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Abstract

It is argued that the inclusion of model knowledge is important in the
advancement of image analysis software, to separate the specialities of the current
problem area from general methods of image analysis. In the these two
presentations an overview is given of two classes of image analysis solutions:
symbolic model-driven image analysis and physical model-driven analysis. For
symbolic models a system architecture consisting of detectors (through which the
access is to the various representations of the data) with encapsulated knowledge
on the signs to detect, a reasoning module to propagate the uncertainty.
Symbolic model-driven analysis is evaluated on an extended example: map
interpretation. Physical models are presented when an integral view on the data is
needed. The extended example in this case is: heart wall motion estimation.
Whereas the lectures discussed the more general aspects of symbolic- and model-
driven analysis, this text is confined to the extended examples.

Keywords:  model-driven image analysis, symbolic, physical, system design, map
interpretation, cardiac image analysis

1 Introduction

The state of the art in vision research is far from formulating all purpose solutions. In
fact, a vision system is ill-posed when in the specification a description of the domain, the
purpose of the system or the criterion for success are missing.

In this contribution, we concentrate on the inclusion of domain specific knowledge in
vision solutions for the purpose of segmenting the image and recognising the object.
Given a digital image as a data field and a generic model of the object can we come to a
recognition of the object represented by the data? In this presentation, we discuss two
(very) different types of models, theoretically and by extended example: the force based
models and the rule based models.

In the force driven domains, the object may assume a continuum of different forms each
somewhat different. The strategy leading to its recognition and description of its state is
to formulate a geometric model of the object. The geometric model is steered by one or
more parameters. By parameter adjustment, the generic model is instantiated onto the
specific view of the specific object as encountered by the data field configuration. In the
space of all admissible object shapes, the (iterative) search is for the one best matching
the data field. Not every shape is plausible. Domain knowledge is implemented as
constraints on the shape (smoothness, cornedness) as well as in the criterion where to best
match (at places of a steep outward pointing intensity gradient).

Force driven models are frequently integral models, as they assume one uniform
mechanism which underlies the shape as a whole. Model - based image analysis of this
kind results in a parameterized representation of the object. In section 2, we present an
example of heart wall motion detection.

Symbolic domain models are based on an entirely different way to integrate domain
knowledge in the analysis. Now, it is assumed that domain knowledge is the consequence
of a formalised verbal description: in formalised verbal statements. As an example of



2

knowledge representation consider the statement: "If (such) is almost certainly present in
the image near (this), then,  quite likely, the image holds (that)." The first-level rules
determine what  observations can be made on the image data field. The outcome is a fact
on the presence or absence of visual entities, and passed on to the next level. Higher level
rules in the reasoning engine lead to a conclusion about the facts known thus far or to
the quest for new information from the data field. The iteration of conclusion and new
fact search or conclusions results in the reasoning loop:

New observations 
from image data

Stop

Conclusions by
combination

Conclusions 
from facts

Start

Rules

We will present an example on this AI - style model driven analysis in section 3 on paper
map interpretation.

2 Force - driven vision

The force model - driven vision is exemplified on a difficult problem: the segmentation
and motion estimation of the heart wall in 3D - recordings. The problem is known as the
3D non - rigid motion estimation, where the problem is to track points on the heart wall
over time. Imagine the heart wall moves from state at time t to the shape at time t+dt.
Then the problem arises where does the point P go at t+dt. Where it is certain that P
remains on the expanding surface, it is the question precisely where does it go?

??

t
t + dt

P

The approach to non-rigid motion tracking problem is based on the 3D-bending model.
We follow [1] very closely.

