
Pr
ep

ri
nt

 - 
Se

rv
er

 
(2

0-
Se

pt
em

be
r-

19
99

)O
PE

N
-9

9-
22

7

IC/HEP/98-06

Object oriented reconstruction software for the BaBar

calorimeter

Stephen J. Gowdya, Helmut Marsiskeb and Philip Strotherc1

(a) Dept. of Physics, University of Edinburgh, May�eld Road, Edinburgh EH9 3JZ,

Scotland. SGowdy@lbl.gov

(b) SLAC, P.O. Box 4349, Stanford, CA94309, USA. marsiske@slac.stanford.edu
(c) The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7

2AZ, UK. pd.strother@ic.ac.uk

Abstract

The object oriented software used in reconstruction for the BaBar electro-

magnetic calorimeter is described. The basic reconstruction objects and their

abstractions are presented. Techniques employed in the design of clustering,

cluster division, track matching, particle identi�cation and global calibration

software are discussed in terms of their ability to provide a core interface while

allowing for improvements in physics capability.

1 The BaBar Calorimeter

The BaBar Calorimeter is a high precision Thallium doped Caesium Iodide device
consisting of a 48�120 crystal barrel and an 8 row forward endcap graded between 80

and 120 crystals. The expected resolution is 1%= 4

q
E(GeV )� 1:2%. The operating

conditions at the PEP-II asymmetric collider for which it is built are expected to
be harsh, with between 1{3 GeV of soft photon background (resulting from lost
beam particles) being deposited in the calorimeter per �s. The combination of high
precision and di�cult operating conditions creates the need for exible software with
good scope to allow for improvements in physics capability. The approach taken has
been to use the principles of object oriented design to give a C++ implementation
that de�nes the basic observables and reconstruction framework in such a way as
to permit the external clients of the calorimeter software to code to a well de�ned
interface, whilst allowing for improved algorithms and implementations which do
not force clients to recode.

2 Basic Objects

The Digi class represents the most basic front end electronics output. Virtual ac-
cessors to the energy and time are provided, along with a channel identi�er. Two
subclasses of Digi exist. SharedDigi overrides the energy function to provide a
weighted energy. This concept is used in cluster division, which will be discussed

1Contact author.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25267384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


later. CalibratedDigi overrides the energy and time accessors to incorporate an
individual crystal calibration given at construction time.

The Cluster class is designed to encapsulate the aspects of an energy deposit in
the calorimeter. The principal interface provides information on the energy, position
and error matrix associated with the cluster. Its implementation is in terms of a
collection of pointers to Digi objects. Most clustering algorithms insist that this
collection be contiguous, but this is not enforced at this level. More complicated in-
formation on the distribution of crystals within the cluster, and di�erent estimations
of the position of the cluster are provided by the derivatives of an AbsClusterProp-
erty class, which are constructed by the Cluster on demand. This allows for the
extension of the number of quantities so calculated without having to recompile
external code which depends on the Cluster class.

The Bump class is a derivative of Cluster and typically contains only one electro-
magnetic maximum, although this is not enforced at the design level. A Bump is
constructed with SharedDigis, leading to re-use of the Cluster position and energy
calculation code, and complete transparency between the two classes. A Bump will
usually have as many SharedDigis as the Cluster from which it was formed.

The Cand (candidate) class is intended to represent a generic particle observation
in the calorimeter. It contains a collection of pointers to Clusters and also contains
a pointer to a track object [1] which may be null. The functions of position, energy
and error matrix provide calibrated forms of these quantities using information in a
AbsCalibrator object handed to the Cand at construction time. Access to a PidInfo
object, discussed below, is provided.

The PidInfo class allows for access to information regarding the compatibility of
a given observation to the expected observation for a given particle hypothesis. The
implementation places no restrictions on the number of hypotheses tested, nor on
the number of of algorithms employed to identify a given particle type.

2.1 Basic Object Abstraction

The Cand and Cluster classes, and consequently the Bump class, all inherit from
an abstract base class AbsRecoCalo. This class is designed to provide uniformity
within the calorimeter software and also in its use to describe reconstructed objects
in BaBar's instrumented ux return software, to provide cross system abstraction.
Pure virtual position, four momentum and error matrix functions are provided, as
well as rudimentary genealogy for use in analysis software. Almost all external
clients of the calorimeter code make use of the AbsRecoCalo abstraction, and do
not refer to speci�c implementations of calorimeter observations directly.

3 Algorithm framework

The above objects are generated by a series of Modules in the BaBar Framework[2].
These modules perform the basic sequence of cluster formation, cluster division,
track matching and particle identi�cation. With the exception of cluster formation

2



which is considered a su�ciently low level operation as not to necessitate complicated
design, each of these tasks use abstract classes to de�ne the basic operation(s) of
the algorithm in question. The Framework modules are then con�gured at run
time using particular subclasses of these. This approach is intended to provide a
very simple method of algorithm upgrade and to minimise the coupling between the
clients of the calorimeter Framework Modules and the speci�c algorithms employed.

