constrained [32). Since supersymmetry was introduced to allow for 
such unification, it seems reasonable to treat seriously such predictions for the mass scale 
of supersymmetry. 

The prediction follows from the Grand Unified prediction for the gauge couplings 
such as occurs in SU(5) together with the form of the running strong, weak, and elec­
tromagnetic couplings. In the Standard Model this was analysed by Georgi, Quinn, and 
Weinberg [29) using the RG equations for ai = gr I ( 47r), i = 2, 3 and a 1 = ~gr I ( 47r), where 
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9i are the SU(3),SU(2),U(l) couplings 

(44) 

where the one-loop f3 function is simply evaluated knowing the light matter content 

27r/30i = ( -~2 ) + Nt ( J ) + NH ( 1 ) , 
-11C2 -C2 0 

3 

(45) 

and N1, NH denote the number offamilies and Higgs doublets, respectively. In SU(5) C 2 = 
1 and ai(M_k) = ac; the same applies to many of the phenomenologically viable GUTs 
and superstring unification schemes as I shall shortly discuss. Given these equations, the 
low-energy couplings should evolve in energy to meet at the unification value ac. However, 
the recent precision measurements of sin Ow are inconsistent with these predictions; the 
couplings fail to meet by more than six standard deviations [32]. 

The situation is quite different in the MSSM due to the effects of the new super­
symmetric states on the evolution of the couplings. Including this gives [33] 

(46) 

In Fig. 8 the evolution of the couplings (including two-loop effects) is shown and 
it may be seen that the couplings do meet in a point. This happens if the mass of the 
new supersymmetric states (assumed degenerate here) are low, MsuSY ~ 102·5± 1 . On 
the basis of these results it is tempting to argue that there is evidence both for new 
forms of (relatively) light supersymmetric matter and an underlying unified theory4

). 

This conclusion is so dramatic that it needs to be evaluated with considerable caution. 
The most obvious reservation is that it relies on the extrapolation of the Standard Model, 
albeit extended to its supersymmetric version, some twelve orders of magnitude beyond 
the energy scale at which it has been tested. No theory has proved to be so robust 
in the past so it is understandable if one views this extrapolation with some caution. 
Even given the framework of Grand Unification there is considerable uncertainty, for the 
relative values of the couplings may differ in different unification schemes. Within the 
(large) class of theories which give the SU(5) predictions there are corrections coming 

4) It is perhaps appropriate to comment about the meaning of this fit, for the three gauge 
couplings are described in terms of three effective parameters A1x, ax and the effective 
supersymmetry mass scale, meaning there will always be a fit and apparently no test 
of unification! However, this is not quite fair for the resulting values of the parameters 
must be reasonable if the scheme is to make sense. Thus Mx should be less than the 
Planck scale but large enough to inhibit proton decay in Grand Unified theories. Also 
we would like ax to be within the perturbative domain although it may be sensible to 
contemplate non-perturbative unification. Finally, the supersymmetry mass scale must 
be large enough to explain why no supersymmetric states have been found and small 
enough to avoid the hierarchy problem (as we shall see the latter gives a very strong 
constraint). As we shall discuss, these conditions are indeed satisfied. 
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from virtual states with mass 2::. O(Mx) which have not been included in the analysis and 
which can affect the predictions substantially. These predictions are even more sensitive 
to additional light states beyond those needed for the minimal supersymmetric Standard 
Model. (Indeed it is possible to bring the predictions of non-supersymmetric SU(5) into 
agreement with experiment if additional light Higgs doublets are added.) Furthermore, 
if the GUT should not break immediately to the Standard Model, there will be several 
intermediate scales of breaking and again the results will change substantially. 

Susy 2nd order 
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o~~~_L~~~L-~~~~_L~~~ 
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Figure 8: Evolution of running couplings. The break at low scales corresponds to the 
transition from non-supersymmetric to supersymmetric f3 functions. 

