
MODERN TOOLS FOR PARTICLE TRACKINGF. WillekeDESY, Hamburg, GermanyAbstractIn order to investigate the stability of single particles in large hadron acceler-ators it is necessary to track particles for a long time. To avoid unreasonablylarge computing times, it has been proposed to use truncated Taylor maps.This lectures describes recently developed tools to generate such truncatedmaps and to make the maps symplectic, a property necessary for long termtracking.1 INTRODUCTIONThe material presented in this chapter is part of a lecture on particle tracking given at the AdvancedAccelerator Physics Courses of the CERN Accelerator School in Uppsala, September 1989, and in Rhodos,September 1983. It is a complement to the article published in the proceedings of the Uppsala School [1].Particle tracking is a widely used tool, in fact still the only reliable tool for investigating thestability of particle beams exposed to nonlinear �elds in circular accelerators. For large accelerators inparticular, the designer wishing to use this tool to make decisions on tolerable magnetic �eld imperfectionsis confronted with two conicting requirements. The weak incoherent instabilities of particle beams incircular accelerators caused by small nonlinear �eld distortions take a long time to develop. In orderto decide on stability one therefore has to track the particles for a long time. This requires a largeamount of computing time. On the other hand, the beam behavior might be inuenced by e�ects likeexact distribution of the nonlinear �eld errors, small oscillations of the �elds (as caused by power supplyripples) or collective e�ects. This requires a precise modelling of the accelerator and the beam physics.A very detailed description is necessary which also leads to long computing times.We are looking therefore for methods which resolve the conict between precision of the modeland the required long tracking times. Recently it was proposed to use truncated polynominal maps inphase-space coordinates for particle tracking. These maps should contain up to the necessary order allthe relevant physical e�ects. The idea to use a truncated map instead of element-by-element tracking ofaccelerator particles is not new. But due to rather recent developments, this approach has now becomefeasible and has been applied successfully in tracking for large accelerators [2] [3] [4]. This lecture describesthe models and procedures necessary to turn truncated maps into a useful tool for the investigation ofparticle dynamics in accelerators.If one integrates the equation of motion of particles which move around the accelerator the resultis a one turn map which describes the transformation of initial into �nal phase space coordinates. Theusual technique is to evaluate the coordinate transformation element by element by approximating thenonlinear forces by an instantaneous kick. The map for one element is then given by a polynominal inthe coordinates at the entrance of the element. Typically, this polynominal is of degree up to 10. Theresulting implicit one-turn map for a large accelerator with thousands of single elements contains veryhigh powers (� 101000) of the coordinates. The dynamics of the particle however is dominated by thelower-order terms. Even the lowest-order nonlinear terms of the map contribute after a few hundreds ofturns to very high-order mapping which is beyond the resolution of digital numbers. Therefore one mightsay that if it is justi�ed to consider tracking as a relevant tool to investigate stability of the motion ofaccelerator particles, then the essential physics is likely to be described by relatively low orders of the totalmap. What relatively low order means however depends on the problem which is investigated. This isthe basic assumption in the use of a truncated map. Such a map may be explicitly given as polynominalsin the initial phase space coordinates. The iteration of such a map will be referred to as 'map tracking'.The technical resources allow the generation and iteration of explicit power series of order up to aboutten. There is a loss of information associated with the use of truncated maps which is the price one has topay for a fast tracking which is independent of the complexity of the physical model under investigation.The experience obtained so far suggests that map tracking indeed provides the required compromise, atleast for large accelerators with weak nonlinearities.There are several problems which have to be solved before map tracking is turned into a useful



