
Structured parallel programming: a generic co-ordination model and a parallel

Fortran

John Darlington Imperial College, London, UK

Abstract

We present a framework for parallel programming that attempts to reconcile the

conicting requirements of abstraction, e�ciency and compatibility with established

practice. The key to this approach is the adoption of a co-ordination approach

where applications are constructed in two layers, the �rst layer specifying the

parallel behaviour of the program and the second providing the sequential threads

that make up the components of this computation. We develop a Structured

Co-ordination Language that is capable of expressing all relevant aspects of parallel

computation in a uniform notation. The co-ordination operators of this language are

represented as functional skeletons, pre-de�ned building blocks with tailored

implementations onto particular parallel machines.

In this �rst paper we present the general framework of Structured Parallel

Programming and the lowest level co-ordination forms that provide control over the

behaviour of an idealised distributed memory parallel machine. We present a

particular instantiation of this framework to provide a Structured Parallel Fortran

and discuss its implementation and optimisation.

Keywords: parallel programming; co-ordination languages; skeletons

1 Introduction: the requirements of parallel programming

The designers of languages or systems for parallel application construction face several

requirements that, at �rst sight, appear to conict. The purpose of such languages must

be to enable users to build complex applications on parallel machines as easily as

possible. This should imply some abstraction or simpli�cation of the programmer's task.

However, the only purpose of using parallel machines is to enable the programs to

execute quickly. Given the current complex and varied nature of parallel machines this

seems to imply the need for low-level control of execution patterns and resource

allocation. Finally, there is a often overlooked but very real requirement that any

approach must be compatible with conventional and accepted practice for both

psychological and technical reasons. The software industry has proven extremely

resistant to revolutionary solutions, as evidenced by the survival of Fortran, and any

software solution must execute on a widely accepted or standardised bases to ensure

economic portability.

In this paper we present an approach that attempts to square these various circles. The

basis of this method is the use of a co-ordination language to organise the parallel

execution of program components that are themselves expressed in a conventional

sequential language and the realisation of this co-ordination language by a pre-de�ned

set of primitives or functional skeletons .

2 SCL: a generic parallel co-ordination language

In [2], Gelernter and Carriero proposed the notion of co-ordination languages as the

vehicle of expressing parallel behaviour. In this article, they wrote:

We can build a complete programming model out of two separate

pieces|the computation model and the co-ordination model . The

computation model allows programmers to build a single computational

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25267169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Node code

.

SCL code

Figure 1: Two-tier structure of a SCL program.

activity: a single-threaded, step-at-a-time computation. The co-ordination

model is the glue that binds separate activities into an ensemble. An

ordinary computation language (e.g. Fortran) embodies some computation

model. A co-ordination language embodies a co-ordination model; it provides

operations to create computational activities and to support communication

among them.

We have adopted this approach to the problems of specifying and e�ciently

implementing parallel programs. In particular we have developed a Structured

Co-ordination Language (SCL) that abstracts all the relevant aspects of a program's

parallel behaviour. Programs written using SCL have a two-tier structure as illustrated

in Figure 1. The upper layer is composed of compositions of SCL co-ordination forms,

nested to any depth, that organise the parallel execution of the program while the lower

level consists of procedures written in a conventional imperative language, such as

Fortran or C, that express the sequential threads of this parallel computation. Note that

there is a strict hierarchy, SCL co-ordination forms can be nested to any level but the

imperative code cannot call an SCL form.

A second aspect of our approach is that SCL is not a general purpose language but is a

set of pre-de�ned co-ordination forms or skeletons which are presented to the

programmer as higher-order functions using a functional language syntax. The essence of

a skeleton is that it provides a programmer with a pre-de�ned building block with which

to construct his or her application. In our approach, because of the setting of

co-ordination skeletons in a functional language, there is a clear separation between the

meaning of a skeleton and its parallel implementation. Tailored, intelligent,

implementations for skeletons can be provided onto particular target machines.

This breaking of the link between specifying what a program is intended to compute and

how it will behave to achieve this is, we think, crucial to reconciling the requirements for

abstraction and e�ciency discussed earlier. SCL permits the speci�cation and e�cient

implementation of higher-level, user-oriented co-ordination forms. In this paper we �rst

present the lowest layer of SCL that provides a kernel on which the other more abstract

layers can be e�ciently implemented. This lower layer abstracts the operation required

to e�ciently program an idealised distributed memory parallel machine and provides a

uniform notation to specify all relevant aspects of parallel behaviour: data partitioning

and distribution, communication and multi-thread control.