The first step is to find in the image data all points which constitute the border of the
heart by searching for the best overall match of the deformable model to the data field.
We discuss the two dimensional case. A model is a string of (x, y) - co-ordinates, and
denoted by x(.). The precise shape the model x(t, p) is in depends on t, the displacement
along the contour, and on parameter vector p used to bend the model in a large variety
of different forms.
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The match quality Q1(t) to match the model to the data averaged over all positions t is
said to be made up of two terms [2]. One to make sure the model connects the places
where the maximum outward pointing gradient is in the data:

Q1(t) = ⌡⌠
t

  ∇ f(x(t, p)) . x'⊥ (t, p)  dt 

where the local gradient ∇ f(x) is computed from the image data f(x) by differential
filters, and x'⊥ (t, p) is the derivative of the normal to the curve. The other one takes care
that the contour is smooth:

Q2(t) = ⌡⌠
t
κ '(x(t, p))2 || x'(t, p) || dt     .   ⌡⌠

t
 || x'(t, p) || dt 

where the local curvature change κ ' is computed from the contour model, and x'(t, p) is
the derivative of the tangent to the curve. The best integral match is reached by
optimising the parameters p of the path x generated by the model x(t, p) is such that the
integral quality matches best. The optimisation procedure is:

x* = arg maxp Q1(p) + λ  Q2(p)

where λ takes care for a problem dependent balance between the two quality factors. This
procedure yields a model-based segmentation of the heart data, slice by slice. The
segmentation result of each of these slices combined gives a segmentation of the heart
volume.

To model the motion of the 3D heart, a wire triangulation is matched to the segmentation
result. For each patch, fit a biquadratic surface to compute the differential characteristics
of the surface point. The biquadratic fit involves finding in each triangular patch the six
coefficients:

a x2 + b xy + c y2 + d x + e y + f

where the co-ordinates (x,y) are measured along the tangent directions, and the z - co-
ordinate is measured along the normal direction. In matrix form, the coefficient vector
which minimises the fit error is:

(AT A)-1 AT Z

where Z is a column vector of the zi values. A is a n x 6 matrix, with n is the number of
data points. Row i consists of [xi2, xiyi, yi2, xi, yi, 1]. The result of this procedure is the
computation over triangular patch s of a value K0(s) denoting local curvature. Because
curvature information is rather unstable, the curvature field is smoothed by a similar
procedure as before:

K*(s) = arg min ⌡⌠
S

 Cd(s) ( (K(s) - K0(s) )2 + 
∂K
∂s  ) ds .
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S is the surface domain, and Cd is a confidence measure derived from the matrix
estimation expressing goodness of fit, and hence reliability for that patch. In K*(s), we
have obtained a plausible estimation of the curvature over the heart surface.

The physical model of the heart wall is a thin-plate loosely constrained to deform in a
predetermined way. The potential energy of an ideal thin flexible flat plate of elastic
material which is a measure of the strain energy of the deformation is given:

e = 
κ12 + κ22

2  

where κ1 and κ2 are the two principal curvatures of the surface. This measure is invariant
to 3D - rotation and translation. The above physical quantity is slightly modified to
define the energy required to bend a curved plate in a shape at time t, to a newly
deformed state at t+∆t as:

ed =  (   Error!- Error!)

This equation assumes that the corresponding points on the surfaces are known. Under
the assumption that surface deforms only slightly and locally within a small time interval,
for each sampled point P on the surface at time t, a local area is searched on the surface
at t+∆t. The point within the search window on the second surface that is best matched
(i.e. minimising the bending energy deformation) is chosen as the point Pt+∆t
corresponding to Pt. The value of bending deformation energy is used as an indicator of
the uniqueness of the match. The matching process yields a set of shape-based motion
vectors D0(s), pointing from any point Pt of the one surface to Pt+∆t on the next one in
the sequence.

Again, D0(s) is a rough vector field, so again smoothing is necessary by the physically
plausible constraint of locality. Strong, unique matches from the bending energy
matching process should be preserved, while ambiguous matches should be smoothed
over by their neighbouring matches. The confidence measures from the initial match are
used as weighting coefficients in the smoothing functional. The functional for smooth
motion estimation is similar to the curvature smoothing functional:

D*(s) = arg min ⌡⌠
S

 Cd(s) (D(s) - D0(s) )2 + 
∂D
∂s  ds .

At the end of this process we have yielded a reliable estimate for motion estimation of the
heart surface in vector field D*(s).

