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Abstract
Several methods of extraction of ions in cyclotrons, such as stripping
extraction and resonance extraction, are considered.  An extraction
efficiency of nearly 100% can be achieved by providing a very high
energy gain per turn or alternatively, for H- cyclotrons, by stripping.
Only simple models are used to explain certain extraction features.
Orbit centre coordinates are introduced.  Examples of extraction devices
for several cyclotrons are given.

1 . INTRODUCTION

There are various types of cyclotrons for different applications.  Extraction mechanisms
and extraction devices are naturally adapted to the specific use of these cyclotrons.  One may
differentiate between stripping extraction for H- cyclotrons and the extraction of positive ions
employing an electric septum and a magnetic channel.  In general, positive-ion cyclotrons for
analytical purpose such as element analysis or material characterization, or for nuclear physics,
do not require a large beam current but, instead, need a good beam quality and energy
resolution.  Here mostly resonance extraction methods are employed.  

For the production of short-lived radionuclides high beam currents are neccessary, not
only because of favourable cost per unit of product, but also because of the short lifetime.
Compact cyclotrons that accelerate positive ions for isotope production generally have a limit in
extracted beam current of about 100 µA.  (Separated-sector cyclotrons can generate a much
higher external current.) The internal beam of such a cyclotron yields a spot of a few mm2 on a
target.  This means that with an energy of 30 MeV a beam power of 3 kW may hit the
electrodes.  Given the geometry of the extraction electrodes this approaches the maximum
allowable output, certainly if one wants to have a high reliability of machine operation.  The
availability of negative ion sources with high output has given the opportunity to accelerate
beams with high intensities e.g. 500 µA, and extract them via stripping.  Here, in general,
requirements on beam quality are less important than for cyclotrons for analytical applications.

We consider several methods of extraction, using only simple theory, and we give
examples of extraction devices.  The general discussion is restricted to isochronous cyclotrons,
unless synchrocyclotrons are mentioned explicitely.  We will start, however, with an older idea
of extraction for early synchrocyclotrons.

It may be noted that because of the expanding orbits, extraction from cyclotrons in general
has somewhat different aspects than for example fast and slow extraction techniques for
synchrotrons, although resonances are often exploited in both cases.  Slow extraction for
synchrocyclotrons does have similar features to that for synchrotrons, however.

General theory and information on extraction from cyclotrons has been given by
Heikkinen, Joho, Hagedoorn and others [1–3].

2 . ON DEFLECTION AT n = 1 IN THE SYNCHROCYCLOTRON

In this section we briefly consider a paper from 1951 by Hamilton and Lipkin [4], with
the title given above, in which a method was proposed for extraction from early
synchrocyclotrons.
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The synchrocyclotrons used until then, with a purely rotationally symmetric magnetic field
falling off slowly radially, had a low dee voltage, with a subsequent small turn separation.  By
providing a coherent precessional motion of the orbits (i.e. the orbit centres move slowly about
the magnet axis) via a field error or via mispositioning of the ion source, a larger orbit
separation near the deflector was obtained and an extraction efficiency (i.e. the ratio of extracted
to internal current) of typically 10% was achieved.  The precessional motion leads to a large
energy spread of the extracted beam, via high frequency phase mixing (see section 4.4).

For a cylindrically symmetric field, radial and axial particle motion are governed by the
well known relations of Kerst and Serber, yielding stable motion for 0 < n < 1, with n the field
index

n = − r0

B r0( )
dB

dr




 r0

where B(ro) is the axial field at radius ro [5].  Hamilton and Lipkin made a plot of B(r)r versus r
for the synchrocyclotron.  The top of the curve represents the highest energy attainable, and also
gives the radius for which n = 1.  They proposed to accelerate beyond the point n = 1, to utilize
the inherent radial instability beyond this, so that orbits are automatically radially separated.