2.1 SCL co-ordination primitives

SCL is a general purpose co-ordination language where all aspects of parallel

co-ordination are speci�ed as the composition of the following three classes of skeletons:

2

Arrays

Partition

Align

(Configuration)
Virtual Processors

Figure 2: Data distribution model.

Con�guration skeletons: co-ordinating data distribution The basic parallel

computation model underlying SCL is the data parallel model. In SCL, data parallel

computation is abstracted as a set of parallel operators over a distributed data structure,

for example, a distributed array. A con�guration models the logical division and

distribution of data objects. Such a distribution has several components: the division of

the original data structure into distributable components, the location of these

components relative to each other and �nally the allocation of these co-located

components to processors. In SCL this process is speci�ed by a partition function that

divides the initial structure into nested components and an align function that forms a

collection of tuples representing co-located objects. This model, illustrated in Figure 2,

clearly follows and generalises the data distribution directives of HPF [3]. Applying this

general idea to arrays, the following con�guration skeleton distribution de�nes the

con�guration of two arrays A and B:

distribution (f,p) (g,q) A B =

align (p � partition f A) (q � partition g B)

Throughout this paper we will use \curried" notation to de�ne functions, thus

distribution is a function de�ned with four arguments, the �rst two of which are pairs

explicitly formed using the tupling notation, \(,)". The distribution skeleton

therefore takes two functions pairs, f and g specify the required partitioning (or

distribution) strategies of A and B respectively and p and q are bulk data-movement

functions specifying any initial data re-arrangement that may be required. The

distribution skeleton is de�ned by composing the functions align and partition.

A more general con�guration skeleton can be de�ned as:

distribution [(f,p)] [d] = p � partition f d

distribution (f,p):fl d:dl =

align (p � partition f d) (distribution fl dl)

where fl is a list of distribution strategies for the corresponding data objects in the list

dl and \:" denotes the in�x operator, known as \cons", that builds a list by adding an

item to the front of the list.

Applying the distribution skeleton to an array forms a con�guration which is an array

of tuples. Each element i of the con�guration is a tuple of the form (DAi

1
; : : : ; DAi

n
)

where n is the number of arrays that have been distributed and DAij represents the

sub-array of the jth array allocated to the ith processor. As a short hand rather than

writing a con�guration as an array of tuples we can also regard it as a tuple of

(distributed) arrays and write it as <DA1; : : : ; DAn> where the DAj stands for the

distribution of the array Aj. In particular we can pattern match to this notation to

extract a particular distributed array from the con�guration.

Con�guration skeletons are capable of abstracting not only the initial distribution of

data structures but also their dynamic redistribution. Data redistribution can be

uniformly de�ned by applying bulk data movement operators to con�gurations. Given a

3

con�guration C: <DA1; : : : ; DAn>, a new con�guration C0: <DA01; : : : ; DA
0

n> can be formed

by applying fj to the distributed structure DAj where fj is some bulk data movement

operator de�ned specifying collective communication. This behaviour can be abstracted

by the skeleton redistribution as de�ned in [1]. SCL also supports nested parallelism

by allowing distributed structures as elements of a distributed structure and by

permitting a parallel operation to be applied to each of elements in parallel. An element

of a nested array corresponds to the concept of group in MPI [6]. The leaves of a nested

array contain any valid sequential data structure of the base computing language.

Elementary skeletons: parallel arrays operators In SCL, we use a set of second

order functions as elementary skeletons to abstract essential data parallel

computation and communication patterns. The basic functions specifying data

parallelism include:

� map which abstracts the behaviour of broadcasting a parallel task to all the

elements of an array.

� a variant of map, the function imap which takes into account the index of an

element when mapping a function across an array.

� the reduction operator fold which abstracts tree-structured parallel reduction

computation over arrays.

Data communication among parallel processors is expressed as the movement of elements

in distributed data structures. In SCL a set of bulk data-movement functions are

introduced as the data parallel counterpart of sequential loops and element assignments

at the structure level. These elementary skeletons for communication can be generally

divided into two classes: regular and irregular . The following rotate function is a

typical example of regular data-movement.

rotate :: Int ! ParArray Int � ! ParArray Int �

rotate k A = << i := A((i+k) mod SIZE(A)) j i [1..SIZE(A)] >>

Here the expression \<< i := f i j i [1..k] >>" is an \array comprehension"

that denotes the array indexed from 1 to k whose ith element is f i.