3 AI model - driven vision

We now turn to the case where the knowledge of the domain has a predominantly rule -
based character. Such a characteristic will frequently be encountered when there is a
deliberate intention behind the object of which the image is to be analysed. A clear
example is an engineering drawing, as 1) they are meant to be understood in one and
precisely one way, 2) they imply a specific set of actions during the drawing, and 3) the
imply a sequence of specific actions in its understanding. These actions can be specified
in symbolic statements, in principle, as well as its order. So, the contents of a drawing can
be known, in principle.
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To demonstrate the principle of symbolic model - driven image understanding, consider
the problem of a paper map to be turned into an electronic file by image analysis. The
process will consist of the following steps: scanning -- ink detection -- the reasoning loop
-- match to real world -- store. We go over the steps one by one.
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The paper map will be scanned by feeding it through a large size scanner. We require
such a scanning focus, transport stability and resolution that we have enough spatial
resolution to be able to detect the presence and location of graphical symbols in spite of
the presence of noise, stains and repairs of the map. Grey value scanning is a safeguard
against jagged line segments as well as line rupture when the line intensity locally fades.
As a function of line width and effective grey value resolution, 400 dots per inch 8 bit
grey value is used. A digital image of a map typically measures more than 10,000 x
10,000 pixels, or 100 Mbyte of data. See the example in Figure 3.

The next step, ink detection, is introduced to bootstrap the reasoning process as well as
speeding up the analysis process later on. Target here is to discriminate all instances of
ink in the field of view from the dirt, spills and other irregularities. To that end, locally
adjusted segmentation schemes build on knowledge of the minimum and maximum
admissible pencil width profile. Also in use is a skeleton algorithm, indicating the heart
of each line, at crossings taking into account knowledge that two pencil movements have
created a locally increased line width. Output of this step is a modified grey - values
image where the contamination's have been removed, a binary file indicating the
locations where the map contains ink (if all is well), and a line-segment file introduced
for efficiency only listing all stretches of uninterrupted line strokes. These three files are
handed over to the reasoning - loop.

The purpose of the reasoning loop is the propagation of uncertainty from observations
on the scan data to a conclusion about the map structure consisted with the rules of the
map maker. At closer look, it consists of meta - reasoning, reasoning and detection.
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Figure 3: Example of a paper utility map scan, only a very small part is shown. Data
kindly provided by the PNEM through the TopSpin contract.

Graphic sign recognition occurs through a set of computational routines, called detectors,
one to each type of sign. The list of all signs is known as the legend, but in every day
practice, the rules derived from the legend are to be completed with regional differences
in style, implicit rules and abstract and composed symbols.

In the example, the graphic sign of a "lit" always is indicated by a solid circle with the
line indicating the gas running through its middle. Such a symbol has a fixed ideal
appearance, with only the position of the gas line and its diameter as parameters. This is
the most simple case. The graphical sign of houses is characterised by a fixed line width
in an open or closed poly-line. No fixed shape is present here, and the sign detector is to
be composed of a line width detector, followed by a straight line segment detector
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working on the result of the previous one, followed by a house detector building the
straight line segments into a house, according to the admissible rules. Least rigid in rules
and hence shape are the dashed lines linking the contents of the gas line to the drawing
of the line.

The detector will contain knowledge of the dashing, the line width, repetition patterns,
starting position, etc. All in all 20 different graphical sign detecting algorithms are
needed for the example, each of which may contain some knowledge of the map maker's
rules. Generally, for practical applications any detector will be characterised by non-
perfect detection. Specifically it will erroneously assign an object to its target (a false
positive finding), or it will left unrecognised an object which in fact should have been
detected (false negative). Any parameterized detector can be tuned on a Receiver
Operator Characteristic curve, better known as ROC-curve, to a certain false positive value
from which its false negative rate will follow, or vice versa. The tuning cannot improve
both error rates unless the quality of the detector is improved. Where to tune a detector
depends on the application. If there are very few signs and they are very crucial to
observe, a low false negative is best at the expense of a poor false positive rate, creating
quite a few false alarms.

