
potential V, independent of velocity, the Lagrangian takes the specific form: OCR Output
In the simplest, non-relativistic case where the forces can be derived from a scalar

2 . OUTLINE OF LAGRANGIAN AND HAMILTONIAN FORMALISM

is then a function of 2k dynamical variables.

L(qkvqk>t)

necessarily, the time variable. The "Lagrangian" or Lagrange function L of the form:
"velocity" co-ordinates qk = dqk / dt and the independent variable t, which is often, but not

freedom is characterised by a set of generalised "position" co—ordinates qk, generalised
In the Lagrangian formulation the dynamical behaviour of a system with lc degrees of

motion of single particles, taking no account of the forces due to space charge.
thoroughly covered by Jackson [2] in Chapter 12. Furthermore we shall be dealing with the
conditions, namely the motion of charged particles in electromagnetic fields, a domain which is
accelerator physics and the Hamiltonian formulation it is sufficient to consider a restricted set of
discussion of these topics is given by Goldstein [1] in Chapter 1; for the application to
depending on the nature of the problem and the form of the dynamical constraints. A detailed

The Lagrange equations of motion can be presented in a number of different versions,

wherever the need is specially manifest.
detailed presentations of the subjects can be found in the Bibliography and are cited in the text
coverage here of Lagrangian and Hamiltonian dynamics can only be rather limited. More
The range of topics is so large that even in the restricted field of particle accelerators our
become an important part of the framework on which quantum mechanics has been formulated.
and remains not only a broad and fundamental part of classical physics as a whole but has

Generalised classical mechanics has developed considerably since the time of Lagrange

special relativity.
geometry of a four-dimensional space, which was in a sense a precursor of the structure of
tradition, that mechanics (with the time dimension included), might be considered as the
approach to generalised dynamics. Nevertheless he suggested, apparently as a concession to
. Méchanique Analytique laid the foundations of the analytic, in contrast with the geometrical,

Joseph—Louis Lagrange was one of the outstanding pioneers of this development;his

of the Hamiltonian formulation.
convenience but a powerful tool for finding invariants of the motion, and a fundamental feature
facilitate the transformation from one system to another. This is not only a matter of
was to free classical mechanics from the constraints of specific co-ordinate systems and to
relevant quantities in the mathematical treatment. Another important development of this period
methods of handling dynamical systems, and led to the increasing use of potentials as the
However, the subsequent evolution of celestial mechanics called for more compact and general
velocities, since these quantities were directly tangible in terms of everyday experience.

At the time of Newton, mechanics was considered mainly in terms of forces, masses and

1 . INTRODUCTION

B.W. Montague

BASIC HAMILTONIAN MECHANICS



is usually but not always the case). This principle states that the action integral defined by: OCR Output
formulation of Hamilton's Principle of Stationary Action (sometimes called "least action" which

In the framework of Hamiltonian theory the importance of the Lagrangian lies in the

apart from a constant- mcz, which vanishes on subsequent differentiations.
We note that in the non-relativistic limit, v << c, this reduces almost to the form of Eq. (7),

L=—mcc—v·v-e>+eA·v (9)[]q2 ]/2

Goldstein [1]; here we simply present the form appropriate to accelerator dynamics, vrz:
energies, and is more complicated to derive formally. A full discussion is given in Chapter 7 of

The relativistic Lagrangian is not just the difference between kinetic and potential

U = ed) — A · v

where the scalar potential V of Eq. (2) has been replaced by a generalised potential:

(7)L(q»¤?,r) = T(¢1»¢?»¢) - U (cmr)

relativistic Lagrangian for tirne—dependent electromagnetic fields is:
rearranging terms, it is then straightforward but somewhat lengthy to show that the non
where A is the magnetic vector potential. Substituting Eq. (6) into Eq. (4) expanding and

B = curl A , (6)

