
An Introduction To Message Passing Paradigms

David W. Walker
Oak Ridge National Laboratory, Oak Ridge, U.S.A.

Abstract

This paper discusses some of the most important message passing approaches used on high
performance computers, and describes their central features. Occam and Fortran M are co-
ordination languages in which processes communicate through typed channels. Split-C and
Linda provide support for shared memory programming. In Split-C all processes can access
a global address space through global pointers. The central feature of Linda is an associative
shared address space called “tuple space.” PVM and MPI are examples of message passing
libraries that are typically used with seqential languages such as C and Fortran. MPI provides
support for modular application libraries through the communicator abstraction. PVM fea-
tures extensive job and process control functionality which has resulted in it being widely
used on networks of workstations.
Keywords: Parallel computing; message passing; occam; Fortran M; Linda; Split-C;PVM;MPI

1 Introduction

This paper gives an introduction to some of the more widely-used and interesting approaches
to the message passing style of programming high performance computers, in particular dis-
tributed memory computers. It is not my intent to give a complete review of the message passing
paradigm, nor to describe in detail the features of any particular approach. Rather, this paper is an
eclectic look at a few of the languages, extensions, and message passing libraries that are widely-
used and/or have been influential in advancing parallel programming and the programming of
parallel computers. This paper should be useful to novices wanting to get a basic understanding
of some of the options open to them for using parallel computers. Wherever possible references
are given to more detailed information available in the literature or electronically should readers
wish to delve more deeply.

The rest of this paper is organized as follows. Section 2 presents an overview of message
passing, and places it in the broader context of parallel programming paradigms. In Section 3,
coordination languages are discussed, and the main features of Occam and Fortran M are de-
scribed. Linda and Split-C, described in Section 4, strictly speaking are based on a shared mem-
ory approach, but they are included here on the basis of their strong message passing flavor. Two
message passing libraries, PVM and MPI, are discussed in Section 5.

2 The Message Passing Approach

In the past decade the concept of message passing has become closely associated with the effi-
cient use of parallel multicomputers and with distributed computing. However, as Hoare relates
in his very readable article on occam and the transputer [25], the concept of message passing
was also strongly motivated by its use in the mid-1960s in the design of operating systems. The
idea of communicating sequential processes as a model for parallel execution was developed by
Hoare [24] in the 1970s, and is the basis of the message passing paradigm. This paradigm as-
sumes a distributed process memory model, i.e., each process has its own local address space.
Processes cooperate to perform a task by independently computing with their local data and com-
municating data between processes by explicitly exchanging messages. The message passing

1

approach is particularly well-suited to computers with physically distributed memory since there
is a good match between the distributed memory model and the distributed hardware. How-
ever, message passing can be used on shared memory and sequential computers, and, indeed,
can be used as the basis for the development of portable and efficient programs on all these ar-
chitectures. An alternative approach is based on the shared process memory model, in which
all processes have access to the same global address space. As might be expected, this approach
works well on shared memory architectures, but may also be supported in software on distributed
memory computers. An example is Orca which is a language that supports shared objects [9].
Other alternatives to the message passing approach include data parallel extensions to sequential
languages, such as High Performance Fortran [27], and implicit parallel languages employing
functional parallelism, such as Sisal [16].

There are two main ways of writing a parallel message passing program. The first is through
a coordination language such as Fortran M [20] or occam [28]. These are specialized languages
for specifying concurrency, communication and and synchronization, and will be discussed in
greater detail in Section 3. The second way of performing message passing is with calls to a
message passing library from within a sequential program. This has proved to be a very popular
way of writing concurrent applications since it is expressive, closely models the functionality
of the parallel hardware, and permits explicit management of the memory hierarchy. A num-
ber of different message passing libraries have been developed over the past decade in addition
to the hardware specific message passing libraries provided by different parallel computer ven-
dors. Express is a commercial parallel computing environment produced by Parasoft Inc. [30],
and is based on the CrOS III message passing library [21]. Other message passing libraries in-
clude PARMACS [11], which is based on p4 [10], and Zipcode [32]. The special issue of Par-
allel Computing on message passing include more detailed articles on these, and other, message
passing libraries [1].

3 Coordination Languages

Coordination languages are languages with explicit support for expressing parallelism, commu-
nication, and synchronization. In this section two examples, occam and Fortran M, will be con-
sidered.

