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Abstract

This paper focusses on recent developments and on-going research related to parallel
and distributed approaches for crashworthiness simulation, using the PAM-CRASH
code from ESI as an example. The developments described here relate directly to the
take-up in the automotive industry of the latest High Performance Computing (HPC)
technology, since crash and safety analysis is well established in the automotive
design process.
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1 Introduction

Over the last decade, crashworthiness simulation, and more recently simulation of occupant
safety and the associated systems, has established itself within automotive design. Advances in
both the modelling of physical phenomena and performance (arising from computer architecture
advances and more efficient numerical algorithms) have led to an increase in the detail and
complexity of models which can be handled, to the point where the position of numerical
simulation has “moved-forward” in the design cycle. The numerical simulations are being used to
influence the early designs of new automobiles, for example, rather than being used to make
improvements to the design at a much later stage, when possibilities for modification are more
restricted. With numerical simulation offering a more detailed analysis of the whole structure
within a crash event, the experimental testing is often used only as a validation of the simulation.
An overview of typical simulations, modelling aspects and computational requirements is given in
[5]. An example of a simulation at the current  high-end of computational requirements is shown
in Figure 1.

Despite the advances made, both car manufacturers and their suppliers have an increasing
demand for computational performance. One reason for this is the expansion in the detail of
investigation being carried out: as an example, the occupant safety simulation is constantly
increasing the detail of the dummy models being employed, with the expectation that certain
biomechanic (human-like) parts will be included in the near future. Another reason comes from
the introduction of more restrictive crashworthiness regulations, which results in the need for a
higher number of different simulations to be performed. These demands have led to the
development of message-passing versions of crash codes for parallel and distributed HPC
architectures.
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Figure 1:  Car-to-car crash simulation Courtesy of BMW

Although shared-memory parallel implementations of the PAM-CRASH code have been in
existence since 1987, the exploitation of distributed-memory parallel architectures has only
recently been possible. In the ESPRIT project CAMAS and its extension to link to the
EUROPORT action (see [12,13]), a prototype, portable message-passing version of the PAM-
CRASH code was developed and benchmarked using industrially relevant models. The
performance of this code version - even on a shared-memory architecture - has led to the
acceptance of the, meanwhile matured, version as a viable 'production-use' design tool by
automotive manufacturers who already have access to parallel HPC systems. Beyond this,
current investigations are focussed on the efficient use of the message-passing version on
networked workstations. Not only do networked workstations provide the “economic entry-point”
to parallel computing for the smaller automotive suppliers, but they also allow the auto-
manufacturers the possibility to both reduce the load on the dedicated parallel platform and to
exploit a large computational resource which would otherwise remain idle outside office-hours -
for example, the large number of CAD-stations otherwise used only for interactive, graphical
work.

The central discussion of the paper is contained in Section 2, which gives an overview of the
algorithms used within the PAM-CRASH code and the significant features of its message-
passing, mesh-partitioned parallelization; in particular, describing the areas of difficulty and
requirements for future developments. The degree of scalability achieved with the message-
passing approach will be illustrated and a comparison with a shared-memory implementation
made.

Although the message-passing approach does provide a high-performance solution, the
complexity of the code implementation poses maintenance difficulties. A high-level approach
would therefore be favoured, and the possibilities for using High Performance Fortran (HPF) are
being investigated. Since the available constructs of HPF-1 (as defined in [7]) were adjudged
inadequate for the requirements of irregular, unstructured industrial applications (see [1,2]), the
ESPRIT project HPF+ ([9]) is investigating the extension of the language to enable efficient
implementations of codes like PAM-CRASH. A brief overview of the project and the status of the
PAM-CRASH related developments will be given in Section 3.
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2 Message-passing PAM-CRASH

PAM-CRASH is an explicit time-marching Finite Element program used for the numerical
simulation of the highly nonlinear, dynamic phenomena arising in short-duration contact-impact
problems. It uses a central difference explicit time-marching scheme with unstructured meshes
comprised of mechanical elements, of various types (e.g. thin-shells, beams, bars and special
elements to model features such as rivets) and associated with a range of material properties,
which model the behaviour of the structure under consideration. The Lagrangian formulation
used has the following basic computational components: the time-integration at nodal points,
“force calculations” on the elements defined by those nodal points. The time-integration
calculates the accelerations, velocities and finally new-coordinates of the mesh based on the
existing forces at the nodal points, created/generated by the movement of the points at the
previous time-step. The major computational costs of the algorithm comes in the calculation of
the forces at the nodal points. These force calculations can be broken down into (essentially1)
stress-strain calculations and contact-impact calculations - the two having very different levels of
data locality, when considering parallel implementations.