3.1 Cluster division

It is desirable to separate the clusters into regions containing one and only one
local maxima. Two distinct operations are involved in this division: the location of
crystals which are potential maxima, and the sharing of the energies of the crystals
in the cluster among these. These operations are mapped onto two abstractions
which are implemented in a Strategy pattern[3]: �rstly an abstract local maxima
�nder which takes a cluster as input and outputs a list of the crystal indices of the
local maxima. Secondly an abstract bump splitter whose purpose is to take the list
of local maxima, divide the cluster by the creation of Shared Digis, and return a list
of newly created bumps. A Factory method [3] is used to con�gure the Framework
module with a particular pair of maxima �nder and bump splitter at run time.

Two local maxima �nders and three splitting algorithms have been implemented
to date, the majority of these by non-expert C++ programmers. This seen as an
indication that the abstraction is at the right level to achieve both decoupling and
the rapid deployment of new algorithms once new understanding is gained.

3.2 Track{cluster matching

The association of a given energy deposit to a track is not always unambiguous. For
this reason it was decided that the default output should not be lists of \charged"
and \neutral" calorimeter observations, but rather that the output for use in physics
analysis should be associations between tracks and clusters at some con�dence level.
Further, it is envisaged that several algorithms for track matching will be developed
over the course of the experiment.

The abstraction of the mechanisms used to match tracks to clusters is achieved by
a class, AbsTrkMatchMethod which de�nes two pure virtual methods, one for match-
ing tracks to clusters, and one for the reverse operation. These return association
maps (see below) between the tracks, clusters and objects containing information
on the quality of the match to the event. It has not yet been demonstrated that
the exibility of allowing di�erent algorithms for the two di�erent operations is nec-
essary. A Framework module is again con�gured with di�ering algorithms by the
use of a Factory method. Three progressively more e�cient algorithms have already
been encoded in this way.

Association map objects are used to provide links between clusters, tracks and
TMinfo objects which contain information about the quality of the match, entry and
exit points of the track and the track cluster separation. These are implemented as
templated three-way, many to many association tables based on hash dictionaries.

3



The exibility a�orded by the use of such maps allows for decisions about the level
of match quality used to decide between neutral and charged to be determined at
run time. This exibility has been found to be useful, but not always wanted by
analysts. The provision of lists of calorimeter observations, divided into charged
and neutral at some con�dence level, and derived from the association maps, is also
allowed for.

3.3 Particle identi�cation

The central components of the design are the CandidateMaker class which is respon-
sible for constructing the Cand objects that may be appropriate to the hypothesis
under consideration and the Identi�er class, an abstraction incorporating the con-
cept of giving information about a given energy deposit pertaining to a certain
particle hypothesis. Derivatives of each are linked together by a Subject-Observer
pattern which ensures that each Cand constructed is passed to every active Identi�er
subclass. In general Identi�er subclasses look at only one discriminating variable.
In order to allow for multiple discriminating variable identi�cation, and for neural
network analyses, a speci�c abstract subclass of Identi�er, CompositeIdenti�er, is
used, which employs a Template pattern [3] to allow the particular implementa-
tion to look at the results of several di�erent Identi�er derivatives and form a new
conclusion based on this input.

Again a Framework module is con�gured with speci�c CandidateMakers and Iden-
ti�ers via Factory patterns. This, in conjunction with the extensibility of the PidInfo
object, allows for the extension of the number of particle types identi�ed and the
number of algorithms used to identify them with complete decoupling of all clients
of the code from this extension.

4 O�ine calibration framework

The energy deposits observed in the calorimeter will represent only some fraction
of the energy of the incident particle at its point of creation. The experiences of
other experiments suggest that the correction for this will become a function of more
and more variables as knowledge of the detector improves. Furthermore, an analyst
running over a channel with a small branching ratio may wish to reprocess events
with the best possible calibration, i.e. one that takes in all the known functionality,
even if this were not available when the data were �rst taken. A �nal requirement
is that the calibration system be such that the origin of the correction function be
allowed to change such that the default is always the best most general purpose
correction, but that speci�c corrections remain available.

The requirement then is for a system that supports multiple algorithms, is ex-
tendible in its functional dependence and is retrospectively applicable. The coe�-
cients of the functions used for the energy correction must be stored in the object-
oriented database used by BaBar|Objectivity/DB[4]. This does not allow for stor-
age of the functional form itself. The approach is to store the coe�cients in the
database, along with knowledge of the name of a transient class which contains the

4



encoding of the functional form appropriate to those coe�cients. In addition, the
usage of the database in BaBar dictates that the database be completely decoupled
from client code.

