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A b s t r a c t 

On the basis of "Review of Particle Data" tables, an analysis 
is made of the probability distribution for the values of a quantity 
α, using its measured value A and experimental error ∆. Contrary 
to the widespread belief, this distribution is quite different from 
the normal one and exhibits a significantly slower fall-off with 
growing deviation. The divergence with the normal law is several 
orders of magnitude. A good approximation of the empirical distribu
tion can be given by a simple exponential. Arguments are put forward 
to the effect that this law is natural; it would appear to be conven
ient to use it for estimating the confidence level of experimental 
data. 
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When experimenters measure a certain quantity a, they usually 
express the result obtained in the form 

Δ = A ± Δ, (1) 
i.e. they indicate two numbers: A - the most probable value of the 
measured quantity, and Δ - the standard deviation. It is usually 
considered that the probability of finding the true value of quantity 
a in the interval between a and a + d a is provided by the normal 
distribution formula: 

dw (a) = 1 e- (a-A)
2 

(2) dw (a) = 1 e- 2∆2 (2) dw (a) = 
√2π ∆ e

- 2∆2 (2) 

It is true that the grounds for using this formula are not very 
sound, and this is stressed fairly frequently; nevertheless, it is 
widely used for evaluating the confidence level of the results. In 
particular, it is generally considered that the probability of a 
divergence of more than three standard deviations between the measured 
and true values is about 0.3%, and that of more than five standard 
deviations about 10-6 etc. It frequently happens, however, that more 
accurate measurements at a later date provide a value which diverges 
very considerably (by several standard deviations) from that previous
ly indicated. Such divergences are usually due to various systematic 
errors. This provides grounds for a certain lack of confidence in 
experimental results. Many physicists hold the opinion that a reason
able evaluation of the reliability of the results may be obtained by 
increasing the experimental error quoted by about three times. The 
present work is devoted to an analysis of this phenomenon and con
stitutes an attempt to provide a quantitative description of it. 

As will be seen from what follows, the real distribution of 
probabilities decreases much more slowly than in accordance with 
formula (2), so that the probability of a divergence exceeding, for 
example, five standard deviations, is about 10-2 instead of 10-6. 
To explain this, it is natural to use as a basis the fact that the 
standard deviation (dispersion) Δ is determined rather imprecisely 
in practice, so that the inaccuracy in determining it is comparable 
with its actual value. 
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A straightforward analysis of this kind was carried out on the 
basis of the tables by Rosenfeld et al., (1964)/1/, from which were 
taken all of the results of the individual experimental papers relating 
to particles which are stable with regard to strong interactions. 
Only those results were discarded which were not of the form (1), i.e. 
either did not contain an error value at all, or were given in the 
form of the inequality a < A. The total number of different data 
was 235. The "accurate" values of the measured quantities were taken 
from the table of 1972 / 2 /. As in reality they too are approximate, 
and for some of them the error has over the past years changed only 
slightly, it was necessary to make a certain selection among the 235 
experimental values. The criterion for the selection was the ratio 
between the old error ∆ and the new one δ. The examination included 
those data for which the Δ/δ ratio exceeded a certain figure*). In 
order to be able to estimate the influence of arbitrary selection of 
this number, two values were selected for it; 2.5 and 4. The number of 
data fell to 209 in the case Δ/δ > 2.5, and to 181 in the case ∆/δ> 4. 
Their distribution over the various ranges of the value x = |a-A ∆ is 
shown in Table I. 

Even a cursory glance at this table shows the very wide range 
of the distribution being studied: its tail extends up to x > 6. 
The probability of this deviation, computed in accordance with formula 
(2), ought to have been of the order of 10 - 9. This can be seen even 
more clearly from figure 1, where the integral distribution of the 
x data from Table I is shown in the form of a semi-logarithmic graph. 
The vertical axis represents the relative number of measurements for 
which x exceeds the given value (broken lines). The continuous line 1 
relates to data of the group Δ/δ > 4, and the chain-dotted line 2 
relates to the data where ∆/δ > 2.5. Over almost all their length, 
these two lines practically coincide; this is natural since the number 
of measurements in the range 4 > ∆/δ > 2.5 is comparatively small. 