Once the graphic signs have provided a clue, reasoning may start to explain the
instantiations of the signs according to the map makers rules. The lowest layer of rules
will absorb input from the detection modules and produce a conclusion at a higher level
for the map at hand. This then feeds into a higher level rule which leads to a high level
conclusion, until all observed signs are considered, none left unused and the highest level
conclusion has been reached that the map interpretation is consistent.

The reasoning engine will perform actions of the following types: detected signs (facts)
feed into a rule (knowledge) leads to a consisted conclusion. Note that a conclusion once
it has been reached has the status of fact for the map at hand. Inconsistency occurs when
two conclusions demonstrate a conflicting outcome or when observations are made for
which there is no rule to explain them. In the first case, observations should be
reconsidered or, alternatively, the rules of the model  may be wrong. In the second case,
again observations may be faulty, or the model may be incomplete.

In a reasoning engine facts are connected with conclusions by rules, known to describe
the domain. There are several candidates for such a reasoning. In most practical cases,
strict logic is insufficiently robust to deal with situations where detection may be faulty.
In a strict logic reasoning engine, rules are of the type:

Rule i: ( 'fact' ) implies 'conclusion' is true.

where 'fact' can be composed of more than one facts by '.and.', '.or.' and '.not.' operators,
and 'conclusion' may be used as fact in other rules. Note that if two rules point at the
same 'conclusion' and they are both used in one map, they both should lead to the same
logical 'conclusion', otherwise the system is inconsistent, i.e. the interpretation of the map
runs into a dead end.

With strict logic reasoning, any false detection leads to inconsistency or to a consistent
but erroneous conclusion. Therefore, propagating some form of uncertainty may be
helpful, especially when the rules of the domain contain redundancy. In the example, a
doubly arrowed line is always drawn between a house and a gas line, so the uncertain
detection of a one, possibly two, arrow-headed line the surrounding graphic symbols
may help out deciding. In the Mycin - formalism, the central paradigm is that compatible
certainties are attached to facts as well as to implications, in spite of the fact that the one
certainty is observational and the other one included in the model knowledge. By
making them equal they can be manipulated as follows. Uncertainty is indicated by:
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u  =  +1 most certainly true

u  =  0 indifferent

u  =  - 1 certainly not true

The combinatorics of Mycin are defined as:

.and. fact1 .and. fact2 ur   =  min{ u1,  u2 }

.or. fact1 .or. fact2 ur   =  max{ u1 ,  u2 }

.not. .not. fact ur   =  - u1

implies ( 'fact' ) implies 'conclusion' ur   =  ufact . uimply

There is a special combinatoric rule for combining two different rules pointing at same
conclusion. Rule 1 has a resulting certainty of ur1., and rule 2 has a resulting certainty of
ur2. Then,

ucombined  =  ur1  -  ur1.ur2  +  ur2 for  ur1 > 0 and ur1 > 0,

ucombined  =  ur1  +  ur1.ur2  +  ur2 for  ur1 < 0 and ur1 < 0,

ucombined  =  
 ur1  +  ur2

 1 - min { |ur1| and |ur2| }  otherwise.

Note that the first three are combinations of observational uncertainties only, consistent
with logic combinatorics (check!). The fourth one combines observational uncertainty
with model uncertainty where the imply is not always the case. The fifth is needed for the
case when two observations point at the same conclusion.

As an example of the reasoning process consider the following observations
(connectivity is assumed but omitted for clarity):

fact1 object1 is house with u1 = 0.8

fact2 object2 is gasline with u2 = 0.7

fact3 object3 is doubly arrowed line with u3 = 0.5

And the following map maker's rules:

rulea (objectz = house to gasline) implies with u = 0.9

z = doubly arrowed line

ruleb (object_at_one_end = house) .and.

(object_at_other_end = gasline) implies

x = house to gasline

Then reasoning proceeds as follows:
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reasoningi (object_at_one_end x = house with u1 = 0.8) .and.

(object_at_other_end x = gasline with u2 = 0.7)

implies x = house to gasline with ui = 0.7

Fact1 and fact2 have been inserted in ruleb. Then, the .and. combinations leads to the
minimum of the two u's to establish the uncertainty in the combined result.

reasoningii (objectz = house to gasline with ui = 0.7) implies with u = 0.9

z = doubly arrowed line with uii = 0.63.