Now consider radial oscillations.  It is easy to show that for radial oscillation of particles
about an equilibrium orbit at radius ro and with maximum and minimum radius rb and ra

1
rb − ra

Br( )
ra

rb

∫ dr = B r0( )r0

i.e. the particles have equal areas at either side of ro in the Br versus r plot (Fig. 1a).  Particles
for which equal areas do not exist, such as in Fig. 1b, are extracted at escape point re.  This can
also be seen in Fig. 2, in which the equivalent potential well for radial oscillations is drawn.
The 'energy levels' correspond to amplitudes of radial oscillations.

Fig. 1  (Br) versus r for the synchrocyclotron, with ranges of radial oscillations (see text)
Hamilton and Lipkin argued that the best situation is the one in which no coherent radial



oscillations exist throughout acceleration from source to final radius.  This would lead to equal
escape points for all particles, and equal final energy.  As an example, for their cyclotron the
value of Br at the n = 1 point is 8.5% above the value at n = 0.2 for which υr = 2υz , with
υrand υz  the radial and axial oscillation frequencies.  (This coupling resonance could not be
passed using the precessional extraction method because of energy exchange from radial to
vertical motion and consequent beam loss.)  Accordingly their final energy was higher.  In
present day thinking, for extraction one would provide a coherent oscillation amplitude near the
n = 0.2 point, lifting the oscillation energy level from 1a to 1b in Fig. 2.

Fig. 2  Equivalent potential well for radial motion, and energy levels corresponding to situation
in Figs. 1a and 1b.

3 . STRIPPING EXTRACTION

During the last years the vast majority of commercially available cyclotrons serve to
deliver proton beams in the energy range of 3 to 30 MeV [6].  They are mostly used for the
production of short-lived radio-isotopes for medical diagnosis and for positron emission
tomography.  New areas of applications, such as neutron radiography, are being explored.
Cyclotrons for pure nuclear physics are hardly built anymore, and if so their design is guided by
the receiving laboratory.  For these commercially available cyclotrons, it is advantageous to
accelerate H- beams, where convenient use can be made of stripping extraction, and where
intensity problems, typical for the cyclotrons for analytical purposes or for nuclear physics,
have been resolved.  H- cyclotrons are capable of accelerating particles with beam currents in
excess of several 100 µA.  Since 1975 the TRIUMF cyclotron, 520 MeV, 200 µA, is the well
known big machine accelerating H- beams, and employing extraction by stripping [7].  It is a
major example in demonstrating the feasibility of H- acceleration for isotope production
cyclotrons.

In the extraction process the negative hydrogen ion beam simply passes a thin carbon foil
(e.g. pyrolytic graphite, typically 50 to 200 µg/cm2), which strips off the electrons.  Figure 3
shows extraction orbits for the IBA Cyclone 30 cyclotron [8].



Fig, 3  Extraction orbits in the IBA Cyclone 30

3 . 1 Some important features of stripping extraction are:

• a wide energy range may be covered by changing the foil position in the magnetic 
field (the precise foil position is defined by demanding a common cross over point 
outside the cyclotron magnet for extracted beams of different energies);

• at the cross over point, a combination magnet guides the beam into a single 
external beam transport line;

• a large internal beam currents can be handled, nowadays typically 300 to 500 µA, 
with 100% extraction efficiency; activation of cyclotron components is minimal, 
allowing machine access shortly after machine operation;

• the foil lifetime typically exceeds 2.104 µAh;
• the cyclotron fringe field is traversed with reversed rotation direction and with a large 

angle, hence there is no radial defocusing (which is a problem for extraction from 
positive-ion cyclotrons);

• simultaneous extraction of two beams to two external channels is possible with two 
foils corresponding to different energies and with different beam currents, e.g. for 
the production of two different isotopes at the same time.

