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1. Introduction

For many years, string and unification scales were thought to be high (& 1016GeV).
The perturbative heterotic formulation of string theory had the fundamental string

scale Λs ∼ O(1017)GeV close to MPlanck ∼ 1019GeV because of its constrained de-
scription of the gravitational interaction. The grand unification (GUT) scale was

around ΛGUT ∼ 1016GeV, motivated by the apparent convergence of the gauge cou-
plings when they were evolved to this value. Recently however, attention has turned

to models that have lower string and/or unification scales [1]–[6] and this has raised

some interesting questions to do with renormalisation group evolution of parameters.

The most immediate is of course whether gauge or Yukawa unification is still pos-

sible or even necessary with a lower string scale. One example that achieves gauge

unification at the string scale [2] has the couplings experience power law “running”

[2, 4, 5] above a compactification scale due to the presence of additional Kaluza-

Klein modes. A Kaluza-Klein spectrum with the same ratios of gauge beta functions

as those in the MSSM leads to a logarithmic running up to the compactification

scale with rapid power law unification taking place very rapidly thereafter [2]. An

example that does not achieve gauge unification is “mirage” unification [6]. In mi-

rage unification the gauge couplings at the string scale receive moduli dependent

corrections that behave as if there were continued logarithmic running above the

string scale up to unification at the usual ΛGUT. “Mirage unification” refers to this

fictitious unification.1

1Note that although there are problems with the particular string realisation of mirage unification

in ref. [6], the idea may be realisable in other models and remains an interesting possibility.
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A particularly attractive choice for the string scale (albeit one that is not im-

mediately accessible to experiment) is Λs ∼ 1011GeV [3]. In this case the hierarchy
between the weak scale and the Planck scale arises without unnaturally small ratios of

fundamental scales. It was also noted in the first reference of [3] that Λs ∼ 1011GeV
gives neutrino masses of the right order. We return to this model below and refer to

it as the Weak-Planck (WP) model.

In this paper we consider two other related issues in the Minimal Supersymmetric

Standard Model (MSSM),

WMSSM = hUQH2U
c + hDQH1D

c + hELH1E
c + µH1H2 , (1.1)

with a low string scale. The first concerns the top quark Quasi-Fixed Point (QFP).

The QFP is characterised by a focusing of some MSSM parameters to particular ratios

as the renormalisation scale Λ is decreased towards the top quark mass, mt [7, 10, 12].

Formally it is defined to be the point in parameter space where there is a Landau pole

in the top Yukawa coupling ht at the string or GUT scale (whichever is the lower).

In practice however this focusing behaviour can occur for a large but finite ht(Λs),

still treat-able by perturbation theory. The coupling ht focusses to some value at mt
independent of ht(Λs) provided it is large enough. In low scale models, with their

foreshortened logarithmic running, one naturally expects this behaviour to be very

different. If the pole is at Λs < ΛGUT, we expect the quasi-fixed value of the top

Yukawa at mt to be larger than for the usual GUT scale unification. Conversely,

for a given value of top mass and tanβ at the weak scale the model will be further

from the QFP for Λs < ΛGUT. We shall determine the QFP prediction for ht(mt),

on which experimental constraints from LEP2 can be brought to bear in order to

empirically constrain Λs assuming the QFP scenario. In particular, we consider the

empirically derived lower bound upon the lightest CP-even MSSM Higgs mass, which

in the canonical GUT scenarios has been shown to be a strong restriction upon the

QFP scenario [12].

The second issue we consider is the possibility of minima that break charge

and colour lying along F and D-flat directions [10, 13, 14, 15, 16, 17, 18]. The

constraints found by requiring that there be no such (CCB) minima are dependent

on the distance from the QFP. They are most severe at the QFP itself [10, 15,

16] and indeed, in the usual MSSM at the QFP, CCB constraints exclude half the

parameter space. With a lower string scale it seems likely that such constraints

will generally be less restrictive for two reasons. First, a given point in (weak-

scale) parameter space will be further from the QFP as noted above. Second, the

CCB minima are generated radiatively when the mass-squared parameter for H2
becomes negative. When there is a lower string scale there is less “room” for a

minimum to form at vacuum expectation values (VEVs) much greater than the

weak scale. (More specifically, there are positive mass-squared contributions to the

potential along the flat direction that become dominant at lower VEVs.) We shall
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demonstrate that this is indeed the case and that for Λs . 1010 the CCB constraint
(at least along the F and D-flat directions) is merely that scalar mass squared values

are positive.