3.1 Occam

Occam was designed specifically for programming transputers, indeed, it is often referred to as
the assembly language of the transputer. Occam is based on Hoare’s model of communicating
sequential processes [24] which allows programs to be analyzed mathematically to check for
program correctness. In occam, parallelism is expressed through the PAR construct. Thus, the
code fragment

PAR

process 1

process 2

process 3

indicates that the three processes may be executed in parallel. Similarly, the SEQ construct
is used to specify the sequential execution of a set of processes. There are three primitive pro-
cesses in occam, namely, input to a channel, output from a channel, and assignment. More com-
plex processes can be built from these primitives by defining procedures. In occam, messages

2

are communicated through uni-directional, typed channels, Each channel has one sender process
and one receiver process. A channel is said to be typed if the datatypes of the variables that may
be communicated by the channel are predefined. The following occam code illustrates a simple
use of a typed channel.

CHAN OF INT chan :

PAR

chan ! 2

INT x, z :

SEQ

chan ? x

z := x

The above program illustrates the use of the three primitive processes, as well as the PAR
and SEQ constructs. The first line of code declares a channel, chan, that will be used to commu-
nicate an integer. The PAR construct refers to two processes. One process outputs the integer 2
on channel chan (chan ! 2). The second process is a compound process beginning with the
SEQ and consists of two primitive subprocesses executed sequentially. The first inputs the data
from channel chan into the variable x (chan ? x), and the second copies the value of x to vari-
able z (z := x). Note that x and z are declared immediately before the process that uses them,
and that their scope is limited to just that process.

In occam, communication is synchronous. This means that that the sending process must
output to a channel and the receiving process must input from that channel in order for the com-
munication to occur. If either the sending or receiving process is not yet ready to participate in
the communication then the other process will wait. In incorrectly designed programs deadlock
may occur. Deadlock arises in a parallel program if one or more processes are waiting for an
event that will never occur, and is a common programming bug. The following program gives
an example of deadlock.

CHAN OF INT chan1, chan2 :

PAR

INT x :

SEQ

chan1 ! 2

chan2 ? x

INT z :

SEQ

chan2 ! 4

chan1 ? z

Here, one process outputs the value 2 on channel chan1, and another outputs the value 4
on channel chan2. Both processes then wait indefinitely because neither can continue until the
other inputs to their respective channels. Thus, deadlock occurs. In this case, deadlock can be
avoided simply be reversing the order of the input and output processes in either (but not both!)
of the parallel processes.

Communication is said to be non-deterministic if the receive on the receiving process may
be matched by any one of several potential send operations on other processes. Non-deterministic
communication is often used to improve the performance of a parallel program by ensuring that
the receiving process is supplied with enough data from other processes to keep it busy. How-
ever, non-determinism may be introduced unintentionally into a program and is the second most

3

common type of bug in parallel programming. A program with this sort of bug may fail intermit-
tently since its behavior depends on the synchronization between processes. Non-determinism
may be introduced into an occam program through the ALT construct. An ALT construct moni-
tors several channels, each of which is associated with a process. Only one of these processes is
executed, and that is the one associated with the channel that first produces an input. Consider
the following code fragment.

CHAN OF INT chan1, chan2 :

INT x, y :

ALT

chan1 ? x

SEQ

y := 2*x + 1

chan3 ! y

chan2 ? x

SEQ

y := 2*x

chan3 ! y

Here a process waits for input on either chan1 or chan2. When it receives input on either
channel it performs a simple computation and outputs the result on chan3. This code fragment
does not show the processes that produce the input or consume the output. If the process receives
input x first on chan1 it computes 2x + 1 and outputs the results on chan3. If it receives input
first on chan2 it will output 2x on chan3. Thus, there are two possible outcomes, and it is not
possible to determine a priori which will actually occur.

In addition to the PAR, SEQ, and ALT constructs occam also provides IF and WHILE con-
structs for controlling program flow. All of these constructs, except WHILE, may be replicated.
Replicated SEQ and PAR constructs create sets of similar processes that execute sequentially or
in parallel. A replicated PARmay be used for the single-program, multiple-data (SPMD) style of
programming. A replicated ALT can be used to monitor an array of channels, and a replicated IF
can be used to create a conditional with similar clauses. Occam also provides a mechanism for
placing processes on physical processors which may improve the performance of a program, but
does not affect its correctness. Another important and useful feature is occam’s use of protocols
to allow channels to carry data of mixed types. Protocols can also be used for communicating
fixed and variable length arrays, and for allowing a single channel to carry messages of differing
format.