3 . 2 Energy spread

The energy spread of the extracted beam of H- cyclotrons may be estimated as follows.
Consider a radial phase space area at a radius r in the cyclotron, belonging to a kinetic energy T .
This area just touches the stripper foil, see Fig. 4.  We assume a good centreed beam in an ideal
isochronous field.  Particles lying in the part of the phase space area that overlaps with the foil
are stripped and extracted from the cyclotron.  Other particles have to make more revolutions to
reach the stripper, and gain extra energy.  As the energy is proportional to the radius squared
[5], the energy spread of stripped particles is given by ∆T / T = 2∆r / r  with ∆r the radial width
of the phase space area.  As an example, for ∆r = 5 mm at a radius of 500 mm the relative
energy spread is 2%.  Hence for achieving a small energy spread of the external beam it is of
importance to have a good internal beam quality.



Fig. 4  Radial phase space area reaching the stripper foil

4 . BEAM ORBITS

4 . 1 Orbit separation

Now we consider the extraction from cyclotrons with the help of extraction devices such
as an electrostatic deflector, to direct the accelerated particles away from the cyclotron magnetic
field.  A large separation between successive turns is desired for reaching the highest extraction
efficiency.  In this section we give a simplified picture of orbit separation in a cyclotron, and we
consider some methods to increase the separation [3,9].

Taking cylindrical coordinates, the radial position of a particle at an azimuth ϑ  in the
cyclotron, is given by:

r ϑ( ) = r0 ϑ( ) + x ϑ( )sin vrϑ + ϑ0( )  , (1)

where ro( ϑ ) is the radial position of the equilibrium orbit at that azimuth, x( ϑ ) is the radial
oscillation amplitude, and ϑ 0 is an arbitrary phase angle.  For incoherent oscillations the
amplitude x( ϑ ) is given by

βr0
ϑ( ) ∈x  ,

with βr0
ϑ( ) the radial beta function for radius r0 and at azimuth ϑ  and ε x the radial emittance.

However, we now look at the radial position of the centre of the beam for a coherent oscillation,
which has been induced by creating a field perturbation.  Moreover we consider this at a fixed
azimuth ϑ i, i.e. the azimuth of the extractor entrance position.  We restrict ourselves to the
case of vr near 1;  as vr ≅ γ for isochronous cyclotrons, with γ the relativistic factor, this is the
case for most cyclotrons.  (The analysis can be adapted easily for the case of higher values of vr
e.g. near 1.5 or 2.)

Rewriting Eq. (1), the radial position at ϑ i  = 2πn as a function of turnnumber n, is
given by:

r ϑi( ) = r0 ϑi( )_ x sin 2πn vr −1( ) + ϑ0( ) , (2)



where for convenience vr-1 has been taken since vr is close to 1.  The separation between two
successive turns is:

∆r ϑi( ) = ∆r0 ϑi( ) + ∆x sin 2πn vr −1( ) + ϑ0( ),
+2π vr −1( )x cos 2πn vr −1( ) + ϑ0( )  .

(3)

In this equation the three terms on the right-hand side represent the orbit separation due to
different effects.  We discuss them briefly, below.

The first term in Eq. (3) gives the orbit separation due to acceleration.  The kinetic energy
T of accelerated particles in the cyclotron is given by

T ∝ r 2B2  ,

with r  and B  the average radius and field.  Hence, neglecting the increase in the magnetic
field, the turn separation due to acceleration is

∆r

r
≅ 1

2
∆T

T
 ,

where ∆T is the energy gain per turn.  As an example for a final energy of T = 30 MeV,
∆T = 100 keV, and an extraction radius of 0.5 m, we find ∆r = 0.83 mm .  This is a rather
small number, e.g. when compared with a radial beam width of for instance 4 mm.  

Especially in separated sector cyclotrons with a high energy gain per turn, the turn
separation near extraction due to acceleration may be sufficient.  The PSI Injector II cyclotron
[10] is a good example of this.  At the extraction energy of 72 MeV the orbit separation is
1.9 cm, with an energy gain per turn of 1 MeV.  In fact the large turn separation is also crucial
as the machine is designed to handle currents in excess of 1 mA (the use of a flat-top cavity is
also important here).