We will throughout be discussing these aspects by assuming that there is the

standard logarithmic running of the MSSM upto a scale, Λs, that we rather loosely

refer to as the string scale. This scale may be much lower than ΛGUT. We define the

QFP to be where the top Yukawa has a Landau pole at this point, since any variation

in the Yukawa couplings above Λs is expected to be drastically changed by string

physics. As for the CCB bounds, we derive them on the soft breaking parameters

at Λs since this is close to the scale at which we expect the supersymmetry breaking

parameters to be derived in any fundamental string model (although we will have

more to say on this in due course).

2. The quasi-fixed MSSM

The QFP [7, 10, 12] constraint, i.e. that the top Yukawa coupling ht has a Landau

pole at the string scale, gives important predictions in terms of the couplings and

masses of supersymmetric particles [7, 10, 12]. We now examine the prediction for

ht(mt) numerically, paying special attention to its dependence on the string scale.

Fermion masses and gauge couplings are set to be at their central values in ref. [19]

except for αs(MZ), which is varied to show the induced uncertainty. Below mt, we

run using a three-loop QCD ⊗ one-loop QED effective theory with all superpartners
integrated out.

In order to illustrate the quasi-fixed behaviour we first make a rough calculation.

To this end, we approximate the superparticle spectrum to be degenerate at mt,

allowing us to use the (two-loop) MSSM renormalisation group equations above that

scale. Figure 1 illustrates the quasi-fixed behaviour for two values of string scale.

The dependence of the low scale ht on its string scale value is shown for canonical

QFP SUSY GUT framework with string/unification scale Λs = 2 × 1016GeV. The
almost horizontal part of the lines represent the QFP regime: where, for input values

ht(Λs) > 1.5,

ht(mt) = 1.10± 0.02 (2.1)

results. Lowering Λs to 10
11GeV, as in the WP model, we see that the quasi-fixed

behaviour is diminished somewhat, as indicated by the more positive slope of the

relevant lines. However, for ht(Λs) > 1.5 a QFP value of

ht(mt) = 1.17± 0.04 (2.2)

occurs.2

2Errors quoted here include those due to the error in αs(MZ) but they do not include those from

non-degeneracy in the superparticle spectrum.
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Figure 1: Prediction of low energy top Yukawa coupling ht(mt) for string scale input

ht(Λs). Two string scales Λs = 10
11, 2 × 1016GeV are used. The pair of lines represent

the range produced by varying αs(MZ) = 0.115 − 0.122 (the upper lines corresponding to
higher αs(MZ)).

The ht(mt) QFP prediction can be turned into a prediction of the MSSM pa-

rameter tanβ (the ratio of the two neutral Higgs VEVs) through the relation

sin β =

√
2mt(mt)

vht(mt)
(2.3)

and the known value [19] of the top quark mass, mt = 175± 5GeV. We obtain the
running top mass mt(mt) from mt by employing the one-loop QCD correction, thus

assuming that supersymmetric corrections to it are small. v refers to the Standard

Model Higgs VEV of 246.22GeV. Low values of 1 < tan β < 3 result from eq. (2.3)

when a quasi-fixed value ht(mt) > 1.05 is used. The range of tanβ relevant here is

constrained by the non-observation of the lightest MSSM Higgs boson at LEP2 [12].

The current limits [20] exclude mh0 < 107.7GeV for the low tanβ < 3 scenario.

Quasi-fixed tanβ predictions are illustrated in table 1, where they are displayed with

estimated uncertainties for the WP and GUT quasi-fixed scenarios. The uncertainties

are induced by those quoted in the ht(mt) predictions in eqs. (2.1) and (2.2).