It is hoped that the above gives a good idea of the main features of the occam language
and how they are used. For further information the interested reader is referred to the excellent
(and short) introduction by Pountain and May [31], and to the more advanced text by Jones and
Goldsmith [26] which also contains a good bibliography. The occam web page contains pointers
to information on occam compilers, documentation, and projects [2].

3.2 Fortran M

Fortran M was developed by Ian Foster of Argonne National Laboratory and Mani Chandy of
the California Institute of Technology [20], and consists of Fortran 77 plus a set of extensions for
process creation and control, and communication. Fortran M is broadly similar to occam in that it
provides constructs for creating parallel processes, communicates data through uni-directional,
typed channels, and supports the mapping of processes to processors. However, there are im-

4

portant differences. One important difference is that communication in Fortran M is not syn-
chronous because the send may complete before the matching receive operation is started at the
other end of the channel. The second important difference is that channels are specified as links
between inports and outports. A process sends data through an outport and receives data through
an inport. Furthermore, ports may be communicated giving rise to dynamic channels. Fortran M
does not have any equivalent of the SEQ, WHILE, and IF constructs as these are subsumed within
the Fortran language. Fortran M introduces non-determinism through the MERGER and PROBE

constructs, which replace occam’s ALT construct.
The following program illustrates the basic message passing capabilities of Fortran M.
program swap1

INPORT (integer) portin(2)

OUTPORT (integer) portout(2)

CHANNEL (in=portin(1), out=portout(2))

CHANNEL (in=portin(2), out=portout(1))

PROCESSES

PROCESSCALL swap (portin(1), portout(1))

PROCESSCALL swap (portin(2), portout(2))

ENDPROCESSES

end

PROCESS swap (in, out)

INPORT (integer) in

OUTPORT (integer) out

integer p

SEND (out) p

RECEIVE (in) p

end

This program declares two inports and two outports capable of receiving and sending an integer.
Two channels are then established, each connecting an inport to an outport. The section of code
beginning with “PROCESSES”and ending with “ENDPROCESSES”constitutes a process block, and
is similar to the PAR construct in occam. The two processes in the process block are executed
concurrently, with each process calling swap with different inport and outport arguments. The
swap processes exchange an integer value, p. Note that deadlock will not occur here because the
send operation can complete before the matching receive operation is initiated.

In Fortran M the MERGER construct can be used to connect multiple outports to a single
inport. This can be used to introduce non-determinism into a parallel program since data from
only one of the outports will be received at the inport. The MERGER construct is equivalent to
a replicated ALT in occam. The following Fortran M code fragment connects three producer
processes to one consumer process.

INPORT (integer) portin

OUTPORT (integer) portout(3)

MERGER (in=portin, out=pout(:))

PROCESSES

call consumer (pin)

PROCESSDO i=1,3

PROCESSCALL producer (pout(i))

ENDPROCESSDO

5

ENDPROCESSES

In this example the MERGER statement connects the three elements of the array of outportsportout
to the inport portin. Within the process block the subroutine consumer is executed on the cur-
rent process, and the PROCESSDO loop creates three producerprocesses. The consumer routine
is passed the inport of the merger and each producer process is passed one of the outports.

Nondeterminacy may also be introduced into a Fortran M program through the PROBE con-
struct which is used to check if a message is waiting to be received on an inport. PROBE returns a
logical variable to indicate if a message is pending on a specified inport, and is typically used to
allow a process to do useful work while intermittently checking if a message is ready for receipt,
thereby avoiding idle time.

A useful feature of Fortran M is the ability to communicate an inport or outport from one
process to another. By communicating a port the processes connected by a channel can be changed.
Thus, instead of statically connecting two fixed processes channels may be dynamic. Dynamic
channels are often used when a process wants another process to return data to it. In such cases
the process creates a channel and then sends the channel’s outport to another process. That pro-
cess then has the ability to send data back to the original process. This approach is useful for
dealing with “migrating computations” in which a task may move between processes before
completing, and then sends back the results of the work to the process that originated the task.

Fortran M provides mechanisms for process placement. As in occam, this affects the per-
formance, but not the correctness, of programs. Process placement is based on the concept of a
virtual process array which is declared in the Fortran M program. Fortran M provides annota-
tions that can be used to specify where in the virtual process array a process is to run, and for
subdividing the virtual process array so that different processes run on different “subcomputers.”

For further details of the Fortran M language readers are referred to the paper by Foster
and Chandy [20], and to the Fortran M manual [18]. Foster has also written a book that discusses
Fortran M as well as other approaches to parallel programming, such as CC++ and High Perfor-
mance Fortran, that are not covered in this paper [19]. All of these publications are available
from the Fortran M web page at Argonne National Laboratory [3]. If you want to try out Fortran
M for yourself the necessary software can also be obtained from the web page.