From Eq. (5) it follows that one can write:

div B = O (5)

curlE+dB/dz=O (4)

equations are required, namely:
Since we are not taking account here of space-charge forces, only two of Maxwell's

which contributes to both electric and magnetic forces.
of a magnetic field and time-variation of either, requires the introduction of a vector potential A,
the part of the force F arising from E can be derived from a scalar potential tp, but the presence
where E and B are respectively the electric and magnetic fields. Now in the case of static fields

(3)F=e[E+v><B],

an electromagnetic field is given by
The Lorentz equation for the force F on a particle of charge e moving with velocity v in

for the force with Maxwell’s equations for the electromagnetic fields.
potential, and consequently a Lagrangian, can be formulated by combining the Lorentz equation

In the presence of electromagnetic fields, which can be time-dependent, a generalised

where T is the kinetic energy, V is the potential energy and the index k is implicit.

L(q,¢?»¢) = T(<1.<?J) — V(q,r).



Designating the canonical momenta of Eq. (12) as

(15) OCR Output. . dH=ZPk dqk+`L<1k dP1t‘E‘d<lk’Z"T" dQk‘—’d’
QL QL . QL

or altematively, from the right-hand side of (13) as

** q}; <9Pk
(14)dH=—dt+ ———dq + —dp 8g; ak gl k

QHQH QH

We can take the differential of H on the left-hand side as

(13)H(<1k1¤k¢)=Zpk clk —L(q,r2,r)

through a Legendre transformation, defined by the function:
in Eq. (12) above. The change of basis from the set (qk,qk,z) to the set (qk, pk,t) is obtained

ordinates (qk) and generalised momenta (pk the same as the canonical momenta we identified
The Hamiltonian formulation of mechanics describes a system in terms of generalised co

motion of the system.
Lagrange equations consist of a set of k second-order differential equations describing the
variables (qk) being the "time" derivatives of the other k variables (qk). The corresponding
dynamical variables (generalised co-ordinates and velocities) and the "time" t, k of these

Summarising, for a system of k degrees of freedom the Lagrangian is a function of 2k

Newtor1's Second Law in a more modern guise.
A · v term gives rise to a so—called magnetic momentum. One then recognises that Eq. (12) is
there is no vector potential it is the same as the mechanical momentum, but the presence of an
The quantity (QL/ Qqk) is known as the canonical momentum; in the simplest cases where

(12,.¢i(g)_a dt Qqk Qqk
conservative system:
Vol. II of the Feynmann Lectures [3], results in the Lagrangian equations of motion for a

The evaluation of this by the calculus of variations, which is very clearly explained in

5S= 5jLdt=O to first order

is an extremum for the dynamically true path of the time trajectory between tl and tz, i.e.

(10)S= |L(q,q,r)dt



dt k
(19) OCR Outputpk 2 FE1; 2 - EI.

dt 8pk
(18). d 8H qk 2 i 2 _

From the Hamiltonian H (qk,p k,t) the Hamilton equations of motion are obtained by

3 . SOME PROPERTIES OF THE HAMILTONIAN

where the pk have been expressed in vector form.

(22)H(q,z>,r)=e¢+¢I(p-6A) +m1>¢ l »2 2 2 1/2

the electromagnetic momentum. The resulting Hamiltonian is easily shown to be
and differ from the component moyvk of the mechanical momentum by the contribution eAk,

pk =m¤1’ vt +eAk (21)

by (16) are
the Lagrangian of Eq. (9). In Cartesian co-ordinates, k = x, y, z, the canonical momenta given
A relativistic Hamiltonian for a single particle in an electromagnetic field can be derived from

(20)H(q,p,t) =T +U

potential and kinetic energies
For non-relativistic motion the Hamiltonian is often, though not necessarily, the sum of

dynamical variables.
momenta pk. This symmetry leads to very flexible transformation properties between sets of

symmetry of form between the generalised position co-ordinates qk and their conjugate
motion. They are first order, 2k in number for k degrees of freedom, and show a remarkable
The function H(q,p,t) is the Hamiltonian and Eqs. (18) and (19) are the Hamilton equations of