Apart from the turn separation by acceleration which is automatically present, there are
two other mechanisms of forced separation which Eq. (3) reveals.  The second term on the
right-hand side in this equation gives the orbit separation by an increase in the oscillation
amplitude.  This can be accomplished by creating first or second harmonic magnetic field
perturbations in a region where vr is close to 1:

Bp x,ϑ( ) = C1 r( )cos ϑ − ψ1 r( )( ) + C2 r( )cos 2ϑ − ψ2 r( )( )

where e.g. C1 and ψ11 are the amplitude and phase of the first harmonic.  This method can be
regarded as providing dipole errors with closed-orbit distortions growing for tune values near
integers, or providing gradient errors being most sensitive and leading to an increase in the beta
function for half integer tune values [11].  This last method is the regenerative extraction method
[12-14], and has been proposed and applied for synchrocyclotrons.  Magnetic components
called peeler and regenerator with positive and negative field gradients are introduced on certain
azimuths in the cyclotron, and the tune enters the vr = 1 stopband.  Moreover, in
synchrocyclotrons one can program the RF such that the beam is stretched and that slow
extraction can be applied [15].  So-called second harmonic extraction has been applied in a
14.5 MeV compact isochronous cyclotron [16], where the number of turns in the fringe field,
where vr < 1, was too small to allow making efficient use of the forced orbit separation
enhancement mechanism discussed below.  



4.4.1.  Precessional extraction [3,17,18]

The coherent oscillation as given by Eq. (2) describes a precessional orbit motion with
oscillation amplitude x.  The turn separation due to precession is given by the third term on the
right-hand side of Eq. (3);  the maximum turn separation is given by 2π(vr-1)x.  The effect is
fully exploited by accelerating the beam far into the fringe field of the cyclotron, where (vr-1)
has a substantial value.  The side effect is that a higher final energy is reached in a given
cyclotron field.  As an example:  when a coherent oscillation amplitude x of 3 mm has been built
up (e.g. by a first harmonic perturbation near vr = 1) and acceleration takes place until vr = 0.8,
the maximum turn separation due to precession is 3.8 mm.  This can be added to the value of
0.83 mm of the example of separation by energy gain.  

Accelerating the beam far into the fringe field often means passing the vr = 2 vz coupling
resonance.  Energy can be exchanged from the radial to the vertical motion, blowing up the
beam vertically and leading to beam loss.  If the radial oscillation amplitude is not too large, and
if the resonance is passed in only a few revolutions, vertical amplitude increase is avoided [3].
In practice, a coherent radial oscillation amplitude of the same size as the incoherent amplitude,
is a good criterion for efficient extraction.  Another reason for requiring not too large radial
oscillation is avoiding strong non linear effects.

4 . 2 The orbit centre

Radial oscillations of particles w.r.t. the equilibrium orbit can conveniently be described
by the movement of their orbit centres, see Fig. 5.  (In a Hamiltonian formulation of betatron
oscillations in cyclotrons the orbit centre coordinates are the canonical coordinate and
momentum.)

Denoting the angle deviation by p̃x = px / p0, where px is the transverse and p0 is the
overall momentum, the  phase space area is equivalent to the area of orbit centres (x,y).  The
radial motion of a particle is represented by a slowly moving orbit centre motion.  If vr  = 1 the
orbit centre remains fixed in place;  if vr - 1 > 0 the orbit centre moves with frequency -(vr - 1),
i.e. rotates opposite to the particle motion.  The actual position of the particle is found by adding
the radius of curvature of the equilibrium orbit at its azimuth to the orbit centre position.

Fig. 5  Relation between orbit centre coordinates and position and radial momentum deviation of
the particle from the central orbit

4 . 3 The effect of a 1st harmonic

We give an expression for the radial oscillation amplitude induced by a first harmonic
field perturbation.  Let a positive magnetic field bump ∆B extend over an azimuthal interval ∆ϑ
along the negative x-axis, let the particle motion be anticlockwise, and let vr > 1 (see Fig 6).