Here, we set ht(Λs) = 5, close to its Landau pole and near the edge of perturba-

tivity. In ref. [21], the limit ht < 3 was used to define a perturbative regime and we

will use the point ht(Λs) = 3 as an estimator of sensitivity to ht(Λs). A central value
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of αs(MZ) = 0.119 [19] was used. We display the results for mt = 170, 175, 180GeV

to illustrate the large dependence upon the top mass. We use the two-loop diagram-

matic result in ref. [22] to calculate the MSSM lightest Higgs mass with the state-

of-the-art program FeynHiggsFast2. Corrections to the values of ht(mt) displayed

in figure 1 from including sparticle thresholds are expected to be small because the

majority of change in ht(µ) occurs in the running between Λs and 1000GeV, iden-

tical in both cases. We therefore use the prediction for ht(mt) as calculated with a

degenerate sparticle spectrum at mt. To within small errors, this value should still

be applicable for a non-degenerate spectrum, which is what we assume here.

Ideally, we would now perform
Λs (GeV) mt = 170GeV mt = 180GeV

1011 1.27+0.13−0.11 1.51+0.20−0.14
2 · 1016 1.52+0.10−0.09 1.93+0.08−0.15

Table 1: tan β prediction for a top-Yukawa QFP

at the GUT scale or the WP scale.

a parameter scan through the low

energy supersymmetry breaking pa-

rameters in order to determine the

maximum value of mh0 consistent

with the QFP. This is impractical

however, and we resort to using a

benchmark point in low energy supersymmetry breaking parameter space. The value

of mh0 obtained by the benchmark corresponds in practice to be very close (within

oneGeV) to a more general upper bound on mh0 [22], given an upper bound on

sparticle masses. For generality, this benchmark corresponds to non-universal SUSY

breaking parameters. For a given value of Λs, tanβ is predicted by the QFP as in

figure 1. We then set µ and the parameter

Xt ≡ At − µ cotβ = 2mt̃2 . (2.4)

As is argued in [22], Xt ≈ 2mt̃2 corresponds to the maximal-mixing case, where mh0
is maximised. At is then specified by eq. (2.4), and therefore the gluino mass will

be set by the QFP prediction of At/M3. For Λs = 2 × 1016GeV for example, we
obtain At/M3 = −0.59 [10]. However to the order in perturbation theory used here,
the Higgs mass is independent of the gluino mass. Fixing MA then sets B through

the relation [11]

M2A =
2µB

sin 2β
. (2.5)

The two electroweak symmetry breaking conditions are [11]

m̄21 + m̄
2
2 = −M2A , tan2 β

(
m̄22 +M

2
Z/2
)
= m̄21 +M

2
Z/2 , (2.6)

where m̄2i = m
2
Hi
+µ2 plus loop corrections. Together, they determine the Higgs mass

soft breaking parameters m2H1 and m
2
H2
(conservatively assumed to be uncorrelated

and free). Following the authors of ref. [22], the maximum value ofmh0 is assumed to

be acquired by taking3 M2 = 100GeV, MA = 1000GeV, µ = −100GeV and mt̃2 =
3See ref. [22] for a definition of these parameters.

5



J
H
E
P
0
7
(
2
0
0
0
)
0
3
7

90

95

100

105

110

115

120

125

2 4 6 8 10 12 14 16 18 20

m
h0 /

G
eV

log10 (Λs/GeV)

mt=180 GeV

mt=175 GeV

mt=170 GeV

ht(Λs)=5
ht(Λs)=3

αs(MZ)=0.117-0.122
Experimental upper limit

Figure 2: Theoretical upper bound on lightest MSSM Higgs mass in the quasi-fixed sce-

nario with varying string scale Λs. Bounds for quasi-fixed top Yukawa couplings ht(Λs) =

3, 5 and αs(MZ) = 0.119 are shown. The copies of each curve are formt = 180, 175, 170 GeV

from top to bottom, respectively. For mt = 175GeV and ht(Λs) = 3, we have displayed

the variation due to the error on αs(MZ) = 0.117 − 0.122 via the lighter dashed curves.
The area underneath the experimental limit has been excluded for the MSSM by LEP2.