3%

8H

<2Pk
k

8H

8t 8:
(17)

8H 8L

corresponding terms in (14)
the first and fourth summations cancel and the remaining terms can be identified with the

8%
Pk = -7- 1 ( 16)

8L



where dG is a total differential. This follows from Hamilton’s variational principle

(26) OCR OutputPk dQk ‘ H1(Qk1PkJ)df- Ep), dqk — H(qk,pk,t)dr | = dGi\[k
canonical is

(qk,pk) and (Qk,Pk ). The necessary and sufficient condition for a transformation to be
The form of the equations is preserved in transforming between co—ordinate systems

with space-charge forces.
motion. Examples of this are treated by Schoch [4] and by Montague [5], the latter case dealing
away so that the non—linear part can more easily be handled, without prejudice to the linear
ln non-linear systems they often enable the simple linear part of the motion to be transformed
"almost invariant" apart from a small parameter, permitting perturbation theory to be applied.
of degrees of freedom of a system by exposing invariant quantities, or quantities that are
advantageous choice of co—ordinate system. In particular they can be used to reduce the number

Canonical transformations are of considerable utility in simplifying problems by an

4 . CANONICAL TRANSFORMATIONS

motion not containing t explicitly, has a vanishing Poisson bracket with H.
If H does not depend explicitly on time it is a constant of the motion. Any invariant of the

dt Qt
(25)

dH BH

In particular, iff = H we have

at
+ {,*,11} (from (18), (19) and (23)

(24)
d . . é = %+ Z{%Qk + pk} k qk lc

The time derivative off

{af} = -{f1s}

{f,f} E 0

One sees that

(23){Lg} (9 3 k aflk 6'Pk 6'Pk aqk

defined by
The Poisson bracket of any two dynamical variables f (qk, pk;) and g(qk,pk,t) is



Jn=...dp1...dpndq1...dqn (34) OCR Outputjj

kl

(33b)J2 = jj jj Z apidqkaqiaqk

(33a)I = jjidpkaqk

(Poincaré invariants):
is invariant under a canonical transformation. So also are the phase space integral invariants

(32)s : j L at

The action integral

5 . INTEGRAL INVARIANTS, LIOUVILLE'S THEOREM

at
Hl(Qk¤Pk¤t)=H(qk¤pk»I)+

49G

For all forms the new Hamiltonian is

gpk QP]:
G (p,P,r= Q =·——; Q = 4 ) k k (306)

GG QG

8Qk gpk
(30C)G (Q,DJ)¢ P = ——— ; q = 3 k k8G GG

aqk 8Pk
(30b)G (q,P,r¤ p =——; Q 2 ) k k

8G · 8G

aqk 8Qk
(30a)G(q,Q,r= p =——-; P =— 1 ) k k

8G 8G
is derived from the generating function G which can have one of four forms:

(29)Pk = Pk(<I1»Q2···P1»P2···')

(28)Qk =Qk(<Ii»f1z—~-P1»P2·-J)

and Eq. (l3). The canonical transformation

(27)'2 jj:1 k



Then using (30a) one has

(35) OCR Output(q,Q) 0wr QG= $@2

transformation with the generating function
We can transform to a new co-ordinate system of action—angle variables using a canonical

m m

£j=i=—;q or £j+w‘q=0 where co

These can be expressed as one second—order equation

8p m

6=£=£ and p=——g=—k q

and the Hamilton equations of motion are:

2m 2

2 2

whence q = L. Using this to replace 4} in T, the Hamiltonian becomes:

= T = m Q »
8L

and the canonical momentum:

2 2
L ,‘ =r-0:2 ‘2-5 2 (q rz) rz cz

The Lagrangian is:

potential U = %q‘ (k = spring constant, not to be confused with index)

kinetic T = {-@q‘ (m = mass)

The energies are:

6 . LINEAR OSCILLATOR

a system with n degrees of freedom, the invariance of J n is Liouville's theorem.
the Poincaré invariants is much more complicated and we shall not discuss it further here. For
closed trajectory. For sub-manifolds of dimensions between 4 and (2n-2) the interpretation of
two-dimensional phase space, the invariance is that of area conservation in the (q,p) plane of a
dimension (2, 4 2n respectively). For J1, corresponding to one degree of freedom, i.e. a
where the integrals are taken over any arbitrary phase-space submanifold of appropriate



m E E
9:-%:-5 sin 9 6+5- sin 9:0

p=-@:-171 g Esin 9
"`L-" OCR Output

mL`vH(9,p)=T+U=5;T+m g E(l—cos9)

"TE2p=·%=m E 9 , so 9:

m g £(l—cos 0)L(9,9)=T—U=E—€}q
2 *2

2 2
T = E:2 2 *2 Z 9 L m

U=m g !(l—cos 9)

7 . SIMPLE PENDULUM

away the linear part of the motion and treat the non—linear part by perturbation theory.
This type of canonical transformation is useful in some non-linear problems to transform

Q=-=w; Q=wt+¢ and q=,sin (c0t+¢)/E mwQIh(8p

and

_I_b = —g,% = O ; (P = constant and H1 is cyclic in Q)

The transformed Hamilton equations of motion are then

i<2LC2]H1(Q,P) = P\[— cosQ+ PN/-- sinQ = PJ—i = w P

so

H1=H+%?=H (since %?=O) ,

Also,

qm2 = and p2 = 2Px/k m cos2Q

whence
Bq 2

P ; ....; _.qcScQ ,% i{n2 2

and

=Q_;€=~jk m·qcotQ



the rest energy. OCR Output
Since (p — eA)L = (moe ,8 y)L , H = eg/> + moczy has the value of the total energy, including

(38)H(q,p,z)=e¢+c|(p—eA) +m0c
2 2 211/2

The relativistic single—particle Hamiltonian in the electromagnetic tield becomes

dependent potential A.
but are no longer the same as the mechanical momenta moyvk in the presence of a velocity

aqk
pk==-=m¤v vk+€Ak (37)

QL

obtained from
Note that L ¢ T —— U relativistically. However, the canonical momenta pk are still

where A is the vector potential and tb the scalar potential.

(36)L=—m0c2w/1—B2+eA~v-eqb

notation

The relativistic Lagrangian for a single particle in an electromagnetic field is, using vector

8 . RELATIVISTIC HAMILTONIAN WITH ELECTROMAGNETIC FIELDS

or storage ring.
This example is closely analogous to the problem of phase oscillations in a synchrotron

vt 9

H in (9,p) phase plane.
Trajectories of constant

lH(9,p) = -5;:7 + 2m g E sinz ; = constant (since g = gi- = 0)

The Hamiltonian can be written



= p·[(1- 1<x)t+1(x b—y :1)]

p-[t+x(1 b- K t)—y 1 n]

(42) OCR Output. [@ J, X EQ + y Q] ds ds ds
P - S Os

QQ

(32)

and since % = O , the Hamiltonian is unchanged. From Eqs. (40) and (41) we have, using

(9Pk
= ... Z Qt rk (4lb)

8G

Grk
pk = - = Pk (41a)QQ

which generates the identity transformation

= p · [rO(s) + xn(s) + yb(s)]
(40)

Gz(mv)=p·r

generating function
The canonically-conjugate momenta p in the co-ordinate system r are obtained from the

where rc = i is the curvature and 1the torsion of the reference curve.

dsds
:1 b—1< t, —=—1 n,

dbdn
(39)

dk Xo ; zt , = K n ,
dr

The following properties hold

r(x,y,s) = r0(s) + x n(s) + y b(s)

3`(S)
b(s) = binormal

n(s) = normal

t(s)= tangent

of the Frenet unit vectors
We take as reference curve r0(s) and express any neighbouring point r(x,y,s) in terms