Despite these caveats it is remarkable that the simplest possible extension of the 
Standard Model to include supersymmetry, coupled with the simplest assumption about 
Grand Unification, yields predictions in detailed agreement with experiment, provided 
the new supersymmetric states are very light. The main objection to the analysis of the 
likely mass of the new supersymmetric states is that, owing to large radiative corrections, 
the most reasonable supersymmetric spectrum is not degenerate. To discuss the likely 
effects of non-degenerate SUSY states I shall use the spectrum motivated by most realistic 
supergravity /superstring models of supersymmetry breaking discussed in Section 3.3.4. 

3.3.1 Unification of gauge couplings 
What are the implications of unification for the supergravity-inspired SUSY spec­

trum discussed in Section 3.3.4? Using this spectrum to determine when to change from 
the non-supersymmetric to the supersymmetric /3-functions, we may repeat the analysis of 
the unification predictions [34]-[36]. In Figs. 9 and 10 we show the contours of constant a3 
which lead to unification. It may be seen that, allowing for the range a 3 (Mz) = 0.102-0.12, 
values for the supersymmetry mass scale MsuSY in the range (102-105) GeV are allowed 
[I define Msus¥ to be Min(mo,m!,J.l)]. Thus the effect of the non-degenerate spectrum 

2 

is to increase the anticipated mass of the SUSY states (the bounds given above were for 
a 3 = 0.108 ± 0.005). The value obtained for the unification scale is Mx ~ 3.1016 GeV. 
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Figure 9: The contours of D£sph2 = 0.5, 0.33, 0.25, 0.16 from bottom to top, superimposed 
on the outline of the region allowed by all constraints. The regions ruled out by the various 
constraints are labelled by letters indicating: A= age of universe constraint (D£sph2 > 1), 
C = chargino mass bound from LEP, T = tachyonic top squarks, L =charged LSP. This 
plot is essentially Figure 6 from the paper Kane et al., Phys. Rev. D50 (1994) 3498. 
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Figure 10: The same data set as Fig. 3 by the same authors, with the same outlined 
allowed region, but with contours of a 3 • The contours are for the values (left to right) 
0.132, 0.130, 0.128, 0.126, 0.124, 0.122. (The solid line is 0.130; all the rest are dashed.) 

• String Unification scale How does this unification value fit in with the string 
expectation? The naive string unification scale Msu is the Planck mass and hence 
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is too large. However, the threshold effects coming from including heavy states with 
mass of order of the compactification scale could reduce this scale; but a survey 
[37, 38] of all orbifold models shows that typically Mx is increased by the string 
threshold corrections b.i from the string unification scale Msu. Only for very special 
assignments of the matter fields to (twisted) multiplets can the unification scale be 
reduced. What then are the implications of coupling unification for string theories? 
The first possibility is that the threshold corrections do conspire to lower Mx. At 
least the existence of an orbifold example shows this is possible [37] and to date 
the threshold effects in more general compactifications have not been completely 
worked out. A second possibility is that the string gives a gauge group larger than the 
Standard Model which preserves the ratios of gauge couplings and which subsequently 
breaks at an intermediate scale Mx ~ 1016 GeV to the Standard Model. This group 
need not be Grand Unified. My favourite example is the group SU(3)3 which is 
known to occur in some promising compactification schemes. Provided there are 
equal numbers of quark and lepton multiplets, the couplings renormalize in the same 
way between Msu and Mx as required. Another possibility is to give up the minimal 
unification assumption and to add states beyond the minimal set. For example, in 
flipped SU(5) it is necessary to evolve the SU(5) 0 U(1) couplings from Msu to 
Mx before using the SU(3) 0 SU(2) 0 U(1) evolution. Unfortunately this spoils the 
agreement with the low-energy couplings in the original version of the theory, but in 
non-minimal versions the effect of states with masses of order 3.1013 Ge V can lead to 
acceptable results [39]. This example nicely illustrates both the additional predictive 
power of the string theory and the uncertainties introduced once non-minimal theories 
are introduced. 
To summarize, the success of minimal unification predictions with Mx ~ 3.1016 GeV 
can be understood within the framework of specific string models. However, since 
these models do not correspond to minimal string unification, some of the aesthetic 
appeal of simplicity is lost. 