tool:� We have to generate a power series map� Since a truncated power series is not an exact solution of the Hamiltonian equations of motionfor an accelerator particle, the map is not symplectic which means it may contain small pseudodissipative terms which are not in the physical model. These terms have to be cancelled. In otherwords, the map has to be 'symplecti�ed'.� After symplecti�cation, the map has passed through a metamorphosis by which, as we shall see,it has apparently lost its main advantage. It is no longer easy to evaluate. Therefore one has todevelop special representations of the symplecti�ed map which restore the original advantage at theexpense of further approximations.Each of the tasks listed above is quite di�cult and cumbersome or at least extremely tedious.However two tools have been made available in recent years which have allowed considerable progressand which �nally provided the technical solutions. These tools include the Lie algebraic description ofbeam dynamics as developed by A.Dragt and co-workers and the automatic di�erentiation introducedby M. Berz to accelerator physics by the name of 'Di�erential Algebra'. On both topics there is a richbibliography available. Some of the articles suggested for reading are included in the references [5] [6] [7][8] [9] [10].The scope of this lecture is as follows: First there is an introduction to automatic di�erentiationand generation of power series (Taylor series, polynominal) maps which is followed by a discussion of theissue of symplecticity. The next topic will be an introduction to the Lie algebraic language with the mostimportant rules and procedures used to make polynominal maps symplectic. The last step is then to turnthe Lie transformations into a form which allows them to be used e�ectively for particle tracking.2 GENERATION OF TRUNCATED MAPS USING DIFFERENTIAL ALGEBRAThe purpose of using truncated maps for particle tracking is to save computer time. The mainidea is that the dynamics of particles is determined by the lower-order terms of the complete map whichdescribes a turn around the accelerator. There is of course no proof of this statement. Whether, orto what degree, this is true has to be tested case by case. However since the weak instabilities whichone wants to understand build up over many thousands of terms, even a map of low order producesvery high order contributions which might inuence stability. Moreover it is well known that the lowestorder nonlinear system with quadratic forces has already all the features of a nonlinear system such asamplitude dependence of tunes, excitation of all nonlinear resonances and chaotic behavior.Map tracking does not come for free. A sixth-order map in six-phase space variables has already' 900 monominals to evaluate. In order to obtain good results (these are results which compare wellwith element-by-element tracking) one might have to go up to order 10 which contains ' 8000 terms. Inthis case map tracking saves only a factor of 3-10 in computing time for large accelerators such as LHC.(For the HERA accelerator the evaluation of a 10th-order map requires almost as many operations on acomputer as element-by-element tracking with multipolar �elds up to order 10.) For smaller accelerators,map tracking can be interesting if additional features such as a detailed description of end and fringe�elds is included.A breakthrough in the use of truncated maps for tracking was the introduction of automaticdi�erentiation called 'Di�erential Algebra' by M. Berz into accelerator physics. In the following, thebasic ideas of this procedure will be presented.Di�erential algebra is a technique for systematically propagating the derivatives of a function f(xi)through mathematical transformations on f by simply applying the familiar sum, product and chain ruleof di�erentiation. If two functions f1; f2 in variables xi are to be combined by a mathematical operationand one knows the derivatives of f1; f2 with respect to the xi, then one also knows the derivatives ofthe result of the combination of f1 and f2. The derivatives of any complicated function which maybe obtained by successive mapping can be calculated by extending any function f to a vector f whichcontains the value of the function as the �rst element and the values of the derivatives with respectto all the variables up to the desired order in the subsequent elements. Michelotti called these vectors



prolongations [10], sometimes accelerator physicists call them 'DA-vectors'.f(xi)! f (xi) = ff; ::@f=@xi::; :@2f=@xi@xj::; :::g= ff; ::fxi::; ::fxixj ::; :::g (1)According to the rules of di�erentiation, the sum of two such vectors is de�ned asf (xi) + g(xi) = 0BBBBBB@ f + gfxi + gxi:fxixj + gxixj:: 1CCCCCCA (2)their product is de�ned asf (xi) � g(xi) = 0BBBBBBBBBB@ f � gfxi � g + gxi � f:fxixj � g + fxi � gxj + fxj � gxi + gxixj � f:QiPmi+ki=niQi� nimi � (@Kf=Qi @xkii )(@M g=Qi @xmi) 1CCCCCCCCCCA (3)(K = Pi ki; M = Pimi). Multiplication of the vector with a constant c is just the product of eachcomponent with that constant fi ! c � fi: (4)One can easily extend this to the case where the function f has to be taken as the argument of an analyticfunction h(f) by using the chain rule of di�erentiationf ! g = 0BBBBBB@ h(f)h0(f)fxi:h00(f)fxifxj + h0fxixj:: 1CCCCCCA : (5)This reduces the calculation of derivatives of complicated functions with respect to their variables to abook keeping problem.Any computation of the value of a function f(xi) by computer is iterative and always starts withthe very simple function f(xi) = xi: (6)The full prolongation of this function is always known, for the �rst derivatives one �ndsfxj = �ij (7)and all other derivatives are zero thusf = fxi; 0; ::; 0;1; 0; ::;0g: (8)In order to demonstrate the procedure let us calculate the distance of a point from the origin togetherwith the derivatives with respect to the cartesian coordinates x; y at x = 4 and y = 3 up to order twor = (x2 + y2)1=2. The calculation starts by the assignment of two vectorsx = 0BBBBBB@ 410000 1CCCCCCA ; y = 0BBBBBB@ 301000 1CCCCCCA : (9)



In the next step we add the products of the vectors to themselvesh = x2 + y2 = 0BBBBBB@ x202x00200 1CCCCCCA +0BBBBBB@ y2002y0002 1CCCCCCA = 0BBBBBB@ 16 + 986202 1CCCCCCA (10)and �nally we have to take the square rootr = 0BBBBBB@ (h)1=21=2(h)�1=2 � hx1=2(h)�1=2 � hy�1=4(h)�3=2 � h2x +1=2(h)�1=2 � hxx�1=4(h)�3=2 � hxhy +1=2(h)�1=2 � hxy�1=4(h)�3=2 � h2y +1=2(h)�1=2 � hyy 1CCCCCCA = 0BBBBBB@ 50:80:60:072�0:0960:128 1CCCCCCA (11)so that one obtains the Taylor expansion of r in x and y asr = 5 + 0:8 � (x� 4) + 0:6 � (y � 3)+0:036 � (x� 4)2 � 0:096 � (x� 4) � (y � 3) + 0:064 � (y � 3)2: (12)In the same way the procedure is used to generate a one-turn map in initial phase-space coordinates formap tracking. All phase-space coordinates zi become vectors zi. The �rst element of zi contains thecurrent value of the coordinate zi, and the subsequent elements contain the derivatives with respect tothe initial values of zi. The vectors zi are initialized by setting the �rst element to the initial value ofzi, the element which contains the �rst derivative with respect to the i � th initial coordinate is set toone and all other elements are zero. All the mathematical operations which involve phase-space variableshave then to be replaced by one of the vector operations discussed above. For example the applicationof a sextupole kick during the tracking is written in scalar form aspfinalx = px + 1=2ml(x2 � y2)and in DA vector form as pxfinal = px + 12ml(x2 � y2):Several ways have been chosen to implement automatic di�erentiation on a computer. Berz haswritten a precompiler for FORTRAN codes. Most existing FORTRAN source codes are suited as an inputfor the precompiler which only has to be supplied with the information of which are the independentvariables and which are to be treated as DA-vectors. The modi�ed codes perform all calculations as before(only much more slowly). In addition to the motion of the particle, the derivations of speci�ed quantitieswith respect to speci�ed variables are calculated up to the speci�ed order. This di�erential-algebrapackage is available from the author.Michelotti used the advantages of the C++ language which makes it possible to de�ne one's ownmathematical operations between elements or objects. There are several papers where this approach isdescribed in some detail [10, 11]. A program package in C-language is in preparation [12].Having modi�ed a particle tracking code such as SIXTRACK [14] or TEAPOT [13] in such a way,it may be used to generate a one-turn Taylor or polynominal map which describes the motion of a particleonce around the accelerator by ~zfinal = Xj1+::+jn�N ~aj1:::jnYi zjii : (13)In the previous section we have seen how di�erential algebra supplies us with a tool to generateone-turn polynominal maps of very high order. However, the capacity of modern computers is exhausted



if the order of the map is beyond about ten. Beyond this order, the evaluation of the map takes as muchtime as element-by-element tracking.There is a serious drawback of polynominal maps. They are non-physical since they are the resultof a truncation. The truncated map is not symplectic in general. The non-physical e�ects are of the orderN + 1 where N is the highest order of the map. Arti�cial growth of the amplitudes might be produced.Any attempt to explicitly symplectify the map is extremely di�cult because one is dealing with very highorders and with a huge number of terms. In the next section the issue of symplecticity will be made clearand discussed.3 SYMPLECTIC MAPSThe fact that we consider the motion of particles under the inuence of forces which can bederived from a Hamiltonian function introduces a strong constraint on the motion of the particles. Themost important consequence for accelerators is that the number of particles inside a cell of phase spaceis preserved. This cell is given by the phase-space coordinates of particles at the surface of that cell.There is a formal property of the maps describing the propagation of particles which is responsiblefor this constraint. This property is called symplecticity. In order to track