4 Shared Memory Paradigms

In this section we discuss two alternatives to the message passing paradigm, Linda and Split-C.
These provide support for shared memory, and were designed with distributed memory imple-
mentations in mind.

4.1 Linda

Linda was developed by Gelertner and colleagues, and is a set of simple extensions to a con-
ventional programming language such as C or Fortran. Linda is based on an associative shared
memory known as “tuple space.” A tuple is an ordered sequence of data. For example the tuple

('array x', 5, [1 4 2 7 9])

is a tuple consisting of a string, an integer, and an array of integers. In Linda processes only
interact through tuple space, and routines are provided for placing tuples into, and extracting
tuples from, tuple space. Tuples may be created and placed in tuple space using the out and eval
operations. Tuples may be read or removed from tuple space using the rd and in operations.
Linda’s extensions consist of just these four operations making it very simple, but at the same
time very expressive.

6

The out operation evaluates the tuple fields sequentially on the calling process, and places
the resulting tuple into tuple space. For example

out ('function', i, f(i))

out ('common data', /params/)

out ('array section', i, j, x(i:j)).

For the first of these the calling process evaluates the function f for argument i, making this
the third component of the tuple, and places the resulting tuple into tuple space. The second
example places a tuple into tuple space consisting of the string 'common data' and contents of
the common block params. The third example shows how to place an array section into tuple
space consisting of a string, two integers (with i � j), and a section of the array x starting with
x(i) and going up to x(j). It should be noted that out is similar to a send operation, but is more
general — instead of sending data from one process to another data are sent from a process to
tuple space, where it can be sequently retrieved by another process. Also Linda supports self-
describing messages in a very natural way.

The eval operation can be used as a general way of spawning processes. It evaluates the
tuple fields in parallel and then places the resulting tuple in tuple space. For example the code
fragment

do i=1,100

eval('function', i, f(i))

end do

may cause 100 new processes to be created, each of which handles one of the tuples, placing it in
tuple space after performing the function evaluation. The eval operation is nonblocking on the
calling process so the calling process continues without waiting for the eval operation to com-
plete. eval is typically called by a host process to spawn a set of worker processes which return
their results to tuple space, allowing them to be retrieved by the host which can then process
them further and/or output results.

There are two operations for retrieving tuples from tuple space. The in operation finds
a tuple that associatively matches a given template and removes it from tuple space. The rd

operation is similar to in but does not remove the tuple from tuple space. For example the tuple
placed into tuple space with

out ('message', i, n, data(1:n))

can be retrieved with
in ('message', i, ?size, ?mydata(1:n))

This will match all tuples in tuple space with four fields whose datatypes match, and whose first
two fields are 'message' and i. The question marks in front of the last two fields indicate that
the values of these two fields do not matter in establishing a match. When a matching tuple is
retrieved the variable size takes the value of the third field, and the array mydata receives the
values of the array section in the fourth field. If more than one matching tuple is found one is
selected at random. If no matching tuple is found the process waits until one is available.

To illustrate how Linda is used consider the following example in Linda Fortran which
integrates the function sin x from 0 to �.

program integrate

parameter (npts=100, pi=3.141592654)

deltax = pi/npts

do i=2,npts

x = (i-0.5)*deltax

eval(sin(x))

7

end do

sum = sin(0.5*deltax)

do i=2,npts

in(?result)

sum = sum + result

end do

print *,'The integral is ',sum*deltax

end

In this example the real axis is divided into npts equally-sized intervals, and the integral within
each integral is approximated by the value of sin x evaluated at the mid-point of the interval mul-
tiplied by the width of the interval. At the start of the program a single process exists which we
shall call the host process. The eval operation in the first loop causes npts-1worker processes
to be created, each of which evaluates the integrand at the mid-point of one interval. The host
process evaluates the integrand at the mid-point of the first interval. Having evaluated their re-
spective integrands the worker processes place their results in tuple space. In the second loop the
host process retrieves the results from tuple space, sums them together, and outputs the approx-
imate integral. Of course, this is trivial example since the integrand is so simple. However, the
integrand can be arbitrarily complicated and perhaps involve a lengthy computation. For such
problems it makes sense to use a parallel computer.