3.3.2 Supersymmetry breaking 
So far the discussion of supersymmetric unification has relied only on the global 

supersymmetry aspects of the theory which involve the supermultiplet structure and the 
renormalizable couplings. However, most workers in the field assume that it is the locally 
supersymmetric version that is realized [40]. There are several reasons for this. In the first 
place the local version of the supersymmetric algebra necessarily includes the local version 
of the Poincare group and hence includes a theory of gravity. The hope is that the ultimate 
Theory of Everything will involve a unification of all the fundamental forces including 
gravity, and so the local version seems desirable. Moreover, the superstring theories which 
offer the best hope of such a Theory of Everything naturally lead at low energies to local 
supersymmetric theories. In addition the local version offers a very plausible explanation 
for the origin of the scale of supersymmetry breaking consistent with the requirements of 
a solution to the hierarchy problem. 

3.3.3 The hidden sector 
In SUSY models it is normally assumed that supersymmetry is broken in a sector 

of the theory, the so-called 'hidden' sector, which has only gravitational interactions with 
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the states of the Standard Model. Such a structure emerges quite naturally in superstring 
theories. For example, the original heterotic string generates an E8 ® E6 structure in which 
the Es plays the role of the 'hidden sector'. In general 4D string models the E8 group is 
broken at the compactification scale to some subgroup which plays the role of the hidden 
sector. Apart from triggering supersymmetry breaking, the hidden sector plays no role 
in low-energy phenomenology, for the states of this sector are confined with mass of the 
order of the gaugino condensate scale (~ 1013 GeV, see below). 

The most plausible origin for supersymmetry breaking in the hidden sector follows 
because the gauge interactions of the hidden sector are likely to be asymptotically free 
and become strong at the condensation scale Ac, below the compactification scale. Then, 
in analogy with what happens in QCD, it is likely that a fermion condensate, < ).). >, 
forms, the fermions, .A, being the gauginos of the hidden sector [41, 42]. In local super­
symmetry (but not in global supersymmetry) such a condensate breaks supersymmetry. 
The characteristic measure of this breaking is the mass, m3; 2 , that it generates for the 
(spin- 3/2) gravitino, supersymmetric partner of the graviton and is given by m1 ex: <tt>;>. 

2 p 

Since the scale determining the gaugino condensate is given b¥ the scale, Ac, at which the 
gaugino binding becomes non-perturbative, we have m1 ex: ~MA = M p exp(- 2bo3 

2 ), where 
2 p g 

bo is the coefficient of the one-loop ,8-function and the last equality follows from using the 
running of the gauge coupling from its value, g, at the Planck scale [43]-[45]. Thus the 
condensation scale can be much less than the Planck scale and hence the gravitino mass 
may easily be hierarchically smaller than the Planck scale. 

This is the best explanation in supersymmetric models for the magnitude of the 
hierarchy. As we shall see, the presence of supersymmetry then guarantees that the 
supersymmetry-breaking effects in the visible sector are also small, of the order of the 
gravitino mass. It may be seen that the supersymmetric solution to the hierarchy problem 
has copied the essential feature of technicolour theories, namely symmetry breaking via a 
condensate. However, as we shall also discuss, in contrast with the extended technicolour 
theories, the existence of elementary scalar states in supersyrnmetry subsequently allows 
for a straightforward pattern of symmetry breaking in the visible sector and generation 
of quark and lepton masses. 