See text for a description of the other MSSM parameters used.

2000GeV in order to get a conservative estimate. Dependence of the upper bound on

mh0 is logarithmic in this parameter and therefore slowly increasing as mt̃2 increases.

Therefore, to obtain a sizeable effect on the bound, unnaturally high values of mt̃2
would have to be taken. Using the above procedure, the soft breaking parameters that

mh0 depends most sensitively upon are fixed near the weak scale without reference

to any further unification assumptions, such as minimal supergravity for example.

Figure 2 displays the QFP value of mh0 predicted by the benchmark by varying

Λs. Uncertainties induced by the 1σ error on αs(MZ) are shown for one particular

case. It is larger for higher Λs, but always less than 0.5GeV and much smaller than

the uncertainty induced by the empirical error on mt. In fact, we see from the figure

that the QFP is ruled out to better than 1σ for the range

106 <
Λs
GeV

< 1011 (2.7)

formt = 170−180GeV and ht(Λs) = 3−5. If we takemt = 175GeV, the QFP is ruled
out for any Λs > 10

5GeV. As noted above, the ht(Λs) = 3 curves give an estimate
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of the uncertainty in the QFP prediction. The figure shows that this dependence is

small for Λs > 10
9GeV but that it increases for Λs < 10

9GeV. However, we note

that in this latter range, ht being less than 5 (but still in the quasi-fixed regime)

actually strengthens the upper bound upon mh0 . ht(Λs) = 5 thus gives a reasonably

accurate bound for Λs > 10
9GeV and a conservative one for Λs < 10

9GeV.

3. Analytic CCB bounds at low string scales

We now turn to the discussion of CCB bounds. Unphysical CCB minima present

some of the most severe bounds for supersymmetric models [10], [13]–[18]. Indeed, for

a number of models it has been found that they exclude much of the parameter space

not already excluded by experiment; for example the MSSM where supersymmetry

breaking is driven by the dilaton [14], SUSY GUTS at the low tan β quasi-fixed

point (QFP) [10], M-theory in which supersymmetry breaking is driven by bulk

moduli fields [16, 17] and several other string/field theory scenarios [17, 18]. All of

the above work, however, assumed a logarithmic evolution of the gauge couplings

with unification at a high scale ≥ 1016GeV.
In this section we shall be considering the effect of truncating this logarithmic

evolution at a low string scale. For completeness, we first recall the three types of

CCB minima that can occur in supersymmetric models:

• D-flat directions which develop a minimum due to large trilinear supersymme-
try breaking terms.

• F and D-flat directions corresponding to a single gauge invariant.

• F and D-flat directions which correspond to a combination of gauge invari-
ants [24] involving H2 [23].

Since the first type are important at low scales [13] and the second type are only

important when there are negative mass-squared terms at the GUT scale, we shall

concentrate on the constraints coming from the last type of minimum. These occur

at intermediate scales due to the running H2 mass-squared even if all the mass-

squared values are positive at the GUT scale. Hence the resulting constraints are

very dependent on renormalisation group running at high scales and are particularly

interesting from the point of view of models with a lower string scale. As discussed

above, our initial expectation is that the CCB bounds will be far less severe than in

the usual versions of the MSSM.

We will consider the F and D-flat direction in the MSSM corresponding to

the operators

LiL3E3 ; H2Li , (3.1)
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where the suffices on matter superfields are generation indices. With the following

choice of VEVs;

h02 = −
a2µ

hE33
, ẽL3 = ẽR3 =

aµ

hE33
, ν̃i =

a
√
1 + a2µ

hE33
, (3.2)

the potential along this direction depends only on the soft supersymmetry breaking

terms (neglecting a small D-term contribution);

V =
µ2

h2E33
a2
(
a2
(
m22 +m

2
Lii

)
+m2Lii +m

2
L33
+m2E33

)
. (3.3)

