
1

Nonlinear data mapping by neural networks

R.P.W. Duin Delft University of Technology, Netherlands

Abstract
A review is given of the use of neural networks for nonlinear mapping of high
dimensional data on lower dimensional structures. Both, unsupervised and supervised
techniques are considered.

Keywords: Nonlinear data mapping, neural networks, supervised, unsupervised, feedforward
networks, self-organising maps, vector quantization

1 Introduction to nonlinear mapping

The analysis of high-dimensional data has an increasing importance due to the growth of sensor
resolution and computer memory capacity. Typical examples are images, speech signals and
multi-sensor data. In the analysis of these signals they are represented in their entirety or part by
part in a sample space. As an example, a single data point may represent a 16x16 (sub)image. A
collection of these images constitutes a cloud of points in a 256-dimensional space.

In most multi-sensor data sets there is a large dependency between the sensors or between the
sensor elements. This is certainly true for nearby image pixels. But also more fundamentally, it
is not to be expected that any physical experiment contains hundreds of degrees of freedom that
are of significant importance. Consequently, multi-dimensional data sets may be represented by
lower dimensional descriptions. There are various reasons why such representations may be of
interest. They may reveal the structure of the data or the problem, they may be used for relating
individual data points to each other (e.g. finding the most similar one in a database) or they may
be used for retrieving missing data values. Below this will be defined more formally.

The following representations of a set of k-dimensional data pointsxi = (xi1, xi2, ..., xij , ..., xik),
xi ∈ Rk defined by X = {x1,x2, ...,xi, ...xm} will be discussed here:

a. A set of prototypes Z = {z1,z2, ...,zi, ...zn} with zi ∈ Rk, i.e. a small number of data
points in the same data space, n < m, selected or constructed in such a way that each
of the original pointsxi is nearby one of the prototypeszi. So Z is chosen such that:

(1)

is minimised.The dimensionality of data space itself is not reduced. The reduction
is realised by assigning new data pointsx to one out of a set of known prototypes.

(2)

This might be used, for example, in coding applications. Sets of prototypes are
therefore also addressed as codebooks.

b. A subspacey = g(x,θ) with y ∈ Rk, θ ∈ Rk’, k’ < k, i.e. a structure having a lower
dimensionality than the original data space. Each of the data points will be close to
or in such a subspace. A natural criterion is the mean square error:

J
1
m
---- minj xi zj–{ }

i
∑=

y marg inzj
x zj–{ }=

b r o u g h t t o y o u b y C O R EV i e w m e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

p r o v i d e d b y C E R N D o c u m e n t S e r v e r

https://core.ac.uk/display/25267155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

(3)

c. A probability density function f(x). This gives for each point in the data space the
probability density that a data point is found there. If this is done well the densities
of the data points in X will be high, as measured by the maximum likelihood
criterion:

(4)

In each of these cases we have a criterion for optimizing a map M, a rule for mapping new data
points on M and a distance DM(x) of that point to the map. A particular way to apply this is the
completion of incomplete data. Let a data vector x consist out of a known part x’ and an unknown
part y, so x = (x’ ,y). For a given map M one can now find the vector y that minimises DM(x):

(5)

It has to be realised that the above way for optimizing M (e.g. Equation 3) is not focused on

minimising the error in as it uses the distance between the map and the entire vector x. In
contrast to thisunsupervised training of maps the technique ofsupervised training can be

defined using some error measure E(,y) between an estimated and a desired vector y: Choose
M such that for the set of given data vectors {(x’ i,yi), i = 1,m}

(6)

is minimum.

2 Neural network mapping

Nonlinear maps can be represented by neural networks.
These are collections of almost identical simple operators
(neurons) each contributing partially to the map, e.g.:

(7)

in which Nj(x) is a single neuron computing one
component of y. Such a set of parallel neurons may be
nested:

(8)

In this case the original data vectors x are mapped on a
first layer of n1 input neurons. Their outputs are mapped
on a second layer of n2 output neurons. Thereby y has n2
components. This can be represented in a graphical way like given in Figure 1. The neurons in
the first (input) layer have k inputs (here k = 7). The neurons in the second (output) layer have 5
inputs. All neurons have just a single output value. So this network maps a 7-dimensional space
first on a 5-dimensional space and then on 2-dimensional space.

J
1
m
---- xi yi–

2

i
∑=

J f xi()()log
i

∑=

ŷ miny DM x()()arg miny DM x' y,()()arg= =

ŷ

ŷ

J E miny DM x'i y,() yi,()arg()
i

∑=

x1 xk

y1 y2

Figure 1: 2-layer neural network

y Nj x() j 1 n,=,()=

y Nj2
Nj1

x() j 1 n1,=,() j 1 n2,=,()=

3

In each neuron a different set of weights may be stored that makes their operation different from
the other neurons. If a neuron has k inputs the size of this set is usually k+1: one weight for each
input, constituting a k-dimensional vector w and an additional constant w0, often called bias.
Two very common types of neurons are the thespatial neurons and thedirectional neurons.

The spatial neurons can be thought to be located at a particular point in their input space. Their
weights represent this location. The bias may represent a size parameter determining the size of
some influence sphere. Such a neuron may thereby be defined as:

(9)

This neuron yields a high output value for input data vectors that are close to their location
(relative to w0). This neuron transfer function is called a radial basis function.