3.3.4 The visible sector 
Since supersymmetry breaking occurs in the hidden sector it can only be commu­

nicated to the visible sector via gravitational, flavour-blind interactions suggesting that 
there will be generated a common mass, m 1; 2 , for the gauginos of the Standard Model 
and another common mass, mo, for the scalars (the expectation is that these are both of 
order m3; 2) 5). In addition there must be a new term J.LH1H2 in the superpotential giv­
ing a common Higgsino, Higgs mass at the unification scale. It is also found in specific 
supergravity models [48] that there are additional supersyrnmetry-breaking terms given 
by (AoPa + BoP2) where Ao and Bo are masses of order m3; 2 , and Pa and P2 are the 

5) Recently it has been observed that in string theories this universality of masses may 
be broken if the fields have different modular weights. Although possible, the necessity 
to avoid large flavour-changing neutral currents strongly constrains the amount of 
such non-universality and suggests that, in a viable model, flavour-blind masses at the 
unification scale is a good approximation [38]. 
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trilinear and quadratic terms of the superpotential with the supermultiplets replaced by 
their scalar components. The expectation for A0 and B0 depends on the metric; in the 
case of the no-scale theories which descend from the string, A0 vanishes at the unification 
scale. The gauge bosons and fermions of the Standard Model do not acquire mass at this 
stage owing to residual unbroken gauge and chiral symmetries. 

The flavour independence of the supersymmetry-breaking terms is broken by ra­
diative corrections involving the gauge and Yukawa couplings of the Standard Model. 
These corrections may be calculated explicitly and are most conveniently included via the 
renormalization group equations for the masses [4 7] and the A and B parameters using 
for initial values at Mx the common gaugino and scalar masses m 1; 2 and mo and the 
common A0 and B0 parameters. 

The degeneracy of the gauginos and scalars is broken by radiative corrections involv­
ing the gauge and Yukawa couplings of the Standard Model, and these may be calculated 
via the renormalization group equations for the masses [48] using for initial values at Mx 
the common gaugino and scalar masses m 1; 2 and mo. The only Yukawa coupling large 
enough to give a significant contribution to this evolution in the Standard Model is likely 
to be the one responsible for the top-quark mass and this is the only one kept in the sub­
sequent analysis. In Fig. 11 the resultant spectrum for the superparticle masses is shown 
for a representative choice of the supersymmetry-breaking parameters [34]. It may be seen 
that those states with the larger gauge coupling are systematically heavier; the gluinos 
are heavier than the Winos and Bino, and the squarks are heavier than the sleptons. 

-- GAUGINOS 

----· SQUARKS 
........... SLEPTONS 

QL---~----L-~--~-L~_L_L~~~~ 

103 

Figure 11: Running masses in the MSSM. 

3.3.5 Unification of masses 
We have shown that supersymmetry together with unification relations between 

gauge couplings gives a simple and entirely consistent picture. However, this is not all 
that can be said about supersymmetric unification. One of the main arguments for a low­
energy supersymmetry was the need to explain the hierarchy of masses and in particular 
the difference between the Planck scale and the electroweak breaking scale. It is therefore 
reasonable to ask how the supersymmetric unification we have constructed explains this 
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difference. Remarkably the theory contains a mechanism for symmetry breaking which 
automatically selects the correct breaking pattern, namely SU(3) ® SU(2) ® U(1) ~ 
SU(3) ® U(1). To see how this comes about we note that the potential describing the 
Higgs fields is largely determined by supersymmetry having the form [48] 

Note that the coefficient of the quartic term is given in terms of gauge couplings by 
supersymmetry, whereas it is an unknown parameter in the Standard Model. The masses 
of the two Higgs fields are given by 

(48) 

with 

(49) 

Using this we see that the Higgs mass terms are given via the RG equations in terms of 
the same mass parameters discussed above. The masses J..L, m 1 , m2 evolve differently; for 
mi we have [49] 

(50) 

where the Mi are the gaugino masses and the tilde denotes the supersymmetric state. Thus 
the difference between m 1 , m2 is due to the term involving the top Yukawa coupling, h. 
This term will drive m~ negative if it is large enough, triggering electroweak breaking. 