In the usual MSSM we can reasonably assume that, since the CCB minimum

forms at VEVs corresponding to a � 1, the largest relevant mass, and therefore
the appropriate scale to evaluate the parameters at, is φ = hU33〈h02〉 ≡ ht〈h02〉. This
minimises the top quark contributions to the effective potential at one-loop. Further

corrections to the potential are assumed to be small. Once we lower the string scale

however we encounter the problem that the CCB minimum moves towards low scales

and that consequently this approximation breaks down. Evidently, from eq. (3.3),

this happens precisely where the positive m2Lii+m
2
L33
+m2E terms begin to dominate,

and so we do not anticipate that CCB minima will be formed when a < 1. In order

to check this however, our approach will be to construct the constraints using the

above assumption on φ and observe that they get far less restrictive as we move to

moderately low string scales, say Λs ∼ 108GeV. We then check the approximate one-
loop analytic results obtained with a more accurate two-loop numerical analysis at

certain parameter points and observe numerically that CCB minima do not reappear

as we move to very low string scales where a < 1.

In the above potentials, 〈h02〉 = −a2µ/hE33 so that the eq. (3.3) is of the form

V =
Λ2

h2U33
φ̂

(
φ̂A+

B

b

)
, (3.4)

where A = m22(φ)+m
2
Lii
(φ), B is the LLE combination of mass-squared parameters

(also evaluated at φ) that appears in the potential,

φ̂ =
φ

Λ
(3.5)

and Λ is an arbitrary scale which we shall take to be the usual unification scale

ΛGUT ∼ 1016GeV. The bound is therefore governed by A, B and the parameter

b(φ) =
ΛGUThE33
hU33µ

(3.6)

for the LLE, LH2 direction described above, or

b(φ) =
ΛGUThD33
hU33µ

(3.7)

for the equally dangerous LQD, LH2 direction.
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To estimate the bound, we now adapt the results of refs. [15, 16]. At large values

of a � 1 the potential is governed by the first term. Whatever the string scale
may be, we require that m22 be positive there and negative at MW (for successful

electroweak symmetry breaking). A CCB minimum radiatively forms close to the

value φp where A first becomes negative (typically at a scale of few×µ/hE33) [15, 16].
In refs. [15, 16] it was shown that once we are able to estimate φp the bound

follows fairly easily, and this was done for models with degenerate gaugino masses.

Bounds were derived for all non-universal scalar masses and couplings. In the present

case however, the gauge couplings and the gaugino masses are also non degenerate

at the string scale Λs.

This makes a general analytic treatment of the RGEs extremely difficult, so in

order to simplify matters we shall henceforth assume the “GUT gaugino relation”.

That is we assume that at the scale Λs we have the usual GUT expression for gaug-

ino masses,
Ma

Mb
=
αa

αb
. (3.8)

This relationship has the useful property that the gaugino masses as well as the

gauge couplings would be degenerate if we continued the evolution of the MSSM

RGEs upto ΛGUT. We shall call this fictitious degenerate value Ma(ΛGUT) = M1/2.

Note that eq. (3.8) is only valid to one-loop order, and indeed in this section we

present analytic results to one-loop order only (contrary to the last section).

Although eq. (3.8) may seem like a rather brutal requirement, it holds for a

number of interesting cases, for instance in models with power law unification as

shown in ref. [5]. In these models the scale Λs in our analysis should really be

interpreted as the compactification scale at which the first Kaluza-Klein states appear

in the spectrum, rather than the string scale which is where we expect the real gauge

unification to take place after a short period of power law “running”. An assumption

such as degenerate soft terms at the compactification scale Λs is consistent with, for

example, the Scherk-Schwarz mechanism of supersymmetry breaking.

Equation (3.8) is also expected to hold in the mirage unification models of ref. [6]

when there is no S/T -mixing and in the limit T + T →∞. In this limit we have

Ma ≈
√
3m3/2 sin θ

αa

α0
+O (1/(T + T )2) , (3.9)

where we use the subscript-0 to represent values at the usual ΛGUT unification scale

(i.e. α0 ≈ 1/25), and where we have neglected terms of order αam3/2 which is con-
sistent to one-loop accuracy. In this case we have M1/2 =

√
3m3/2 sin θ.

Equation (3.8) allows us to adapt the expressions of ref. [15] with only a modest

amount of effort by writing the parameters at Λs in terms of their values at ΛGUT.