the motion of particlese�ectively, approximations are usually necessary. If the symplecticity is violated by these approximationsthe consequence is an arti�cial growth or damping of the size of a cell in phase space. This corresponds togrowth or damping of the beam emittances or beam oscillation amplitudes. A non-symplectic model thusmight cause arti�cial instabilities which in practice may be very di�cult to distinguish from genuine weakinstabilities. These arise from the complex distortions of phase space under the inuence of nonlinearforces. In a nonlinear system, a phase-space cell might be deformed into in�nitely �ne �laments whichmay occupy a large region of phase space. These regions may be visited by particles during their motion.Although the total volume inside the �lamented structure has not changed, the volume of a surfaceenclosing the �laments is much larger than the volume of the �lament. This might appear as a growthof beam emittance. If these regions extend outside the vacuum vessel, this eventually leads to the loss ofparticles. This is what we might call genuine beam instability. Not all the forces acting upon a particle ina real accelerator can be conveniently described by a Hamiltonian model. Consider for example scatteringprocesses with the remaining gas molecules in the vacuum vessel or intrabeam scattering. Since these mayinterfere with nonlinear e�ects, which might be tested by a simulation, it is important that the startingpoint is a symplectic model to which other physical e�ects might be added in a controlled fashion. In thefollowing, a formal criterion for symplectic behavior will be derived.The symplectic condition is derived from the equation of motion under the inuence of a Hamil-tonian force dxidt = @H@pi (xi; pi)dpidt = �@H@xi (xi; pi): (14)The 2n phase space coordinates of a single particle may be represented by the phase space vector ~z =fx1; p1; x2; p2; ::::xn; png and with the symplectic form SS = 0BBBB@ 0 1 : 0 0�1 0 : 0 0: : : : :0 0 : 0 10 0 : �1 0 1CCCCA (15)we can write the equations of motion in matrix formd~zdt = S ~rzH: (16)Consider the Jacobian matrix J which describes how the phase space coordinates ~z(t) vary with anin�nitesimal change in the initial conditions ~z0Jik = @zi(t)@z0k : (17)



The Jacobian satis�es the symplecticity conditionJT � S � J = S: (18)This can be seen by inserting the Hamiltonian equations of motion:dJikdt = @@z0k dzidt = @@z0k Xj Sij @H@zj =Xn @zn@z0k Xj Sij @2H@zn@zj (19)thus _J = S �H � J; Hij = @2H@zi@zj : (20)Taking into account that S � S = �1 and ST = �S one �ndsddt (JT � S � J) = JT �HT � ST � S � J � JT � S � ST �H � J= JT �H � J � JT �H � J= 0! JT � S � J = const: (21)Since J(t = 0) = 1, this constant matrix must be S.The motion of particle coordinates in the vicinity �~z(t) of a reference trajectory ~z(t) is describedby ~z + �~z = ~z + J�~z0: (22)Consider two orthogonal phase space vectors � ~z1 and � ~z2which de�ne an (in�nitesimally small) ellipticalarea in phase space. The area of this ellipse is ��W = �� ~z1T (t) � S � � ~z2(t). Since J is symplectic, theexpression �W = � ~z1T � S � �~z2 = �~zT10 � JT � S � J � �~z20= �~zT10 � JT � S � J � �~z20= �~zT10 � S � �~z20 (23)is an invariant. This invariant is called the Lagrange invariant. This means that the sum of the projectionsof a phase-space cell on the two-dimensional planes xi � pi in 2n-dimensional phase space are preservedduring the time evolution of this cell. This implies the volume preservation of this cell during its journeythrough phase space, which is also expressed by Liouville's theorem. The phase space volume elementR dx1dp1:::dxndpn at the time t = 0 transforms into R dx1dp1:::dxndpn � detJ(t) at the time t. Since Jis symplectic, its determinant is equal to onedet(JTSJ) = det(JT )det(S)det(J) = (det(J))2 = det(S) = 1; (24)(using det(J(t = 0)) = +1). It is the symplecticity of the Jacobian J of the map which guarantees thisimportant property of a Hamiltonian system.4 SYMPLECTIFICATION OF POLYNOMIAL MAPS BY LIE ALGEBRA METHODSAs we discussed in the previous section, symplecticity of the accelerator map is important instudying weak instabilities of particle orbits. Therefore procedures which preserve the symplectic natureof the particle motion in the process of modelling the accelerator are very desirable. The methods ofapplying the physical forces in the form of 'kicks', sudden changes of the particle coordinate, providessuch a method and is the basis of most tracking codes. For very large accelerator lattices, the trackingof particles from element to element takes a lot of computing time. It is therefore desirable to describea whole section of the accelerator by an explicit map, the Lie algebra methods provide a useful tool. Inthe following it will be shown how to derive these methods starting from Hamilton's equations of motion