Fig. 6.  Orbit centre shift ∆y due to a magnetic field bump along the negative x-axis

The 1st harmonic is

A1 = 1
π

∆Bdϑ = ∆ϑ
π

0

π

∫ ∆B  .

The field bump gives a change in radial momentum:

∆p̃x = ∆B

B
∆ϑ

and an orbit centre shift:

∆y1 = ∆B

B
R∆ϑ  .

In one turn a hypothetical particle with oscillation amplitude A , see Fig. 7, has its orbit
centre displaced by:

∆y2 = −2π vr −1( )A  .

When ∆y1 = ∆y2 one finds a new equilibrium orbit, because the orbit is closed.  The orbit
centre of this equilibrium orbit (middle of the closed curve) is given by ∆x = A .  The beam
starts oscillating around the new orbit centre.  One finds:

∆x = 1
2π vr −1( )

∆B

B
R∆ϑ

= ∈1 R

2
vr −1( )−1

 ,

in which ε1 is the relative first harmonic ε1 = A1/B.  

Often

∆x = ∈1 R

vr
2 −1



is given.  Since ( υr - 1) is small, this is about the same.
As an example:  taking ε1 = 10-4, R = 1 m and υr  - 1 = 0.01, one finds an orbit centre

shift, i.e. a radial oscillation amplitude, of ∆x = 5 mm.

Fig. 7  Shift of the equilibrium orbit due to a magnetic field bump

4 . 4 HF phase mixing

When a coherent oscillation amplitude is given to the beam in the centre of the cyclotron,
e.g. by an ion source position error, orbit centres at the final radius for particles with different
HF phases (øHF) lie on a circular band.  After n turns the orbit centre of a particle shifts by an
angle:

ϑ = 2π vr −1( )
0

π

∫  dn  .

Particles with different HF phases have to make a different number of turns to reach the
final radius.  Hence the corresponding orbit centres have a different azimuth.  This is the
phenomenon of HF phase mixing.  It implies a deteriorated beam quality and an increased
energy spread of the extracted beam (see section 3).

In most cases in the precessional extraction process, where a coherent oscillation is
induced on the passing of the vr = 1 resonance, the spreading of orbit centres for different HF
phases due to HF mixing, is small for an originally well centreed beam, as in general the
number of turns from the vr = 1 resonance till extraction is not so large.  So in general the
coherence of the radial oscillations persists for particles with a different HF phase.  This is one
of the favourable features of the precessional extraction method.  In contrast to this, an example
showing the orbit centre off-set for different HF phases has been given by Laxdall [19],
(Fig. 8) in a study of H- extraction from the TRIUMF cyclotron (with many turns from the



vr = 3/2 resonance till extraction).

Fig. 8  Radial scans for the TRIUMF cyclotron using a differential probe showing the beam
density pattern for an optimized phase band and for a phase band off-set by 24˚.  Phase
dependent amplitude growth at the υr=3/2 resonance and a cosø dependence in the rate of
advance of the precession centre account for the difference.

5 . PRECESSIONAL EXTRACTION, NUMERICAL SIMULATION

In this section a numerical example regarding the precessional extraction method is
presented, and some remarks about it are given [9].  The calculations refer to the AVF cyclotron
of the Eindhoven University  [20].  

The equations of motion are integrated up to the extraction radius, starting before the
vr = 1 radius.  The measured magnetic field data are used, and a first harmonic field
perturbation

∆B r,ϑ( ) = C1 r( )cos ϑ − ψ1 r( )( )
is included to provide a coherent oscillation at vr = 1.  The tune diagram for the machine is given
in Fig. 9, in which the average radius is indicated.  The beam is extracted at and the calculations
start at r  = 48 cm.



Fig.9  Tune diagram for the Eindhoven cyclotron, with the average radius indicated
It is seen that several resonances are passed during the extraction process, of which

vr  = 1 and vr  = 2vz are the most important ones.  Figure 10 gives the motion of a grid of
particles in radial phase space.