In order to proceed, we next spend a little time discussing the analytic solutions to

the renormalisation group running. The solutions of all the parameters may easily
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be expressed in terms of those combinations with infrared QFPs; R = h2t/g
2
3, At and

3M2 = m22 +m
2
U33
+m2Q33 . These may be written as functions of

r =
α0

α3
≡ 1
α̃3
= 1 +

6α0
4π
log

Λ

ΛGUT
, (3.10)

so that
α0
α2
≡ 1
α̃2
=
3

4− r ;
α0
α1
≡ 1
α̃1
=

5

16− 11r . (3.11)

Taking α3(mt) = 0.108 means that 0.37 < r < 1 with r = 1 corresponding to the

GUT scale. If the string scale is at Λs = 10
11GeV as in the WP model, then the

corresponding value of rs ≡ r(Λs) is rs = 0.82. It is useful to define

Π(r) = α̃
16/9
3 α̃−32 α̃

−13/99
1 , Ĵ =

1

rΠ(r)

∫ 1
r

Π(r′) dr′ . (3.12)

Solving for R in terms of its value Rs at the string scale (we use subscript-s to denote

string-scale values) we find
1

R
=
Πsrs
RsΠr

+
1

RQFP
, (3.13)

where the QFP value (where the Yukawa couplings blow up at the string scale) is

given by
1

RQFP
= 2Ĵ(r)− 2Ĵ(rs)Πsrs

Πr
. (3.14)

We also, for later use, define the distance from the real QFP,

σ =
R

RQFP
. (3.15)

This can be rewritten in terms of a fictitious renormalisation of R down from a ΛGUT
scale value of R0, i.e. defining

1

R
QFP
= 2Ĵ (3.16)

we have
1

R
=

1

R0Πr
+
1

R
QFP
,

1

Rs
=

1

R0Πsrs
+
1

R
QFP

s

. (3.17)

This is the usual expression for R (c.f. ref. [16]); however it should be noted that R0
is here merely a parameter that is negative in the region 1/R

QFP
> 1/Rs > 0. In the

usual MSSM with unification at the GUT scale, this would of course be an unphysical

(non-perturbative) region. For At andM
2 we now define the distance from the usual

QFP (i.e. where couplings blow up at the usual unification scale ΛGUT)

ρ =
R

R
QFP

(3.18)
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and also

ξ =
1− r
rĴ
− 1 . (3.19)

We then obtain expressions for Ãt = At/M1/2 and M̃
2 = M2/M21/2 in terms of their

fictitious values, Ã0 and M̃
2
0 , at ΛGUT;

Ãt = (1− ρ)Ã0 + ρξ − Γ , M̃2 = (1− ρ)M̃20 −
1

3
ρK̃ +

2

3
(1− r)γ , (3.20)

where

γ =
16

9
α̃3

(
1 + α̃3

(1− r)
2

)
+ α̃2

(
1− α̃2 (1− r)

6

)
+

+
13

45
α̃1

(
1− 11α̃1 (1− r)

10

)
,

Γ = (1− r)
(
16

9
α̃3 + α̃2 +

13

45
α̃1

)
,

K̃ = (1− ρ)(ξ − Ã0)2 − ξ2 + (ξ + 1)Γ ,

Ã0 =

(
Ãs − ρsξs + Γs

)
(1− ρs) ,

M̃20 =

(
M̃2s +

1
3
ρsK̃s − 2

3
(1− rs)γs

)
(1− ρs) . (3.21)

It is important to note that, since

1− ρ = (1− σ)(1− ρs) , (3.22)

At andM
2 retain their QFP behaviour since when σ = 1 (or Rs →∞) they are both

independent of their values at the string scale, Λs. In addition, factors of 1/(1− ρs)
cancel so that there is no divergent behaviour at the usual QFP. Also note that this

QFP is at lower tan β than in the usual MSSM unification. We can estimate the

difference in tanβ at the QFP by using

R =
m2t

4πα3v2 sin
2 β
, (3.23)

so that

sin2 βQFP =
R
QFP

RQFP
sin2 β

QFP
. (3.24)

Equations (3.14) and (3.16) then give tanβQFP ≈ 1.2 in the WP model with Λs =
1011GeV, in agreement with the full two-loop numerical result presented in figure 1.