and the most important properties of the method will be reviewed. In doing so, A. Dragt's review article[7] will be followed.The time evolution of a function in the coordinates xi; pi of a particle is described by the PoissonBracket: dfdt =Xi @f@xi _xi +Xi @f@pi _pi (25)_xi = @H(xi; pi)@pi ; _pi = �@H(xi; pi)@xi (26)dfdt =Xi @f@xi @H@pi �Xi @f@pi @H@xi = [f;H] = Ĥf: (27)The action of a Poisson Bracket [f;H] is written symbolically by a Poisson Bracket operator or Lieoperator Ĥf . If f and H have no explicit time dependence, its evolution in time may be written asf(t +�t) =P1n=0 1n!dnf(t)=dtn�tn=P1n=0 1n! (Ĥ ��t)nf= exp(Ĥ ��t)f= exp(L̂)f: (28)The expression exp(L̂) is called a Lie transformation. It describes the evolution of a function of particlecoordinates in time. This function can in particular be the coordinates themselves. A Lie transformationis generated by any analytic function L(xi; pi) of the phase-space coordinates. In particular however wewill consider homogeneous polynominals such as for exampleLk = Xn+m=k hnmxnpm (29)which describes the motion in one degree of freedom. Any analytical function in the phase space coor-dinates may serve as a Hamiltonian, and since the corresponding Lie transformation is a solution of thisHamiltonian system, the Lie transformation is a symplectic transformation and preserves the density inphase space.As a demonstration of the Lie operator technique, we consider the harmonic oscillator. Theequations of motion can be integrated using Lie transformations in the following way:H = 12(p2 + !2x2)! L = 12 t � (p2 + !2x2): (30)If we apply the Lie operator once to the particle coordinate x we getL̂x = @L@p � @x@x � @L@x � @p@x = @L@p = p � t: (31)If we apply it twice we obtain L̂2x = t � L̂p = t � (�@L@x ) = �(!t)2 � x (32)and if we apply it n-times we obtainL̂nx = (�1)n=2 (!t)n � x (n even)L̂nx = (�1)(n�1)=2 (!t)n � p=! (n odd) (33)



so that we �nally getx(t) = exp(L̂)x0=P1n=0;2 (�1)n=2n! (!t)n � x0 +P1n=1;3 (�1)(n�1)=2n! (!t)n � p0=!= x0 � cos(!t) + p0=! � sin(!t): (34)Lie transformations may be used to describe the propagation of particle orbits in an accelera-tor. Beam-line elements such as drift spaces, quadrupole or sextupole magnets can be described by Lietransformations using the generatorsDrift : L = 12 (p2x + p2y) � lQuadrupole : L = 12 (p2x + p2y + k(x2 + y2)) � lSextupole : L = 12 (p2x + p2y + m3 (x3 � 3xy2)) � l (35)(here only the lowest-order terms generated by these elements are taken into account). The motion ofa particle through a lattice composed of various elements is then described by successive application ofLie operators each describing the motion through a beam line element analogous to the multiplication ofmatrices in linear beam optics.xn = exp(L̂1)(exp(L̂2)(::::::exp(L̂n)x0))::))= exp(L̂1)exp(L̂2) � :::: � exp(L̂n)x0 (36)Just as in linear optics, where transfer matrices for single elements are combined into a revolutionmatrix, one can combine Lie transformations into a combined transformation which describes the motionalong an accelerator lattice. Unfortunately, the concatenation of Lie transformation turns out to be verytedious. It can be performed only as an approximation which is correct only up to a chosen order. Theadvantage of the method however is that the concatenation procedure can be carried out convenientlyon a computer since it is based on repetition of simple basic steps, the derivatives of polynominals. Theresult will always be in the form of a Lie transformation. So it will be a symplectic transformation.The most important tool for the concatenation of Lie transformations is the Campbell-Baker-Hausdor� formula exp(L̂1)exp(L̂2) =PnPn0 1n!n0! L̂n1 L̂n02=PnPm 1n! � nm � L̂n�m1 L̂m2=Pn 1n! (L̂1 + L̂2)n + 12 [L̂1; L̂2] + ::::= exp(L̂1 + L̂2 + higher order terms): (37)The expression [L̂1; L̂2] stands for[L̂1; L̂2] = L̂1L̂2 � L̂2L̂1 = ^[L1; L2] (38)The higher-order terms are formed by an in�nite series of commutator operations on L̂1 and L̂2+12 [L̂1; L̂2] + 112 [L̂1; [L̂1; L̂2]] + 112 [L̂2; [L̂1; L̂2]] + :::::: (39)The coe�cients of the commutator series are known up to any order. In the case that the Lie trans-formations are generated by polynominals, the commutator series results in another polynominal thecoe�cients of which can be evaluated by computer in a straight forward manner.