The stress-strain calculations are performed over the elements. The calculation on each element
requires as input the latest co-ordinates and velocities from only those nodal points defining the
element. Once calculated, the force on the element is distributed as individual forces at the nodal
points. Since these calculations produce the largest contribution to the overall computational cost
(between 60% and 80%, depending on the particular model) and exhibit a high degree of data
locality, the message-passing parallelization employed an element-wise mesh-partitioning.

In contrast to the stress-strain calculations, the contact-impact algorithms used within the code
have, in terms of data access, a pseudo-global nature. These contact algorithms serve to detect
and correct penetration of structural components. This is achieved by first performing a
proximity and penetration search, followed by a penetration correction procedure. Within the
PAM-CRASH code, the latter is currently a penalty method, whereby contact forces are
introduced at the impacting node and at the nodal points of the impacted segment. An
implementation (or practical usage) issue which affects parallelization is that the contact
calculations are performed only within user-defined (and not necessarily disjunct) areas.

In the following, we will give a brief overview of the message-passing parallelization. Further
information can be found in the references:
In the papers [10,11], the parallelization of the PAM-CRASH code using static domain
partitioning was detailed and, most importantly, the problems arising due to the inclusion of the
contact-impact algorithms was discussed: the pseudo-global nature of the communications
patterns, the static and dynamic load imbalance, the necessity to remove even small parts of non-
scalable code. An analysis of load-balancing issues in the message-passing version and the
performance bottle-necks occurring in the shared-memory or symmetric multiprocessing (SMP)
version is including in the more recent publication [3].

As indicated above, a static mesh-partitioniong approach, based on a partitioning of elements,
was employed. This static partition was calculated prior to the simulation. For the benchmarking
results for EUROPORT, the multilevel recursive spectral bisection algorithm of the DDT tool
([4]) of the University of Southampton (produced in the ESPRIT project CAMAS) was used. The
partitions employed a static partition balancing based on contact surface definitions (see [3]).
With the unique assignment of elements to processes, the non-contact components of the solution

                                               
1 A simplification is taken here, though the bulk of the computation is covered. A description of a range of
special features, such as the handling of nodal constraint sets, rigid-body interactions or airbag calculations, is
beyond the scope of this paper.
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scheme (time-integration + stress-strain force calculations) can be efficiently parallelized by the
provision of sub-domain interface communication. In order to enable contact search procedures to
be performed locally, more complex communication constructs need to be introduced - based on
the dynamically varying results of the search routines. Experience with the EUROPORT
benchmark models has shown that load imbalance created by the contact-impact calculations is
the major factor governing the scalability of the algorithms. Future research will thus be
addressing the use of dynamic mesh re-partitioning, based on the changing computational load as
the simulation progresses.

We conclude this section with an illustration of the performance of the message-passing PAM-
CRASH protoype on a distributed-memory machine (the IBM SP2) and an SMP machine (the
Silicon Graphics Power Challenge). Details of the EUROPORT benchmark models and further
results can be found in [3,11]. The models themselves are illustrated, by their final deformed
states, in Figure 2.

  

Figure 2:  CAMAS-Link EUROPORT Benchmark models: AUDI-Crash30, BMW-Crash15 and BMW-
Crash50, respectively. Courtesy of Audi, BMW

The BMW-Crash50 model causes the greatest loss in scalability of the three, since it includes the
high percentage of elements within contact calculations (45,497 contact segments from the
61,039 elements). Nevertheless, the results on the IBM SP2 shown in Figure 3 demonstrate an
impressive speed-up, with sequential supercomputer performance achieved at relatively low
processor numbers.
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Figure 3:  BMW-Crash50 Performance

Both the code portability and the advantage of the message-passing parallelization approach were
clearly demonstrated by the benchmarking performed on the SGI Power Challenge. Tests with a
variety of models, using numbers of contact segments ranging from 10% to over 70% of the total
number of elements in the model, have shown that the message-passing version of PAM-CRASH
(in this case using PVM) not only outperforms the shared-memory version at low processor
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numbers but also scales significantly better. This is exemplified by the speed-ups obtained on an
18-processor machine shown in Figure 4. The cases tested are two of the above models
supplemented by a third BMW model, which is very similar to the BMW-Crash50 case but of
slighly smaller size and involving a frontal rather than an offset crash. This additional model is
denoted BMW-xtra in the figure.
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Figure 4:  Speed-up for Shared versus Distributed Code Versions on SGI