With all parameters expressed in terms of GUT scale parameters, we are now

simply able to apply the bounds derived in ref. [16] for non-universal SUSY breaking

11
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directly. Consider for example the LH2, LLE direction. The cosmological bounds

in this case are(
2m̃2Lii + m̃

2
2 − m̃2U33 − m̃2Q33

)∣∣
0
& f(B̃|0) + (ρp − 1)× (3.25)

×
(
g(B̃|0) + 3M̃2|0 − ρp

(
1− Ã0

)2)
,

where ρp is the value of ρ at the scale φp and

f(x) = 1.20− 0.14x+ 0.02x2 ,
g(x) = 2.77− 0.18x+ 0.02x2 ,
B = m2Lii +m

2
L33
+m2E33 , (3.26)

for µ = 500GeV. (The small dependence of f and g on µ, which we must choose

by hand, is discussed in ref. [16].) To a good approximation the value of ρp is given

by [16]
1

ρp
= 1 +

1

2R0
= 1 + 3.17

(
sin2 β − sin2 βQFP

)
. (3.27)

In order to relate the quantities to their string scale values, we use the one-loop RGE

solutions for A and B;(
2m̃2Lii + m̃

2
2 − m̃2U33 − m̃2Q33

)∣∣
s
&

& −16
9
δ
(2)
3s − 3δ(2)2s −

5

99
δ
(2)
1s + f(B̃|0) +

+ (σp − 1)
{
(1− ρs)g(B̃|0) + 3M̃2|s − 2(1− rs)γs +
+ ρs

(
− 1 + ρs(ξs − 1)2 − Γs(ξ − 3)− 2Ãs(ξ − 1)

)
−

− σp(Ãs − ρsξs + Γs + ρs − 1)2
}
, (3.28)

where

δ
(n)
i =

αni
αn0
− 1 , B̃

∣∣∣
s
= B̃
∣∣∣
0
− 3δ(2)2s −

1

11
δ
(2)
1s , (3.29)

and where

σp = 1− Πsrx
Πsrs(1− ρs) + 2Rs . (3.30)

The general behaviour of the bounds is clearly similar to that in the usual unifi-

cation scenario. The bounds are on the particular combination (2m̃2Lii+ m̃
2
2−m̃2U33−

m̃2Q33)|s and are most restrictive at the QFP, decreasing as tanβ increases. Away
from the QFP there is a quadratic dependence on Ãs with a minimum at Ãs = O(1).
We can now see why the bounds at low scales are far less severe than in the

MSSM with unification at the GUT scale. First, close to the QFP, the bound is

(
2m̃2Lii + m̃

2
2 − m̃2U33 − m̃2Q33

)∣∣
s
& −16

9
δ
(2)
3s − 3δ(2)2s −

5

99
δ
(2)
1s + f(B̃|0)

= −0.48 + f(B̃|0) , (3.31)

12
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Figure 3: Charge and colour breaking bounds with a lower string scale, Λs, for µ =

500GeV and degenerate trilinear terms, A = −M1/2, and scalar masses ms, at the string
scale. The figure shows bounds on m̃2s = m

2
s/M

2
1/2 for varying Λs and tan β (i.e. away

from the QFP). The contours are m̃2s > 0 (black), m̃
2
s > 0.25 (medium dark), m̃

2
s > 0.33

(medium), m̃2s > 0.5 (medium light), m̃
2
s > 0.66 (light), m̃

2
s > 0.75 (white).

for Λs = 10
11GeV. Thus the non-degeneracy of gauge couplings and gauginos con-

tributes negatively to the bound even at the QFP. Second, away from the QFP, the

bound asymptotes to the values with

ρp =
1

1 + 3.17 cos2 β
QFP
∼ 0.57 . (3.32)

However, the quantity multiplying M̃2s in the bound is now (σp−1) which is a larger
negative factor than (ρp − 1).
We now further specialise to the mirage unification models with V0 = 0, which

have degenerate A-terms and degenerate scalar masses at the string scale;