*) It is stressed that the new value of δ is the result of averaging 
a large number of measurements which are at present known, whereas 
Δ relates to individual experimental papers. 
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The curve 3, which is given for comparison, illustrates the distribu
tion to which formula (2) leads, i.e. the function 

√ 
2 ∞ 

e- x
2 
dx = 1 - Ø x ) (6) √ 

2 ∫ e- 2 dx = 1 - Ø x ) (6) √ π x 
e- dx = 1 - Ø √2 ) (6) 

It will be seen that the "experimental" curves are consistently 
higher than the "theoretical" curve, the divergence attaining many 
orders of magnitude at the end of the curve. It is important to note 
that even at small values of x the divergence is quite significant 
(when x = 3 it is more than one order of magnitude). Thus, the 
predictions of formula (2) are not confirmed experimentally. 

In order to improve the agreement with formula (2), we may 
assume that the experimenters are underrating their errors, and we can 
increase accordingly the measurement error Δ contained in (2) by a 
factor of 2, for example. (There are no grounds for applying a factor 
of 3; this would give a distribution which decreases too slowly). 
This will, however, lead to a marked overestimate of probability in 
the region of intermediate x values between 1 and 4 (the chain-dotted 
line 4 in figure 1). It may be concluded that the Gaussian-type 
formulae are not suitable for evaluating the confidence level of the 
experimental results. 

A much better approximation of the experimental values of 
probability is given by the simple exponential dependence; 

ρ(a,A,∆) ~ 1 e-k |a-A| 
, (7) ρ(a,A,∆) ~ 1 e-k ∆ , (7) ρ(a,A,∆) ~ Δ e-k ∆ , (7) 

where the coefficient k in the exponent is, with a good degree of 
accuracy, equal to unity (the straight line 5 in figure 1 ) . The 
last-mentioned situation is probably accidental but, as far as the 
more general expression (7) is concerned, arguments can be put forward 
for its occurence instead of the generally accepted normal law (2). 

Use of formula (2) assumes that the value of the rms error 
(distribution dispersion) is precisely known. There are, however, 
grounds for believing that the measurement error indicated by the 
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experimenters do not give absolutely precise dispersion values. 
Furthermore, the error in their determination may quite easily be of 
the order of the value itself. In order to determine the total error 
of a complex present-day experiment, account must be taken of a very 
large number of different factors whose influence in many cases is 
estimated more or less roughly. If the total error were only statis
tical, it would be determined fairly well. Unfortunately, the real 
situation is quite different. As a rule, the measurement results are 
affected by systematic errors, and it may prove a very complex matter 
to take these into account. Furthermore, there almost always remains 
some uncertainty as to whether account has been taken of all the 
substantial factors which may lead to systematic errors. 

In view of the above remarks, the following formal approach 
may be adopted. We shall consider that the experimental error quoted 
Δ provides, not an accurate, but only the most probable dispersion 
value. 

Instead of knowing the precise dispersion value, we shall 
assume a certain distribution τ(Δ',Δ), which gives the probability 
that the true dispersion value falls between Δ' and Δ' + d∆ 

dw (∆',∆) = τ(∆',∆) d∆', (8) 

where Δ is the experimental error, which we shall assume to be equal 
to the most probable value of Δ'. Assuming that for each given disper
sion value Δ' the distribution (2) is correct, we obtain 

ρ(α;A,∆) = 1 ∫ d∆' τ(∆',∆) e-(a-A)2 (9) ρ(α;A,∆) = 1 ∫ d∆' τ(∆',∆) e-2∆'2 (9) ρ(α;A,∆) = √2π ∫ Δ' τ(∆',∆) e-2∆'2 (9) 

This formula is reduced to (2) only when the function τ(Δ',Δ) in the 
significant range of Δ' changes very rapidly in comparison with 
1 (a-A)2 
∆' 2Δ'2 and may thus be replaced by δ(∆'-Δ) (since the integral 
from it is equal to 1). If, however, this condition is not fulfilled, 
formula (9) gives a very different result. 