For each Lie transformation exp(L̂) its inverse transformation exp(�L̂) exists.exp(�L̂)exp(L̂) =Pn;n0 (�1)n0n!n0! L̂n+n0=Pm L̂m �Pmn=0 (�1)nn!(m�n)! = 1 (40)Important for the manipulation of maps is the exchange ruleexp(L̂1)exp(L̂2) = exp(L̂2)exp(�L̂2) � exp(L̂1)exp(L̂2)= exp(L̂2)P1n=0 1n!exp(�L̂2)L̂n1 exp(L̂2)= exp(L̂2)P1n=0 1n! (exp(�L̂2)L̂1exp(L̂2))n= exp(L̂2)exp(L̂3) (41)where L̂3 is generated by the transformed function L1L3 = exp(�L̂2)L1: (42)This rule can be used to factorise an accelerator map into a linear and a nonlinear part. Imagine asequence of 'linear' and 'nonlinear' elements in an accelerator lattice which are represented by linearmaps exp(R̂i) and nonlinear maps exp(L̂i)M = exp(R̂1)exp(F̂1)::::::exp(R̂n�1)exp(F̂n�1)exp(R̂n)exp(F̂n) (43)Applying the exchange rule to change the sequence of the �rst linear and second nonlinear transformationone obtains M = exp(R̂1)exp(F̂1)::::::exp(R̂n�1)exp(R̂n)exp(N̂n�1)exp(L̂n) (44)with Nn�1 = exp(�R̂n)Ln�1, which means that the phase space coordinates ~z in the argument of Ln�1have to be replaced by the result of a linear transformation R�1n ~z where the matrix R1 corresponds toexp(R̂1). This procedure can be continued until one obtainsM = exp(R̂)exp(N̂n)::::::exp(N̂2)exp(N̂1) (45)The transformation exp(R̂) corresponds to the linear part of the transfer map of the lattice and thetransformation Qi exp(N̂i) corresponds to the nonlinear part.Let us now turn to the symplecti�cation of polynominal maps. A polynominal map MN in thephase space coordinates zi (N is the maximum order of the map) can be described by a Lie transformationof the formQN+1n=2 exp(L̂n) which agrees up to order N withMN . This has been shown by Dragt and Finn[15]. While MN is in general not symplectic, the associated Lie transformation however is a symplecticmap. For orders m � N the polynominal map and the result of the Lie transformation agree, the Lietransformation contains higher order terms which make the transformation symplectic.This can be seen in the following way. A map of an accelerator element or a whole lattice sectionmay be given by a polynominal as a result of a Taylor expansion in the initial phase space coordinates zi~zfinal =MN (zi) = Xj1+::ji+::jn�N ~aj1:::jnYi zjii (46)There is an important property of a Lie transformation which is generated by a homogeneous polynominalLk of order k. If the corresponding transformation is applied to an initial point in phase space, the resultis a map in these coordinates which extends in general to in�nitely high order but the lowest-order termsare of order k � 1.Using this property one can �nd for any polynominal map, the corresponding Lie transformationorder by order. Consider a polynominal map, a truncation of a symplectic mapMN = NXk=1Mk (47)



where the Mk are homogeneous polynominals of degree k in the phase space coordinates xi; pi, andconsider also a Lie transformation exp(L̂N+1) � ::: � exp(L̂3) which is generated by homogeneous polynom-inals Lk+1 of degree k + 1 in xi; pi. Starting to iterate the lowest-order Lie transformation exp(L̂k+1) =Pn 1n! L̂nk+1, the lowest-order terms of the corresponding map readx+ @Lk+1=@pi + higher orderp� @Lk+1=@xi + higher order: (48)The coe�cients of Lk+1 can then be found by comparison with the mapMk.Before one can proceed to the next order, the higher-order e�ects of exp(L̂k+1) have to be takeninto account by modifying MN to ~MN = (exp(�L̂k+1)MN )N : (49)(The bracket with the index N means the expression is to be truncated beyond order N .) Now one candetermine the coe�cients of the next-higher-order generator Lk+2 by comparison with the lowest orderof the modi�ed map ~MN namely ~Mk+1.This procedure involves carrying out the exponential operator seriesexp(�L̂k+1):::exp(L̂k+n+1)on the n�th iteration until all terms of up to order k+n+1 have been generated. This can be convenientlyperformed by a computer.As an illustration consider the symplecti�cation of the following nonlinear map which includesterms up to third orderM3(x; p) : x! x+ x2 + 2xp+ p2 + x3 + x2p + 2xp2 + p3p! p+ x2 � 2xp� p2 + x3 + 5x2p + 3xp2 � 2=3p3: (50)We apply the �rst term of a Lie transformation generated by a homogeneous polynominal of degree 3L3 = h30x3 + h21x2p+ h12xp2 + h03p3 (51)x! x+ @L3=@p = x+ h21x2 + 2h12xp+ 3h03p2p! p� @L3=@x = p� 3h30x2 � 2h21xp� h12p2: (52)We determine the hij by comparison with the quadratic part of the mapM2.h30 = �1=3 h21 = 1h12 = 1 h03 = 1=3 (53)so that L3 = �1=3 � x3 + x2p+ xp2 + 1=3 � p3: (54)In the next step, we have to take into account in the original map the higher-order terms generated byexp(L̂3). 12 L̂23x = 12 (@L3@p @2L3@p@x � @L3@x @2L3@p2 ) = 2x3 + 2x2p12 L̂23p = �12(@L3@p @2L3@x2 � @L3@x @2L3@x@p) = 2x2p+ 2xp2: (55)This modi�es the cubic part of the map to:~M3(x; p) : x! x� x3 � x2p+ 2p2x+ p3p! p+ x3 + 3x2p+ p2x� 2=3p3 (56)This modi�ed map is represented by the lowest-order contribution of a map exp(L̂4) with the generatorL4 = �1=4 � x4 � x3p� 1=2x2p2 + 2=3xp3+ 1=4p4 (57)