Ãs = −1 , m̃2s = unconstrained . (3.33)

Contours of the LH2, LLE bound are shown in figure 3, for varying tan β and Λs. The

diagram shows that a lower string scale removes the dangerous minima. Indeed, for

the WP model value of Λs ∼ 1011GeV, there are no CCB minima appearing along the

13
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Figure 4: Charge and colour breaking bounds with a lower string scale at the quasi fixed

point (QFP) for µ = 500GeV. The figure shows lower bounds on the string scale values of

m̃2s = m
2
s/M

2
1/2 for varying Λs.

LH2, LLE direction except close to the QFP (tanβ . 3) or for negative scalar mass
squared values (m2s < 0). At the QFP we find that the bound at Λs = 2 10

16GeV is

m̃2s & 0.95 but drops rapidly towards smaller values of Λs, as shown in figure 4. A
full numerical determination of the bounds for specific points in parameter space is

in accord with figures 3 and 4. It also shows that the bounds are in fact not overly

sensitive to the precise values of α1 and α2 at Λs since the running is dominated

by α3.

Moreover, this behaviour is expected to be a general feature resulting from the

low string scale pushing the CCB minimum to low scales. For example we can analyse

the bound at large tanβ where eq. (3.32) holds. Choosing M2s = 0 and adjusting As
to make A0 = M1/2, one finds that, away from the QFP, there are no CCB minima

for any positive choice of non-universal mass-squared parameters at the string scale

for Λs . 1010GeV. In other words, for these intermediate and low string scales one
may always adjust As to remove CCB minima. Conversely, choosing a large enough

value of As forms a CCB minimum at any Λs.

For Λs . 107GeV the analytic approximations we have been using break down
for reasons outline above. Specifically, instead of evaluating the parameters at the

renormalisation scale φ = ht〈h02〉, it is now more accurate to evaluate them at the
scale φ = g2〈l〉 (in the LLE,LH2 direction) since this would be the largest relevant
mass. Using this definition for φ we find numerically that minima do not reappear

when Λs is lowered still further, as expected due to the dominance of the positive

m2Lii +m
2
L33
+m2E contribution to the potential at low VEVs.

14
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4. Summary

To summarise, we have examined constraints on the MSSM coming from the QFP

scenario and CCB bounds when the string scale is lower than the canonical unification

value of 1016−17GeV. The quasi-fixed behaviour is weakened somewhat as the scale
is reduced, i.e. weak MSSM parameters retain more information about their high

energy boundary conditions. Very strict bounds upon the string scale are obtained

from the LEP2 lower bound upon the lightest Higgs mass in the QFP scenario.

Current limits exclude the QFP scenario for string scales between 106 and 1011GeV

for mt = 175± 5GeV. This range of exclusion will increase by the end of running of
LEP2, as the bounds improve. Run II of the Tevatron is expected to decrease the

errors upon mt significantly, with important implications for the range of Λs ruled

out in the quasi-fixed scenario. For example, an error of 1GeV upon mt would rule

out the QFP scenario for all Λs > 10
5GeV.

CCB bounds also give important constraints upon the quasi-fixed scenario. We

provided an analytic treatment of CCB bounds with lower string scales which we

confirmed with a more accurate numerical check. It is clear from our results that

lowering the string scale significantly weakens the CCB bounds. As an example, we

considered the most restrictive case of the QFP. In this case the lower bound upon

string-scale, degenerate, scalar mass-squared values m̃2s is weakened by 30% in the

WP model, Λs = 10
11GeV. Remarkably, for tanβ > 2 and Λs < 10

10GeV, the CCB

bound is merely m2 > 0 for any non-universal pattern of supersymmetry breaking.

Although we have concentrated on a particular subset of models (i.e. those that

preserve the “GUT gaugino relation”), we argue that our conclusions are true in a

more general case. As the string scale is lowered, provided that all mass-squared

values are initially positive, the CCB minima are inevitably pushed to lower VEVs.

At these low scales, the negative m22 term no longer dominates the potential along

the most dangerous F and D-flat directions.
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