3 HPF+ Project and PAM-CRASH investigation

The central aim of the ESPRIT Long Term Research project HPF+ is to support and accelerate
the development of the HPF language in order that a much wider range of applications may be
efficiently parallelised using the high-level language approach. To do this, the project has
focussed on complex, scientific applications which involve irregular constructs: unstructured
meshes, irregular data structures, computational tasks with dynamically changing costs and data
accesses. A sequence of benchmark kernels representing various features and levels of
completeness from the codes FIRE (from AVL), IFS (from ECMWF) and PAM-CRASH (from
ESI) will be developed and used to define language extensions necessary for these types of
irregular codes. A close cooperation with the HPF-2 effort ([8]) will guarantee that HPF+ will
not divert from the standard except where this is necessary for providing functionality not being
considered under HPF-2. The HPF+ Consortium consists of the application developers listed
above2 together with both academic and commercial language, compiler and tool developers from
the Universities of Vienna and Pavia and NA Software.

At the time of writing, the project has completed the definition of first benchmark kernels and an
initial definition of the HPF+ language extensions. For the PAM-CRASH -related investigation,
concentration has been on the “stress-strain” calculations as described in Section 2, the definition
of kernels representing the more complex contact-impact tasks will be handled in the forthcoming
project periods. Due to space restrictions, detailed examples of code fragments will not be
included here. However, the following discussion gives an indication of the areas of difficulty and

                                               
2 C&C Research Laboratories, NEC Europe are contributing to the project via a collaboration with ESI
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(draft) language extensions to solve them. Since only language extensions are discussed, a
knowledge of HPF-1 is assumed.

The dual requirements of the unstructured finite-element mesh - basic variables stored and
calculated at nodal points interacting with element-based force computations as described in
Section 2 - means that the regular data distributions of HPF-1 are unlikely ever to result in
efficient parallel code. Building on experience with the mesh-partitioning approach, an
appropriate solution would be the clustering together of elements together with corresponding
nodes, since this should minimise necessary communication for the initial kernel. A natural
implementation of such would exploit the DYNAMIC  and REDISTRIBUTE  features, since the
partitioning will be computed or read at run-time, coupled with either a general block distribution
(GEN_BLOCK ) or a completely irregular (array )element-to-processor mapping, INDIRECT  (see,
for example, [1,2]). Turning then to the force calculations, the simplest ‘generic’, sequential
kernel features a loop over elements within which necessary nodal data is gathered, a subroutine
is called to calculate the force on the element, corresponding forces are scattered back to the
constituent nodal points. Indirect addressing is used for the gather-scatter operations. The HPF+
parallelization of this kernel (currently) focusses on the use of the INDEPENDENT  directive, linked
to the do loop, supplemented by constructs to: specify the distribution of the computation over the
processors, ON HOME ; indicate that a reduction operation takes place, REDUCTION ; specify that
the subroutine execution neither influences other do loop iterations nor introduces
communication; indicate to the compiler, that the communication pattern which it may generate is
invariant (i.e. it will not change for all executions of the particular loop), REUSE_SCHEDULE.
Whereas, the former options may be found (perhaps in a modified form) in the HPF-2
developments, the latter belongs to the work-in-progess category.

4 Concluding Remarks

Investigations into the use of HPF for irregular codes such as PAM-CRASH are in their infancy,
but it is already clear that a further development of the language will be necessary if efficient
code is to be generated. Although, the simplified code maintenance offered by a high-level
programming approach is most desirable, HPF does lag behind message-passing in terms of
exploitability and performance for complex, irregular industrial codes. The message-passing
version of the PAM-CRASH code has, thanks (to a large extent) to the EUROPORT
demonstration of performance, achieved industrial acceptance as a design tool. Although the
obtained scalability is not perfect and subject to improvement, a nearly linear speed-up is
obtained for processor numbers far beyond what is required to match traditional vector
supercomputer performance and this at considerably lower cost. Besides allowing a decreased
turn-around, the possibility has now been created to solve larger problems with acceptable delays.
In comparison with the shared-memory programming model, the message-passing code version
increases the effective peak performance of the machine, allowing greater flexibility in its
exploitation.
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