For irregular data-movement the destination is a function of the current index. This

de�nition introduces various communication modes. Multiple array elements may arrive

at one index (i.e. many to one communication). This is modelled by accumulating a

sequential vector of elements at each index in the new array. Since the underlying

implementation is non-deterministic no ordering of the elements in the vector may be

assumed. The index calculating function can specify either the destination of an element

or the source of an element. Two functions, send and fetch, are provided to reect this.

Elementary skeletons can be used to de�ne more complex and powerful communication

skeletons required for realistic problems.

Computational skeletons: abstracting control ow In SCL the exibility of

organising multi-threaded control ow is provided by abstracting the commonly used

parallel computational patterns as computational skeletons. The control structures of

parallel processes can then be organised as the composition of computational skeletons.

For example, in SCL, the SPMD skeleton, de�ned as follows, is used to abstract the

features of SPMD (Single Program Multiple Data) computation:

SPMD [] = id

SPMD (gf, lf) : fs = (SPMD fs) � (gf � (imap lf))

The skeleton takes a list of global-local operation pairs, which are applied over

con�gurations of distributed data objects. The local operations are farmed to each

4

B

24 31

C

1
2
3
4

A

C

1
2
3
4

A

B

3 4 1 2

1
2
3
4

A

B

2 3 4 1

C

1
2
3
4

A

C

1 2 3 4

B

(step 1) (step 2) (step 3) (step 4)

Figure 3: Parallel matrix multiplication: row-column-oriented algorithm.

processor and computed in parallel. Flat local operations, which contain no skeleton

applications, can be regarded as sequential . The global operations over the whole

con�guration are parallel operations that require synchronisation and communication.

Thus the composition of gf and imap lf abstracts a single stage of SPMD computation

where the composition operator models the behaviour of barrier synchronisation. In

SCL conventional control ow is also abstracted as computation skeletons. For example,

the iterUntil skeleton, de�ned as follows, captures a common form of iteration. The

condition con is checked before each iteration. The function iterSolve is applied at

each iteration, while the function finalSolve is applied when the condition is satis�ed.

iterUntil iterSolve finalSolve con x

= if con x

then finalSolve x

else iterUntil iterSolve finalSolve con (iterSolve x)

Variants of iterUntil can be used. For example, when an iteration counter is used, an

iteration can be captured by the skeleton iterFor using counter to control the iteration.

By abstracting data distribution, communication and multi-thread control ow

uniformly as basic skeletons, the SCL system supports the structured construction of

parallel program by composing co-ordination skeletons using a set of well de�ned parallel

data types.

2.2 Parallel Matrix Multiplication: A Case Study

To demonstrate the expressive power of SCL, we de�ne the coordination structure of a

matrix multiplication algorithm using SCL. The \row-column-oriented" matrix

multiplication algorithm is adapted from [7].

Consider the problem of multiplying matrices Al�m and Bm�n and placing the result in

Cl�n on p processors. Initially, A is divided into p groups of contiguous rows and B is

divided into p groups of contiguous columns. Each processor starts with one segment of

A and one segment of B. The overall algorithm structure is an SPMD computation

iterated p times. At each step the local phase of the SPMD computation multiplies the

segments of the two arrays located locally using a sequential matrix multiplication and

then the global phase rotates the distribution B so that each processor passes its portion

of B to its predecessor in the ring of processors. When the algorithm is complete each

processor has computed a portion of the result array C corresponding to the rows of A

that it holds. The computation is shown in the Figure 3.

5

The parallel structure of the algorithm is expressed in the following SCL program:
ParMM :: Int ! SeqArray index Float !

SeqArray index Float ! SeqArray index Float

ParMM p A B = gather DC

where

<DA, DB, DC> = iterFor p step dist

dist = distribution fl dl

fl = [(row block p, id), (col block p, id), (row block p, id)]

dl = [A, B, C]

C = SeqArray ((1,SIZE(A,1)), (1, SIZE(B,2))

[(i,j) := 0 j i [1..SIZE(A,1)], j [1..SIZE(B,2)]]

step i <DA, DB, DC> =

SPMD [(gf, SEQ MM i)] <DA, DB, DC>

where

newDist = [id, (rotate 1), id]

gf X = redistribution newDist <DA, DB, X>

where SEQ MM is a sequential procedure for matrix multiplication. Data distribution is

speci�ed by the distribution skeleton with the partition strategies of [((row block

p), id), ((col block p),id), ((row block p),id)] for A, B and C respectively.

The data redistribution of B is performed by using the rotate operator which is

encapsulated in the redistribution skeleton. The example shows that, by applying

SCL skeletons, parallel co-ordination structure of the algorithm is precisely speci�ed at a

higher level.