Thus our original nonsymplectic polynominal map is represented by the symplectic Lie transformationexp(L̂4)exp(L̂3).We have learned so far how the tool of Lie transformations can be used to generate a symplectic mapfrom a nonsymplectic polynomial map. If one wants to use Lie transformations however for tracking,one realizes that now we have to deal with in�nite series of transformations which do not terminate.Truncating the map at a given order again results in a nonsymplectic map. In order to make thesymplecti�cation scheme useful, one has to �nd a way to make the Lie transformation executable withoutlosing the symplectic property. This will be discussed in the next section.5 EVALUATION OF SYMPLECTIC MAPSUp to this point we know how to generate a truncated polynomial map by di�erential algebratechniques, and we know how to make this map symplectic by �nding the associated Lie transformation.The next step is to turn the Lie transformation into a form which allows fast particle tracking to beperformed.Lie transformations are represented in general by in�nite series. The evaluation of Lie transforma-tions, i.e. actually performing the transformation, is a di�cult task. Considerable e�ort has gone intothe development of procedures to improve the performance of Lie transformations. For fast tracking thefollowing procedure has been developed:- First decompose the Lie generator into a sum of certain components Sn. The closed solution ofthe Lie transformation generated by each single component Sn is known. Such transformations arecalled a 'solvable' map.- In the second step, the Lie transformation which is generated by the sum of solvable generatorsexp(Pn Ŝn) has to be factorized Qn exp(Ŝ0n) in such a way that exp(Ŝ0) is solvable and the mapcan then be carried out factor by factor.It is easy to �nd a decomposition of a Lie generator Lk =Pn+m=k hnmxnpm into solvable parts.Each isolated monomial hnmxnpm corresponds to a solvable system.H = hnmxnpm_x=(mx) = � _p=(np)xn � pm = const = xn0pm0x(t) = x0�1 + (m� n) � hnm � p(m�1)0 xn(m�1)=(m�n)0 � t�m=(m�n) (58)or for m = n x(t) = x0 � exp(nhnn(x0p0)n�1 � t) (59)Therefore one might consider factorising the map in a straightforward manner by using the Campbell-Baker-Hausdor� formulaexp(Pi Ŝi) = exp(Ŝ1)exp(Pi�2 Ŝi � 12 [Ŝ1; Ŝi] + :::)� exp(Ŝ1)exp(Pi�2 Ĝi)= exp(Ŝ1)exp(Ĝ2)exp(Pi�3 Ĝi � 12 [Ĝ2; Ĝi] + :::)� exp(Ŝ1)exp(Ĝ2)exp(Pi�3Fi)= exp(Ŝ1)exp(Ĝ2)exp(F̂3)exp(Pi�4 F̂i) � 12 [F̂3; F̂i] + :::)::: (60)



In principle one arrives that way at successive Lie transforms which are generated by monomials S1; G2; F3; :::respectively. The problem here is the huge number of terms one has to evaluate. A 10-th order map in6 variables for example contains 12376 terms. For each of these terms a complicated expression of thetype of equation (58) (generalized to three degrees of freedom) has to be evaluated. This would not beeconomic and map tracking would lose its advantage.In order to make the concept of solvable maps feasible, one has to �nd another decomposition intosolvable maps. There are two approaches which have been discussed, tested and made available recently.These are- Kick factorization and- Symmetric factorization.We will �rst discuss the kick factorization.5.1 Kick FactorizationSudden changes in the particle momenta are called kicks. Kicks are used to describe the impactof nonlinear forces in particle tracking (thin-lens approximation). There are special Lie transformationswhich generate just a kick. All generators of the form K =Pn anxn ( or more generally P~n a~nQi xnii )produce such transformations. These transformation series terminate after the �rst step:K̂f(x) = @f=@x � @K=@p� @f=@p � @K=@x = 0K̂p = �Pn nanxn�1 = g(x)K̂2p = 0 (61)A thin-lens kick from a sextupole magnet for example is described by a generator KK = 16m � l � (x3 � 3xy2)! exp(K̂) 0BB@ xpxypy 1CCA = 0BB@ xpx �ml=2(x2 � y2)ypy +mlxy 1CCA (62)There are more general 'kicks'. A Lie transformation produced by a generator of the formK =Xn An � (c � x+ s � p)n (63)(where c and s are constants e.g. s = sin�, c = cos�) or, for more degrees of freedomK =X~n A~n �Yi (ci � xi + si � pi)ni (64)terminates as well after the �rst iteration.K̂x = Pn n � s �An(c � x+ s � p)n�1K̂p = Pn c � n �An(c � x+ s � p)n�1K̂2x = Pn;n0 nn0(n� 1)AnAn0(c � x+ s � p)n+n0�3(s � s � c� s � c � s) = 0K̂2p = Pn;n0 nn0(n� 1)AnAn0(c � x+ s � p)n+n0�3(c � c � s� c � s � c) = 0 (65)Such transformations may be called 'generalized kicks'. J. Irwin has worked out a scheme to evaluate aLie transformation which involves generalized kicks [17] which is called 'Kick factorization'.The idea of the kick factorization is to express a given Lie transformation by a sequence of kicks.exp(L̂1)::::exp(L̂n)! exp(K̂1)::::exp(K̂m): (66)