9 . APPLICATION TO AN ACCELERATOR ORBIT

‘IO



Rewriting (45) in the new form OCR Output

previous results may be taken over with the appropriate changes in notation.
Hamilton's variational principle (1 1) guarantees the validity of the transformation, and the
and where (t, -H) is a new pair of canonically-conjugate variables. The satisfying of

(47)ps{x,y,z,px,p,—H,s=F say ,y)

where we now consider the new Hamiltonian to be

46 <)5—+ ——H—+ 4=0 Ipxsdx dy dt [ ]dsmds dsm

porm:ndependent variable from t to s is then trivial and we can write Hamilton's principle in the
single particle with a one-one correspondence between time and position. The change of
along a space trajectory s rather than a time trajectory 1, since we are considering the motion of a
the circumference. Hamilton's principle in Eq. (27) can be re-expressed in terms of an integral
_ since the fields arising from A can readily be expanded in Fourier components periodic around

For a cyclic accelerator it is convenient to use s as the independent variable instead of t,

where the Ak are functions of position and time in general.

2 2 — e (qk,pk,r) = cl (px — eAx) + (py -eAy) +m§c2A 2 il
1/2

equations to make q) = O and obtain
(43) and the vector potential components (44). We choose the Coulomb gauge for Maxwe1l's

The Hamiltonian (38) can now be written explicitly in terms of the canonical momenta

reference curve.
One notes that p S, A S are generally not the components in the tangential direction of the

AS =A-t(l— rc x)

Ay = A - b (44)

Ax = A- n

The vector potential A transforms similarly

ps =p·¢(1- K X)

pv = p · b (43)

px = P ‘ T!

canonical momenta from (4la) we have
If we now define the reference curve to be plane, the torsion r vanishes. Taking also the other

11



quadrupole and the curvature 1<= O. Then Eq. (48) simplifies to OCR Output
where po = m0cB y and K is the gradient parameter. The reference orbit is the axis of the

(51)S 2e (y )A = Bi 2 - 2 X

as 5-functions. The only component of the vector potential is
piecewise constant elements with A X = Ay = O, except at the ends where they can be expressed
scale. Also it is sometimes permissible to approximate bending magnets, quadrupoles, etc. by
storage ring, and as an approximation to the motion in an accelerator on a sufficiently short time
of freedom are reduced from three to two. Such a situation arises for a coasting beam in a
corresponds in (49) to a constant value of mg ,6 gg tis an ignorable co—ordinate and the degrees
then H ’ = O and H is an invariant of the motion and is called a cyclic variable. This

Certain simplifications can often be made in Eq. (48). If A is not an explicit function of t

laborious for all but the simplest cases.
straightforward in principle, the calculation of the power—series coefficients is in practice rather
periodicities and by judicious approximations. Although these procedures are well defined and
for the study of resonance behaviour by selection of near-resonant terms in the machine
may be obtained from Eqs. (50); however, the Hamiltonian can conveniently be used directly
series expansion in the dynamical variables up to any order desired. The equations of motion
circumference of the machine. The Hamiltonian F in Eq. (48) can then be expressed as a power
all the elements (dipoles, quadrupoles, etc.) and expanded as Fourier series in s around the
function of s. With a given accelerator or storage-ring lattice these terms can be calculated for
curvature K, which introduces a kinematic non—linear term (usually small), is generally a
variables and of the independent variable s (the distance along the reference trajectory). The

In general the components of the vector potential A are functions of all the dynamical

d s
where the primes denote

8x ay at
'=——-; '=——; H'=— px py

8F 8F QF

dp; 8py 8H
x;.; y:; t`:
'£€’£IL QF

The Hamilton equations of motion are, following Eqs. (18) and (19)

is the square of the total momentum.