Fig. 10  Precessional extraction.  Evolution of particles with øHF = 30˚ in radial phase space for
the Eindhoven cyclotron.  The extractor aperture in phase space has been calculated (solid
aperture);  an optimum location is indicated (aperture in broken lines).

The following remarks and observations can be made:

• The calculation starts about 10 turns before vr = 1, 'turn 0'.
• The entrance of the extractor (as indicated by a box) lies near a hill-valley boundary.

Therefore the orbits are directed inwards by about 50 mrad.  This explains the negative
vertical scale.

• The turn separation is about 0.5 mm near vr = 1.  It increases rapidly.
• A cycloidal motion can be seen due to both acceleration and the presence of a radial

oscillation.
• A coherent oscillation has been created with an amplitude of ~ 3 mm.
• Between n = 26 and n = 32 there is one radial oscillation.  Hence vr − 1 ≅ 1 / 6 or vr ≈

0.83.
• There is a large beam separation between turn 34 and 35 of about 6.5 mm.
• The septum width (0.4 mm) and the deflector aperture are indicated.  The turn

separation is sufficient compared to the septum width.
• There is a non-linear distortion of the phase plane area.
• The energy spread of the extracted beam is about 2 eVdee, which is the energy

difference between turn 34 and 35, with Vdee the dee voltage (the cyclotron has a
single-dee RF system).

• There is an energy position correlation along the cycloid, as this curve describes an
oscillation about equilibrium orbits with increasing energy (or radius).

• Particles with another HF-phase øHF lie on the same cycloid, with more or less turns,
to reach the extractor, as the HF-phase mixing is not effective, see section 4.4.  With
the remark above this implies the quoted energy spread of 2 eVdee for the entire beam.

Figure 11 shows a differential probe measurement for this cyclotron in the extraction
region.  The separation between the probe fingers is 2 mm.  The figure reveals the radial



oscillation near extraction.

Fig. 11  Differential probe scan near extraction for the Eindhoven cyclotron

6 . MULTI- AND SINGLE-TURN EXTRACTION

In general, particles with a different value of the HF-phase complete a different number of
revolutions before reaching the extraction septum and having the final energy.  In a purely
isochronous machine the HF phase of a particle remains constant, which explains this.  This
leads to multi-turn extraction.  For the Eindhoven cyclotron, as an example, the number of turns
may vary by about 30, with a total number of about 300.  Single-turn extraction on the other
hand can be obtained when the HF phase width is restricted, e.g. with the help of slits in the
centre of the cyclotron.  This leads to a reduced energy spread of the extracted beam.  Multi-
and single-turn extraction has been described by several authors [21, 22].

The kinetic energy T and the radius r of particles on equilibrium orbits after N turns is
given by:

T = T0 1 −1 / 2φ 2( )  ,

r = r0 1 −1 / 4φ 2( )  ,

where T0 and r0 belong to a central HF phase ø0, and where ø is the phase difference with
respect to ø0.  A plot of the energy for orbits near the extractor as a function of HF phase is
given in Fig. 12.  This figure also shows the energy levels belonging to the extractor opening,
i.e. of the septum and the electrode.  The top of the paraboles is shifted due to the effect of the
fringe field.  It is seen that several turns get extracted, with an energy pattern for the external
beam as given in Fig. 13.  Single-turn extraction is obtained for a phase width restricted to ∆ø =
ø2 - ø1 (see Fig. 13), or for |ø| < arccos(N/N + 1).

For example with N = 180, |ø| < 6˚, single-turn extraction for a wider phase range and
with a small resulting energy spread can be obtained by applying a higher harmonic cavity in
addition to the fundamental RF frequency.  This is the flat-topping principle [5].  Important
examples of this are found in the PSI injector II and ring cyclotrons [10,23].  The additional
advantage is of course the possibility to extract the beam with 100% efficiency.  In Eindhoven a
special minicyclotron (ILEC) has been constructed with an RF phase acceptance five times
larger due to the flat-topping technique, and an energy spread less than 0.1% [24].  This



machine serves especially for PIXE and PIXE microbeam applications.