3 Implementation

SCL is generic since the same co-ordination operations can be applied to sequential

programs expressed in any conventional language. A particular structured parallel

language is produced by applying SCL to a speci�c language. At Imperial College we

have produced a Structured Parallel Fortran (SPF) by applying SCL to Fortran. As all

parallel behaviour arises from the behaviour of known skeletons, the co-ordination

primitives can be implemented by pre-de�ned libraries or code templates in the desired

imperative language together with standard message passing libraries providing both

e�ciency and program portability. SPF has been implemented by transforming SPF

programs into conventional parallel Fortran programs, that is sequential Fortran

augmented with message passing libraries. A prototype system has been built based on

Fortran 77 plus MPI [6] targeted at a Fujitsu AP1000 machine [4].

The expression of all parallel behaviour by the SCL layer enables parallel optimisation to

be accomplished by program transformation on this layer, rather than by analysis of

complex, imperative code. For example, an algebra of communication can be developed

to optimising data-movement. Examples of these algebraic laws are:

send f � send g = send (f � g) (1)

fetch f � fetch g = fetch (g � f) (2)

(rotate k) � (rotate j) = rotate (k + j) (3)

The use of such transformations can lead to considerable improvements in the cost of

communication especially when communication can be completely removed. The

algebraic axiomatisation of communication optimisation has been intensively studied in

the context of developing an optimal compiler for conventional data parallel languages

[5]. The commonly used approach is based on the analysis of index relations between two

6

sides of an assignment. Since using SCL communications are explicitly speci�ed in terms

of a set of well de�ned communication operators, the index-based analysis can be

systematically replaced by transformation rules abstracting the optimisation of

communication behaviour.

4 Conclusion

The �rst, kernel, level of SCL and its realisation in SPF appears to meet at least the last

two requirements of the three introduced earlier. E�cient programs can be written using

SPF, optimised using transformation rules and compiled or expanded to code in

conventional languages and communication libraries without any run-time overheads.

Experiments have shown that SPF programs can achieve the same performance as hand

written, low-level code. Furthermore as SCL is no more, or less, than a uniform design

notation that can be applied to conventional languages and compiles to standard

software platforms it is compatible with conventional approaches at both the

psychological and technical levels.

The level of SCL shown so far is still fairly low level, albeit with some abstraction from

current approaches. Crucially, however, the SCL style and notation permits extensibility.

More abstract structures can be de�ned and e�ciently implemented on the basis set out

so far. In the concluding paper we show how this power can be exploited to de�ne

user-oriented structures to signi�cantly simplify the task of parallel scienti�c

programming.

Acknowledgements

The ideas presented in these two papers have been developed in collaborative projects

within the Advanced Languages an Architectures Section and the Fujitsu Parallel

Computing Research Centre at Imperial College. We are grateful to all our colleagues

there but in particular to Peter Au, Moustafa Ghanem, Yi-ke Guo, Martin Kohler, Hing

Wing To, Jin Yang and Wu Qian for their assistance. We thank Hing Wing To and Yi-ke

Guo for their help in the preparation of these papers.

This work is supported by the UK Engineering and Physical Sciences Research Council

and Fujitsu Laboratories who also support the Fujitsu Parallel Computing Research

Centre. We are very grateful for their continued assistance.

References

1 J. Darlington, Y. Guo, H. W. To, and J. Yang. Functional skeletons for parallel

coordination. In Seif Haridi, Khayri Ali, and Peter Magnussin, editors,

EURO-PAR'95 Parallel Processing, pages 55{69. Springer-Verlag, August 1995.

2 David Gelernter and Nicholas Carriero. Coordination languages and their

signi�cance. Communications of the ACM, 35(2):97{107, February 1992.

3 High Performance Fortran Forum. Draft High Performance Fortran Language

Speci�cation, version 1.0. Available as technical report CRPC-TR92225, Rice

University, January 1993.

4 Hiroaki Ishihata, Takeshi Horie, Satoshi Inano, Toshiyuki Shimizu, Sadayuki Kato,

and Morio Ikesaka. Third generation message passing computer AP1000. In

International Symposium on Supercomputing, pages 46{55, 1991.

5 Jingke Li and Marina Chen. Compiling communication e�cient programs for

massively parallel machines. IEEE Transactions on Parallel and Distributed

Systems, 2(3):361{375, July 1991.

7

6 Message Passing Interface Forum. Draft Document for a Standard Message-Passing

Interface. Available from Oak Ridge National Laboratory, November 1993.

7 Michael J. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, second

edition, 1994.

8