Now we can see why it is SU(2) and not SU(3) that is broken by this radiative 
breaking mechanism for, although the RG equations for both the Higgs scalars and the 
top (and bottom) squarks have destabilizing terms due to the top Yukawa coupling, only 
the squarks have large stabilizing terms due to QCD interactions [47]. Thus it is the Higgs 
(mass) 2 that is driven negative, and it is SU(2) that is broken by the resultant Higgs vev. 

From Eqs. (50) and (47) we see that the initial value of h may be chosen to give the 
correct value of Mz. Thus to each point of the solution plane of Fig. 10 it is possible to 
assign a definite h (or equivalently mt) needed to give the correct electroweak breaking 
scale. Using this the results of the analysis of electroweak breaking may be conveniently 
summarized by drawing contour plots of constant fit in the mo, m 1; 2 [34]. These are shown 
by the dashed lines in Fig. 10 from which it may be seen that part of the previously allowed 
region is excluded by the requirement of acceptable radiative electroweak breaking coupled 
with the LEP bounds on the top mass. In Fig. 10 the origin of the variation with respect 
to m 0 is obvious, for larger m 0 requires larger h to drive m~ negative at the correct scale. 
The same applies to increasing the value of J..L. It may be seen from Fig. 10 that a heavy 
top quark leads to a very satisfactory explanation of both the existence of electroweak 
breaking and its magnitude for a wide range of supersymmetry breaking parameters. 
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This very pleasing self-consistency check of the MSSM shows how the electroweak 
breaking scale is generated from the unification scale, realizing the original aim in intro­
ducing supersyrnmetry. It also allows us to investigate the hierarchy problem for, from 
Eq. (50), one may see the Higgs mass squared, and hence the electroweak breaking scale is 
generated largely by the squark mass and has its natural value proportional to this mass. 
In this analysis this effect is manifested by the need to fine-tune, for large squark masses, 
the top quark Yukawa coupling to make the constant of proportionality small enough to 
get the correct electroweak breaking scale. 

3.3.6 The hierarchy problem and the SUSY spectrum 
The naturalness constraints may be made more precise by writing the relation be­

tween the W mass and the squark mass in a direct form. The renormalization group 
equations are just a convenient method for summing the large logarithms ex: log(Mx/Mw) 
that occur in calculating the radiative corrections to the Higgs mass. However, these 
radiative corrections relate on-shell masses and so it is clear that the solution to the 
renormalization group equations leads to relations relating on-shell quantities to on-shell 
quantities and free of uncertainties related to the definition of 'running' masses. The re­
sult of calculating these radiative corrections to the Higgs mass and finally expressing the 
result in terms of the associated W mass is given in the equation [34] 

(51) 

No symmetry makes the term in square brackets small for, as may be seen, it involves 
supersymmetry-breaking masses. Thus the expectation is that it is of order 1 and taking it 
to be much smaller corresponds to a fine-tuning. To quantify this we may rewrite Eq. (51) 
in the form 

2 [ 87r

2 l 2 Mw = c 1- 2 Mw 
6h,'flog(~) 

(52) 

where 
_ 3h~(mi + mic) l (M1) 

c- 8 2M2 og 2 . 
7r w ml 

(53) 

In Ref. [50] 'reasonable' scales for the supersymmetry thresholds were estimated by 
demanding that the sensitivity of the electroweak breaking scale to any of the parameters 
of the Standard Model should be less than some value. In Eq. (52) the sensitivity of Mw 
to the dominant supersyrnmetry breaking mass, the top squark mass, is determined by 
the quantity c and the equivalent statement is that 1/c should be less than some value. 