The AbsCalibrator class contains the pure virtual functions which take a Cluster
as input and return the corrected energy or position of that cluster according to the
calibration information contained within the class. This class is then used by Cand
objects to calibrate the Clusters they contain. The functional form of the calibration
is described by subclasses. Veri�cation of new versions of a particular calibrator is
performed by means of a virtual function whose default implementation is to check
that the new calibrator is of the same type, has the same length and the constants
are within 20% of the previous set. More complicated veri�cation procedures may
be implemented by subclasses.

The CalibratorP class contains a persistent array of coe�cients for a given cali-
bration function, a persistent string which contains the name of the transient class
(the AbsCalibrator derivative) to which these constants pertain, and a third string
to describe the algorithm used to derive the constants. Subclasses of CalibratorP
pertain to di�erent algorithms and di�er from the base class only in the content of
the algorithm name string.

The interface between clients of the AbsCalibrator class and the database is pro-
vided by the CalibProxy class2. The proxy mechanism is such that a given Abs-
Calibrator subclass is held by the proxy and returned on demand until either the
subclass relating to a di�erent source of calibration data (referred to as an algorithm
below) is requested, or the event time indicates that the current set of constants is
out of date. Under these circumstances, the constants for a new derivative are re-
trieved from the database and a new transient AbsCalibrator derivative constructed
appropriate to these constants, using the information stored along with them.

A CalibratorDictionary class is used to provide a persistent map between algo-
rithm names and the persistent CalibratorPs. This removes the need for clients
to know about the subclasses of CalibratorP. The CalibratorDictionary is respon-
sible for returning the relevant AbsCalibrator derivative to the CalibProxy. The
string contained within the CalibratorP derivative is translated into an AbsCali-
brator derivative by means of a Factory. The dictionary then loads the constants
contained in the CalibratorP object into the transient AbsCalibrator derivative.

There are two aspects to the permanent storage. One is the ability to store the
coe�cients of the functional forms encoded in the AbsCalibrator derivatives. This
is a relatively trivial exercise. The other is the ability to keep track of available cal-
ibration algorithms and of the default calibration. To this end, a persistent capable
class AlgDescription containing the algorithm name and a ag indicating whether or
not that algorithm is the default is stored in the database inside an AlgBank object,
while the transient equivalent used by client code is an AlgList. These are nothing
more than persistent (Bank) and transient (List) vectors. They are retrieved by
an AlgListProxy class is responsible which obtains from the database the relevant
AlgBank object pertaining to the event time. This operation is essentially the same

2The Proxy mechanism borrows heavily from an initial implementation for the Silicon Vertex

Tracker geometry by David Nathan Brown of the Lawrence Berkeley laboratory.

5



as that of the CalibProxy class.

Derivatives of the AbsCalibAlgorithm class is responsible for generation of the
constants to be stored in the database in the form of an AbsCalibrator derivative.
This object is then passed to the singleton class StoreCalibrator which performs the
mechanics of translating the transient AbsCalibrator derivative into the appropriate
CalibratorP derivative. Each subclass of AbsCalibAlgorithmmust register itself with
CalibAlgRegister which is responsible for keeping record of the available algorithms
and an indication of the default.

4.1 O�ine calibration: summary

The rather complicated design described above achieves several things at once.
Firstly it separates the client code (coded in terms of AlgLists and AbsCalibra-
tors) from the database implementation, as required. Secondly, in the form of the
AlgList/Bank object, and the CalibDictionary's map between the AlgDescription
objects and the CalibratorP derivatives, the extensibility of the calibration scheme
when new and more complicated algorithms become available is achieved. Thirdly,
since these algorithms make no reference to time, they are by de�nition retrospec-
tively applicable providing the information on which they are based is recorded in
the database at the appropriate time. Fourthly, by providing di�ering implemen-
tations of the calibration functions while retaining the external code's dependence
on an abstraction, new and more complicated calibration functions can be applied
without needing to change external code.

References

[1] S.F.Scha�ner and J.M. LoSecco, \Object oriented tracking and
vertexing at BaBar" presented at CHEP 1997, to appear in pro-
ceedings, and S.F.Scha�ner, \BaBar's Object Oriented Tracking
System", in these proceedings

[2] E. D. Frank, R. G. Jacobsen and E. Sexton-Kennedy, \Architec-
ture of the BaBar Reconstruction System", presented at \CHEP
1997", to appear in proceedings.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, \Design Pat-
terns", (Addision-Wesley, California, 1995)

[4] Objectivity/DB, Object Oriented Database product supplied by
Objectivity Inc., Mountainview, California

6