- 7 -

This will be seen if we examine the behaviour of the function 
ρ at large deviations |a-A|. In this case, the main contribution 
to the integral (9) is given by the region of large Δ ' , and conse
quently the asymptotic form of the function τ at Δ' → ∞ is sub
stantial. We shall assume that this asymptotic form, in accordance 
with the normal Δ' distribution, has a Gaussian form 

τ(∆',∆) ~ e-ν(∆'/∆)2, (10) 

where ν is a certain number. Then, in integral (9) the region of the 
saddle point defined by the condition 

∂ [ν( ∆' )2 + 
(a-A)2 ] = 0 ∂∆' [ν( Δ )2 + 2∆'2 ] = 0 

or 

( 
Δ' )2 = x , x = 

|a-A| . 
( ∆ )2 = √2ν , x = Δ 

. 

is substantial. 

Hence, we obtain for ρ at large values of x 

ρ ~ e-x√2ν, (11) 
which coincides with (7) at k = √2ν. 

Let us note that a distribution of the form 

τ (∆',∆) = ∆' e- 1 ( ∆' )2 (12) τ (∆',∆) = ∆' e- 2 ( ∆ )2 (12) τ (∆',∆) = Δ2 e- \ 
(12) 

gives exactly formula (7) with k = 1, which in this case is correct 
for any x (not only asymptotically). Generally speaking, the value 
of k, in accordance with formulae (11) and (12) is determined by the 
rate at which the distribution of τ(∆',∆) declines and obviously must 
depend on the type of experiments, their complexity, the number and 
degree of confidence in the assumptions made etc. - in other words, 
on how reliably one can determine the rms error of the experiment. 
We may consider k = 1 as the empirical average value at which formula 
(7) gives a satisfactory evaluation of the probability of deviation 
from a given experimental result. 
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Let us sum up. It follows from what has been stated that the use 
of the normal distribution formula (2) for evaluating the degree of 
confidence in experimental results leads to completely wrong conclu
sions. In order to eliminate the possible deviation with a probability 
in excess of, for example, 99% it is necessary to have a much wider 
range than that normally used (3 standard deviations which is based on 
formula (2). In order to obtain a clear picture, we indicate in Table 
II the comparison of the probability of a divergence exceeding n  
standard deviations, determined from formulae (2), (7) and from empi
rical data. From this we can see that a confidence level of 99% is 
attained only when there is a margin of 5 standard deviations. If we 
adhere to this principle, the appearance from time to time of results 
which are seriously divergent will not in any way seem extraordinary. 

The author expresse his gratitude to V.M. Shekhter for the 
interest he has constantly shown in this work and for useful 
discussions. 



T a b l e I 

Distribution of data for x = |a-A| Δ 

Range of 
x 

Number of data 
∆/δ > 4 4 >∆/δ >2.5 

0 - 0.5 55 6 
0.5 - 1 54 7 
1 - 1.5 29 7 
1.5 - 2 21 3 
2 - 2.5 10 1 
2.5 - 3 4 3 
3 - 3.5 2 -
3.5 - 4 1 -
4 - 4.5 1 -
4.5 - 5 1 -
5 - 5.5 2 -
5.5 - 6 - -
6 - 6.5 1 1 

Total: 181 28 

T a b l e II 

Probability that the precise value departs 
from the measurement result by more than n errors 

Number of standard 
deviations 
n 

Normal distribution 
(formula 2) 

Exponent 
(formula (7) 
for k = 1) 

Empirical 
result 

1 1/3.2 1/2.7 1/2.5 
2 1/22 1/7.3 1/8 
3 1/370 1/20 1/23 
4 1/16000 1/55 1/40 
5 1/1700000 1/150 ~1/60 
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Fig. 1. Relative number of measurements the results of which depart 
from the precise values by more than x standard deviations: 

Curve 1 : empirical data, ∆/δ > 4; 
Curve 2 : empirical data, ∆/δ > 2,5; 
Curve 3 : normal law, formula ( 6 ) ; 
Curve 4 : normal law with twice the error; 
Curve 5 : exponential law, formula (7), for k = 1. 