The resulting ui of reasoning step i has been inserted here. Then, the product of the
imply combinatoric gives the resulting certainty of 0.63.

reasoningiii fact3 implies doubly arrowed line with u3 = 0.5

reasoningii implies doubly arrowed line with uii = 0.63

Fact3 and the result of reasoningii are both leading to the same conclusion, so the fifth
combinatoric should be used here, establishing the certainty of the detected doubly
arrowed line as uiii = 0.815, higher than each of the individual certainties. So, by
combining uncertainties one can gain in certainty indeed.

Mycin as a reasoning engine has several known drawbacks, we will not discuss here. As
an alternative the belief networks by Pearl have been successfully proposed, but the types
of combinatorics are the same.

Meta reasoning is introduced to indicate where to proceed with the next reasoning step.
In many systems, meta-reasoning is hard coded and hence limiting the generality of the
system. A proper system would consist of a hierarchy of reasoning layers, the top one be
called meta-reasoner. We leave the matter by stipulating its inevitable existence, because
if not by meta - reasoning how would a system know where to start and when to stop?

In our example, when reasoning has successfully come to an end, now follows the
matching of graphics sign on real world co-ordinates. To that end a transformation
matrix is computed transposing each entity given in the co-ordinate system of the map
into real world co-ordinate system. This transformation is rarely uniform throughout the
map as it should account for cuts and tears, as well as shrinking of the paper and
measurement errors. We will not go into this module here after which the process to
convert paper maps to electronic files is finished.

4 Some concluding remarks on model - based vision

We have presented two paradigms of including domain knowledge in your vision system:
physics models working by the principle of continuous parameter optimisation and AI -
models propagating the uncertainty from observations through conclusions on the
image. We restrict the concluding remarks to design considerations, parameter tuning,
and the thoughts of a combined model.
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4.1 Design considerations

In an object oriented system design, reuse and abstraction of the module is the prime
concern. Note that through the use of graphical sign detectors we have localised all
access to the data fields in the detector modules. They serve as virtual sensors, capable of
detecting a specific graphical sign. Such a sign may be fixed in shape and simple, such as
a lit, or composed of several layers of detectors where the one layer inputs to the other as
was the case with the detector for the house. In addition to localising the access to the
data in self-contained detector modules, we have also described a strong separation of
reasoning about the map maker's rules from the reasoning about graphical signs. Again,
such a separation enables reuse of individual components for similar but different
purposes.

In physical modelling, the breaking up of the system in isolated components is far less
obvious. In effect, the physical model functions as it yields an integral solutions to the
segmentation problem. So, reuse of code is more difficult to achieve in physical model -
driven vision. However, the code needed for physical models is generally far less
complex. In the AI - model case, software was needed for ink - detection and 20 other
detectors of graphical signs as well as reasoning modules. This is typical for a non-trivial
rule-based reasoning systems. In a physical model, the number of computations may be
very large by the number of iterations required, but there are only a limited aspect to
consider in the model and hence write code for.

4.2 Parameter tuning

In the symbolic - model driven approach, we have described the possibility to break up
the code in self-contained modules which will have the sole access to the data fields. In
addition to be better maintainable, computing modules designed in this way can also be
tested and optimised in their parameters in an off-line experimentation environment,
searching in a database of well-documented sign examples for the best settings to achieve
detection in the particular domain at hand.

In the force model - driven approach, parameter optimisation is intrinsically integral, and
in effect part of the computations on each individual image. In fact, parameter
optimisation is what the algorithm is after given the data and the abstract model it has at
its disposal. Tuning of parameters to improve performance or results can be
implemented by confining or directing the search for the best fit in parameter space by
using domain specific knowledge.

The take home message is that whereas many have preceded you in applying a symbolic
model for a domain where the domain is all continuous and vice versa where a domain is
governed by discrete rules to apply a continuous model, you should do so and safe a
year in trying to solve an digital vision problem.
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