The directional neurons can be thought to represent a direction in their input space. Their outputs
are related to the angles between the input data vectors and their weight vectors, e.g.:

(10)

This neuron transfer function is called a sigmoidal function or just sigmoid. Note that the transfer
functions as defined by Equation 9 and Equation 10 yield values between 0 and 1. It is very
common the scale the values within neural network layers in this way. Sometimes they are scaled
between -1 and +1. In order to be able to produce arbitrary output values in the output layer linear
transfer function have to be used:

(11)

The feed-forward network as given in Figure 1 can be used for
all three types of mappings given in the first section. Prototypes
can be represented by radial basis functions in the input layer.
The distance between an input vector and the set of prototypes
is defined in the output layer. If sigmoidal outputs are used the
network represents some probability density function if the
outputs are correctly normalised. A feed-forward networks
with just sigmoidal transfer function represents a mapping by
nonlinear subspaces. Another common type of neural networks
is the self-organising map (SOM) or Kohonen network as
shown in Figure 2. In this network of spatial neurons, the
neurons are not connected. They thereby represent a set of
prototypes. During the optimization of the network some
connectivity is assumed. This will further be discussed below.

3 Unsupervised techniques

We will now give some examples on how neural networks can be trained in an unsupervised way.
The three mapping types given in the introduction will be treated separately.

N x w w0,() x w–– w0⁄{ }exp=

N x w w0,() 1
1 w x•– w0–{ }exp+
--=

N x w w0,() w x• w0+=

Figure 2: Architecture of a 2D
self-organising map.

4

3.1 Prototypes by vector quantization

Suppose we have an initial set of prototypes (e.g. a random selection of the original data set)
Z = {z1,z2, ...,zi, ...zn}. A very simple way of updating this set is by determining the subsets
Xi ⊆ X, i=1,n such that Xi contains all vectors in X that have zi as their nearest prototype. Now
all prototypes are replaced by the means of the data vectors in the corresponding Xi. This is
reiterated until stability. This procedure is called the k-means method. A sequential procedure
can be defined by:

zj = zj + α(t)[x i - zj] if zj is the nearest prototype of xi (12)

repeat for i = 1,m

iteratively repeat with decreasingα(t).

Formally this procedure has not much relation with neural networks. It is, however, for historical
reasons treated in connection with these.

3.2 Subspaces by neural networks

3.2.1 Subspaces by self-organising maps (SOMs)

Subspaces can be found in relation with the above treated vector quantization method by
conditioning the set of prototypes in a grid of the desired subspace dimensionality. Most popular
is the use of a n x n grid of n2 neurons representing n2 prototypes. This structure is emphasized
and preserved by replacing the above update rule by:

zj = zj + αjk(t)[x i - zj] if zj is the nearest prototype of xi and
zk is within some predefined grid neighbourhood ofzj.
αjk(t) is a weighting function that decreases with the
number of iterations and with the grid distance betweenzj
andzk.

This procedure may be followed for structures of any
dimension. In practice, however, just one-, two-, and
sometimes three-dimensional grids are used. For more
dimensions too many neurons will be needed.

3.2.2 Subspaces by diabolo feedforward networks

Feedforward networks as given in Figure 1 represent in
each layer a subspace. If it is possible to map the input data
on a particular layer a reconstruction by following layers
should be possible, see Figure 3. The 3rd and the 4th layer
restore the original data vectors after they are mapped on
the 2nd layer. Training should be done by minimizing the difference between inputs and outputs
of the entire network. In fact this is a supervised procedure, see below. The data set itself,
however, does not contain any target values. Thereby this is a supervised solution of a
nonsupervised problem.

x1 xk
Figure 3: 4-layer diabolo network

n1

n2

n3=n1

n4=k

5

3.3 Probability density functions

In this case the neural network outputs are considered as probability densities. For that reason
the output layer consist of a single neuron and has a linear transfer function. Usually the first
layer has radial basis transfer functions. A good network yields high outputs for the training data
vectors. The maximum likelihood criterion is thereby often chosen for optimizing the network:

(13)

4 Supervised techniques

We will now give some examples on how neural networks can be trained in an supervised way.
Recall that in this case the given data set X consists of vectorsx = (x’ ,y) and that networks have
to be found that estimatey as correctly as possible if the partx’ is given.

4.1 Prototypes by learning vector quantization

The quality of prototypes has to be judged on the basis of the distance between the desired and
the estimatedy-values (targets). Equation 12 might therefore be replaced by something like

zj = zj + Α(t)[xi - zj] if zj is the nearest prototype of xi (14)

in which the matrix A(t) has larger values for the target components.

4.2 Subspaces by neural networks

This problem is the traditional use of the feedforward network, Figure 1. The network outputs
are the target values. Again linear output transfer functions might be needed. A diabolo network
is not necessary now. A wide range of network optimization techniques is available.
Traditionally backpropagation is used, an iterative gradient descent technique. Faster techniques,
especially for smaller networks, might be preferred.

4.3 Probability density functions

The unsupervised solution can be applied also here. If the joint probability density function for
x = [x’ ,y] is estimated by f(x’ ,y), the y-value for a given x might be found by

(15)

References

1 J.C. Mao and A.K. Jain, Artificial neural networks for feature extraction and multivariate data
projection, IEEE Transactions on Neural Networks, vol. 6, no. 2, 1995, 296-317.

2 A.K. Jain, J. Mao, and K.M. Mohiuddin, “Artificial Neural Networks: A Tutorial,” Computer, vol.
29, no. 3, pp. 31-44, 1996.

3 T. Kohonen, Self-organizing maps, Springer, Berlin, 1995

4 C.M. Bishop, Neural networks for pattern recognition, Clarendon Press, Oxford, 1995

5 B.D. Ripley, Pattern recognition and neural networks, Cambridge University Press, Cambridge,
1996.

J yi()log
i

∑=

ŷ marg axy f x' y,()()=