Fig. 12  Kinetic energy versus HF phase near extraction

Fig. 13  Energy profile for the extracted beam

For the main Eindhoven cyclotron, which is a multiturn machine, single-turn experiments
have been made by restricting the RF phase width with radially selecting slits in the cyclotron
centre [25].  The accelerating voltage was set to have about 180 turns, hence the phase width
had to be within 12˚.  Single-turn extraction was found by observing 100% variation in the
external beam current as a function of the accelerating voltage, see Fig. 14. This implies that the

•
Fig. 14  Single-turn extraction demonstrated by 100% external beam variations as a function of

accelerating voltage



number of turns in the cyclotron can be selected.  In this situation the FWHM relative energy
spread of the external beam is 0.85 10-3, compared to 0.310-2 for multiturn extraction.  The
single-turn effect is extremely sensitive to variations in the magnetic field, e.g. a variation of
∆B/B = 2.10-4 of the main magnetic field destroys the single-turn extraction.  However, in this
situation the effect of a first-harmonic field perturbation in the centre of the cyclotron created by
the inner harmonic coils, could be compensated rather completely by a first harmonic of the
outer harmonic coils.  Increasing the beam current through the slits destroys the single-turn
extraction: space charge effects at low energy increase the RF phase width.

7 . DEFLECTION DEVICES

The extraction hardware for a cyclotron usually consists of an electrostatic deflector
followed by a magnetic channel.  The curvature of the electrodes of the deflector must
correspond to the shape of the orbits of extracted ions.  An angle kick of typically 50 to 100
mrad is provided.  The inner electrode, septum, is at earth potential.  At the entrance it has a
thickness of a few tenths of a mm, increasing to several mm at the exit.  A V-slit at the entrance
is often used to distribute the deposited power over a larger area.  The septum is water cooled.

Smith and Grunder [26] have given a criterion for the product of electric field E and
potential V for a cyclotron deflector in order to avoid electric discharges:  VE < 1.5 104

(kV)2/cm.  This is shown in Fig. 15 together with deflector voltage values for several
cyclotrons.  The maximum sustainable voltage in a magnetic field is 20-30% lower than without
magnetic field [27].

Fig. 15  Maximum electric field and voltage as a function of the deflector gap for cyclotron
deflectors.  The operating deflector voltage for several cyclotrons has been indicated.

In order to reduce the cyclotron magnetic field along the extraction paths and to provide a
horizontally focusing action for compensating the defocusing action of the cyclotron fringe
field, passive [28] or active [29] magnetic channels are employed.  In the design of a magnetic
channel it is important that it's magnetic field is strongly decreased in the area of the last
accelerated orbits.  

Figure 16 shows a passive magnetic channel which is housed within the accelerating
electrode of the ILEC cyclotron [24].  Figure 17 shows the extraction elements in the AGOR
cyclotron [30], consisting of an electrostatic deflector ESD, an active normal conducting
channel EMC1, and a superconducting channel EMC2.  Moreover two superconducting
focusing and steering elements are located on the passage of the magnet yoke.  Figure 18 gives
the conductor arrangement for the EMC1.



Fig. 16  Calculated magnetic field and its gradient as produced by a passive magnetic focussing
channel in the ILEC cyclotron.  The figure also shows a vertical cross-section through the

channel.

Fig. 17  Median plane view of the AGOR cyclotron with its extraction elements

Fig. 18  Cross-section of the conductors of EMCl.  The cyclotron centre is at the left, the circle
marks the axis of the extracted beam.  The distance between conductors 4 is about 1.5 cm
4: deflecting coil ∆B ≤ 0.2 T;  2: gradient coil  dB/dx ≤ 13 T/m;  3: compensation of stray field
at long range;  1: compensation of stray field at short range



8 . CONCLUSION

Several methods of extraction from (isochronous) cyclotrons have been discussed.  Most
important are stripping extraction, resonance free and precessional extraction.  Some hardware
aspects have been given.
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