No fine-tuning would correspond to c ~ 1 but, more conservatively, one might 
use the value of c = 10 that was chosen by Barbieri and Giudice [50] as a measure of 
a reasonable theory. The requirement that the electroweak breaking scale be generated 
from the unification scale introduces more sensitivity to the top Yukawa coupling than is 
found in the MSSM without unification, as may be seen from the appearance of the large 
logarithm in Eq. (51). As a result, constraining c :::; 10 dramatically reduces the allowed 
region of parameter space. Note that the fine-tuning constraint is largely independent of 
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the details of the unification at Mx and may be expected to give similar limits on the 
SUSY spectrum in any unification scheme having a very large Mx. 

3.3.7 mb/mr 
We have seen how the simplest scheme of supersymmetric unification gives excellent 

agreement with the measured gauge couplings and, for a top mass within the experimen­
tally allowed range, with the W mass. It is natural to ask what are the supersymmetric 
unification expectations for fermion masses? 

In specific GUTs there are relations between fermion masses, the best-known being 
the SU(5) relation mb = mr [51]. As with the relation amongst gauge couplings, this rela­
tion applies at the unification scale and must be radiatively corrected. These corrections 
offer a further tantalizing piece of circumstantial evidence in favour of supersymmetric 
unification for, starting with the relation mb ( M x) = fir ( M x), they can bring the predic­
tion for mb/mr into agreement with experiment using the same value for Mx found in the 
analysis of gauge couplings. This cannot be done in the non-supersymmetric case without 
adding new interactions [52]. Agreement in the supersymmetric case is possible only for a 
restricted range of parameters, further tying down the range of supersymmetric masses. 
In particular a running b quark mass, mb(mb) = 4.2, can only result if the top Yukawa 
coupling is large, ht ~ 1.25. For ht > hb the top quark is heavy, fit = 170 ± 10 Ge V, and 
the J.L parameter is also large, J.L ~ 2mo. The situation is shown in Fig. 10. 

3.3.8 Dark matter 
In the MSSM the interactions respect an R-parity under which the new SUSY states 

are odd while the states of the Standard Model are even. As a result the SUSY states may 
only be pair-produced and the lightest supersymmetric state (LSP) is stable. The existence 
of the LSP is a prediction of the MSSM and, since its couplings are determined, the relic 
abundance of the LSP is also a prediction. The nature of the LSP and its abundance 
is determined in terms of the SUSY-breaking parameters introduced above and as we 
have seen there is only a small region allowed in this parameter space. Thus the range 
of possible relic abundance is strongly constrained and it is clearly of interest to see 
how this compares to the cosmological bounds on dark matter. This is shown in Fig. 10, 
where the contours of fixed relic abundance are drawn on the mo, m1;2 plane [53, 36]. 
We see that almost all of the allowed range has relic abundance less than the closure 
density and is therefore not ruled out. Perhaps more interestingly, over a substantial part 
of the allowed region, the LSP abundance is large enough to be the candidate for dark 
matter! The sceptic may view this as a coincidence but, to me, the remarkable overlap 
between these abundances provides further circumstantial evidence in favour of the need 
for supersymmetry. 

3.4 String unification 
In string theories the constraints of Unification are much more severe than in GUTs. 

A given four-dimensional string theory has a definite multiplet structure and, moreover, 
the unification scale, Msu, is known in terms of the Planck scale. The one-loop running 
gauge coupling is given by [54],[39],[37] 

(54) 
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Here ki are the Kac-Moody levels of the U(1), SU(2) and SU(3) factors and ~i are 
threshold corrections from loops involving massive (Kaluza-Klein) modes with mass of 
the order of the compactification scale. The tree-level gauge couplings are related by 