H2-ma‘=mC22 -1=mC2=g(§)§(y)§p2y2 p- p

where numerically

2 2 4 2 = —eAs —— (1- rc x)—H —m0c )—(px —eAx) - (py — eAy1 [?(
1/2 (48)

F(x7y7t7px!p7—-HDS_; ——pSy)

12



this context? OCR Output
questions that arise are (i) what is conserved? and (ii) what constitutes "sufficiently slow" in
plausible that for sufficiently slow changes something must be conserved and the main
by an external force at the same time as the frequency is slowly changing. It seems intuitively
now the pendulum is gradually shortened, gravitational energy is being supplied to the system
absence of damping, it is obvious that the sum of potential and kinetic energies 1S constant. If
varying frequency, is intuitively rather simple to grasp. For a constant frequency, and in the

The basic principle of adiabatic invariance, as formulated in the pendulum with slowly

storage rings requires a full understanding of the adiabaticity conditions.
cycle in a synchrotron. In particular, an analysis of the phase-space stacking process in proton
stability of beams under conditions of changing parameters, as happens during the acceleration
physics. In accelerator theory adiabatic invariance is of fundamental importance in ensuring the
fields; subsequently it became of great practical significance in many other branches of
the understanding of quantum theory and the stability of atoms under changes of environmental
else but the action variable S, is a constant. This principle was of immediate consequence for
oscillation period is sufficiently small, the energy divided by the frequency, which is nothing
the suing. Einstein showed that, provided the fractional change in frequency during one
ceiling, forming a pendulum whose frequency could be slowly changed by raising or lowering
Einstein around l9ll, supposed a weight suspended by a string passing through a hole in the
considered as constant. The original classical model of this Adiabatic Principle, formulated by
invariance related to the behaviour of a system under slow changes of a parameter normally
respect to canonical transformations of phase·space integrals. There is another type of

In Section 5 we briefly discussed integral invariants, the invariance property being with

10. ADIABATIC INVARIANTS

y"+k y = 0

x"—K x = O

leading to the familiar form of the equations of motion

P]p0 — px - p,]
y·=L= iX

gpx lpo —p.. —p.l "°
(52c)

:x·:2.: -agi

Py = ‘T = P0 K Y (5Zb)
QF

xpx = _? = Po K X (52a)
8F

2The equations of motion (50) then become, assuming pg >> pi + p

Ii (x.y.p,,p,) = —%(x2 — yi)- [p3 — pi — p3]
1/2
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outstretched arms, adiabatically of course!
the mechanism which enables a ballerina to execute an accelerating pirouette by drawing in the
many fields, some of which are discussed in detail in Section II-7 of Goldstein [1]. It is in fact

The importance of adiabatic invariance of the action variables is of great significance in

small in first order, the lon g-term changes in S are very small.
action variable S over the period is AS / S =1/ 2(er)? Thus if (1/ c0)(dw / dz) = 2 is already
shown by a straightforward but rather lengthy procedure that the fractional secular change in the
the variation in 0) over this period is co = wo exp (E,) 2 (1+ er) for .+2, << 1. Then it can be

Supposing that in any panicular period r of oscillation (1/ w)(dc0 / dt) = 2 is constant,

perturbation of the original Hamiltonian, which can be handled by perturbanon theory.
however the transformation remains canonical and the contribution 8G/ 8: amounts to a
particular period of oscillation (1/ c0)(dw / dt) = 6 << l, an extra term is introduced into H 1;
dependence. If we now consider cu to be a slowly-varying function of time, such that in any
Eq. (35), it had the same value as the old H, since 8G/ 82* = 0, G having no explicit time
oscillator. When we derived the new Hamiltonian H 1 using the generating function G(q,Q) of
bring it into the form of action-angle variables, as we did in Section 6 for the linear harmonic
behaviour, the tirst step is to apply canonical transformations to the Hamiltonian in order to

Since we are interested in systems which involve some kind of periodic or quasi-periodic

discussion to an outline of the method and its application to a simple example.
adiabatic invariance is covered at some length in Section H-7 of Goldstein [l]; here we limit the
need to be examined in the framework of canonical perturbation theory. The subject of

Surprisingly, thcsc questions arc not always very simple to answer, and in many cases