For a given order k one �nds always a set of N kick generators Klk = Akl(cl � x+ sl � p)k which satisfyNXl Akl(cl � x+ sl � p)k = Xn+m=k hnmxnym (67)for properly chosen cl; sl. Then the set of equationshnm =Xl � km � cnl sml �Akl (68)can be solved . The hnm and Akl form vectors ~h and ~A and the coe�cients of the Akl form a matrix B.Then the solution for the kick coe�cients Akl is~A = (BT �B)�1BT~h: (69)A Lie transformation which is generated by a sum of generalized kick generators PlKlk unfortunatelydoes not terminate. One starts the procedure with the lowest order, say k. Having found the kickgenerators for the lowest order k which results in a Lie transformation of the form exp(PNl=1 K̂kl) wemust factorise the result. We may use the Campbell-Baker-Haussdor� formula introduced in the previousparagraph for this purpose (the inverse of equation (37))exp(PNl=1 K̂lk) = exp(K̂1k)exp(K̂�1k)K�1k =Pl=2;3::Klk � 1=2[K1k;Pl=2;3::Klk] + 1=6[K1k; [K1k;Pl=2;3::Klk]] + ::: (70)Proceeding like that, one arrives atexp(K̂1k)exp(K̂2k)exp(K̂3k)::::exp(K̂Nk) � exp(12 NXm Xl�m[K̂lk; K̂mk] + :::) (71)The last factor contains the higher orders which are a contribution to the higher order parts of themap and they have to be taken into account if one is proceeding to the next order kick factorization.Eventually we have represented the whole original map in the form of generalized kicks.Kicks of di�erent orders n;m but with the same coe�cients sl; cl generated by Klm = Aml(clx+slp)m and Klm = Anl(clx+ slp)n commute[K̂ln; K̂lm] = 0: (72)Therefore the sequence of kicks of di�erent orders can be simpli�ed to a sum of kicksYn exp(K̂ln) = exp(Xn K̂ln) � exp(K̂l) (73)The kick factorization does not change the original polynomial map up to its order. For the lowestorder, k, this is quite obvious. The sequence of the lowest-order kicks produces a map of order up to(k � 1)2. The part of the lowest order k � 1 is just the sum of the kicks. This sum is identical with the�rst iteration of the corresponding Lie transformation @Lk=@p and this is identical with the lowest orderof the original mapMQl exp(K̂kl)x =Pl Akl � k � sl � (clx+ slp)k�1 + higher order=Pn+m=k mhnmxnpm�1 + higher order=Pn+m=k�1 anmxnpm + higher order (74)The kick factorization reproduces the original polynomial map but it adds higher order terms. Theadditional terms depend on the choice of the factors cl; sl. It is unfortunately very di�cult to choosethese coe�cients in order to minimize the unwanted higher-order terms, which are the byproduct of thesymplecti�cation procedure. Therefore we now consider a procedure which provides better control of thehigher-order terms.



5.2 Symmetric FactorizationSymmetric factorization is a symplectic approximation of a Lie transformation. It is a useful algo-rithm in cases where one can decompose a Lie generator into a relatively small number of solvable parts.Yan and Shi [18] have demonstrated that one can cut down the number of solvable parts considerablyusing the fact that generators which are the product of terms g(xi; pi) � f(xj ; pj)::: are solvable whenf or g are either quadratic in the variables or f; g are only functions in only one degree of freedom,or f; g depend only on action variables Ji = x2i + p2i or if f; g are kicks. Using these properties, onecan reduce the number of solvable constituents of a map considerably. The 56 monomials of a cubicpolynomial in six variables can for example be written as a sum of only 8 solvable constituents. A listingof the decomposition of the generators up to order six and the corresponding solutions are contained inreference [18].Having reduced the number of solvable parts, the following symmetric factorization procedureis useful. Consider a map exp(Ŝ + Ĝ) where Ŝ and Ĝ constitute solvable maps respectively. We canapproximate this map by exp(Ŝ + Ĝ)) ' exp(12 Ŝ)exp(Ĝ)exp(12 Ŝ) (75)If one concatenates the r.h.s. of equation (77) using equation (40) the quadratic contributions in S andG given by the commutator terms [12 Ŝ; Ĝ] and [Ĝ; 12 Ŝ] cancel and only third- and higher-order terms inŜ) and Ĝ appear. The factors 12 of Ŝ are universal and do not depend on the choice of S or G. One can�nd a symmetric factorization also for higher orders. For the next order in the factorization procedureone �nds exp(Ŝ + Ĝ))'exp(�1Ŝ)exp(�1Ĝ)exp(�2Ŝ)exp(�2Ĝ)exp(�2Ŝ)exp(�1Ĝ)exp(�1Ŝ) (76)In this case, the concatenation of the r.h.s. produces, besides the expression on the l.h.s, only terms oforder seven and higher in S and G. The coe�cients �; � are universal as well and do not depend on Sor G but only on the order of the factorization. In order to illustrate the kind of approximation let usconsider the tracking through a long sextupole. Note that this problem can also be solved exactly butthis example gives a hint as to the physical meaning of the approximation we are discussing.H = 12(p2 + 13mx3)is the Hamiltonian of the system. L = 12 � l � (p2 + 13mx3)is the associated Lie generator, which is split into two easily solvable partsL1 = 12 lp2; L2 = 16mlx3:First-order symmetric factorization results inexp(L̂) ' exp(14 lp̂2)exp(16mlx̂3)exp(14 lp̂2) (77)We see that we have approximated the long sextupole by a drift space of length l=2 a sextupole kick12mx2 and another drift of l=2. In this case, the �rst order symmetric factorization corresponds to thethin lens approximation. If we would proceed to the next order, this would correspond to a numericalintegration according to Simpson's rule.The procedures discussed here have been applied with great success for particle tracking for theSSC [3].
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