(55) 

and cl is the inverse of the string tension squared. The values k3 = k2 = (3/5)k1 give 
the standard SU(5)-like predictions for the couplings [C = 1 in Eqs. (45) and (46)). They 
arise in many 4D string models, both with Grand Unified gauge groups and in models 
which do not have a stage of Grand Unification. The string unification scale in the M S 
scheme is given by Msu = 0.7 9su 1018 GeV. The simplest realization of minimal string 
unification is for the gauge group after compactification to be just SU(3) ® SU(2) ® U(1) 
with the minimal particle content, i.e. there is no need for any additional heavy states. 
While no example of such a string theory has yet been constructed, it seems likely that 
something quite close to it can be found. However, the result found in the Section 3.3.1, 
Mx ~ 3.1016 GeV, is difficult to satisfy, for a survey [37, 38) of all orbifold models shows 
that typically Mx is increased by the string threshold corrections ~i from the string 
unification scale Msu. Only for very special assignments of the matter fields to (twisted) 
multiplets can the unification scale be reduced. 

What then are the implications of coupling unification for string theories? The first 
possibility is that the threshold corrections do conspire to lower Mx. At least the existence 
of an orbifold example shows this is possible [37). A second possibility is that the string 
gives a gauge group larger than the Standard Model which preserves the ratios of gauge 
couplings and which subsequently breaks at an intermediate scale Mx ~ 1016 Ge V to the 
Standard Model. This group need not be Grand Unified. My favourite example is the group 
SU(3) 3 which is known to occur in some promising compactification schemes. Provided 
there are equal numbers of quark and lepton multiplets the couplings renormalize in the 
same way between Msu and Mx as required. Another possibility is to give up the minimal 
unification assumption and to add states beyond the minimal set. For example in flipped 
SU(5) it is necessary to evolve the SU(5) ® U(1) couplings from Msu to Mx before using 
the SU(3) ® SU(2) ® U(1) evolution. Unfortunately this spoils the agreement with the 
low-energy couplings in the original version of the theory, but in non-minimal versions 
the effect of states with masses of order 3.1013 GeV can lead to acceptable results [39). 
This example nicely illustrates both the additional predictive power of the string theory 
and the uncertainties introduced once non-minimal theories are introduced. 

To summarize, the success of minimal unification predictions with Mx ~ 3.1016 GeV 
can be understood within the framework of specific string models. However, since these 
models do not correspond to minimal string unification some of the aesthetic appeal of 
simplicity is lost. 

4. SUMMARY 
Recent attempts to go beyond the Standard Model have concentrated on solv­

ing the hierarchy problem. Composite models offer the prospect of solution but specific 
examples fail to provide a convincing picture. Extending the symmetry of the Standard 
Model to include supersymmetry has been shown capable of protecting the hierarchy of 
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masses. Substantial circumstantial support for this picture comes from the successful pre­
dictions of the gauge couplings at low scales, given that they are unified at high scales. 
Furthermore, the pattern and magnitude of electroweak breaking is predicted if there is 
some unification of the SUSY-breaking masses. Also the quark and lepton masses, and 
the relic abundance of the lightest supersymmetric state are in good agreement with the 
idea of SUSY unification. Although this is only circumstantial evidence, it does require a 
very low mass scale for the new SUSY states, less than a TeV, which means that these 
states should be accessible at LHe or sse energies. 

The phenomenology of the new SUSY states is largely dictated by their gauge cou­
plings, which are uniquely specified. However, there is an ambiguity in defining the Yukawa 
and related scalar couplings and this gives rise to two classes of SUSY phenomenology. 
The first class has an R-symmetry which means the lightest SUSY state (the LSP) must 
be stable. The characteristic signal for SUSY relies on the missing energy signals for SUSY 
decay to the LSP. The second R-parity violating class has no stable LSP and so the sig­
nals of SUSY may change. Luckily, even in this case, the new SUSY states should be 
visible at the SSe or the LHe for masses in the range needed to solve the mass hierarchy 
problem. Thus these accelerators provide a means to directly check the tantalizing but 
circumstantial evidence for SUSY which has emerged from a study of supersymmetric 
unification. 
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