It should be noted that Linda is capable of simulating message passing by libraries such as
PVM and MPI, discussed in Section 5. For example, if a tuple is placed in tuple space as follows

out('message', myrank, dest, tag, 'real', n, data(1:n))

and is retrieved thus
in('message', source, myrank, tag, 'real', ?n, ?data(1:n))

this is similar in MPI to a standard blocking send matched by a blocking receive that communi-
cates n values in a real array from the process with rank source to that with rank dest. myrank
is the rank of the calling process in each case.

Linda is well-suited for handling dynamic load balancing by treating tuple space as a “bag
of tasks.” Tasks to be performed can be placed into tuple space with eval, and on completion
of a task the results are put back into tuple space.

An important distinction between Linda and approaches using message passing is that there
is only a loose coupling between processes — processes interact only with tuple space and not
directly with each other. Thus, a process that consumes data in tuple space does not have to even
exist at the time the data is placed into tuple space.

Linda is commercially supported by Scientific Computing Associates, Inc. Gelertner and
colleagues have written several papers on Linda, for example [12, 13, 14]. These papers and
lots more information about Linda are available from the Linda web page at Yale University [4].
There is also an active Linda group at York University in the United Kingdom [5].

4.2 Split-C

Split-C is being developed by David Culler and colleagues at the University of California, Berke-
ley. Split-C is a set of parallel extensions to the C programming language that provide mech-
anisms for supporting shared memory. Split-C is based on the single-program, multiple-data
(SPMD) model, i.e., a fixed number of processes all execute the same executable code. In Split-
C, processes can access a global address through global pointers. We may regard this address
space as two-dimensional with processes running in one direction and local memory in the other.

8

In addition each process can access its own local address space using standard pointers. Derefer-
encing a global pointer may involve communication and be more expensive than dereferencing a
global pointer. Hence, in the interests of performance, global pointers should be used sparingly.
The following lines of Split-C illustrate some of the uses of global pointers.

int *global gptr;

int xval, proc, *lptr;

xval = &gptr;

gptr = toglobal(MYPROC, lptr);

lptr = tolocal(gptr);

proc = toproc(gptr);

The first of the above lines shows how to declare a global pointer. The second line dereferences
a global pointer into a local variable. The next three lines make use of some Split-C functions.
toglobal converts a local pointer to a global pointer. MYPROC is a special integer that uniquely
numbers a process in the range 0 to PROCS-1, where PROCS is another special integer giving the
number of processes. The functions tolocal and toproc destructure a global pointer into its
local pointer and process number parts. The following routines shows how a global pointer could
be used to broadcast n integers from a root process to all processes.

all_bcast_int(int root, int *val, int n)

{

int i;

int *global = toglobal(root,val);

barrier();

for(i=0;i<n;i++) *(val++) = *(gptr++);

barrier();

}

The toglobal function is used to create a global pointer that references the start of the data on
the root process. A barrier is then performed to make sure that the data to be broadcast from the
root process is ready. Then each process dereferences the global pointer so the value it points to
is stored at the address pointed to by the local pointer, val. By incrementing the local and global
pointers each of the n elements are broadcast. A second barrier then has to be performed to make
sure that the root process does not overwrite the broadcast data before all the other processes
have received it. This is almost certainly not a very efficient way to perform a broadcast because
each time the global pointer is dereferenced data must be communicated from the root to all
other processes. It should be noted that when arithmetic is performed on a global pointer another
object on the same process is accessed. It is an error to do arithmetic on a global pointer outside
of the local address space.

Spread pointers are global pointers that traverse the two-dimensional global address space
in the process direction, so that successive objects are on different processes. Spread pointers
wrap around in the process direction so if sptr is a spread pointer, sptr+PROCSpoints to the next
object on the same process, and sptr+1 points to the object on the next process. The following
example shows how to use a spread pointer to sum a set of numbers distributed one to a process.

/* include files should go here */

splitc_main(){

int *spread sptr;

int *lptr, i, sum=0;

sptr = all_spread_malloc(PROCS,sizeof(int));

lptr = tolocal(sptr);

9

*lptr = MYPROC;

barrier();

on_one{

for(i=0;i<PROCS;++i) sum += *(sptr++);

printf("\nThe sum is %i\n",sum);

}

barrier();

all_spread_free(sptr);

exit(0);

}

In this example the routine all spread malloc is called to create a spread pointer to an inte-
ger over the processes. Each process extracts the local part of the spread pointer and stores its
process number at that location. Then the macro on one is used to sum the values stored at the
spread pointer locations. Note the use of barriers to ensure proper synchronization.

Split-C also provides spread arrays in which one or more dimensions are spread over the
processes. By convention, the array dimensions that are distributed lie to the left of the spreader
“::”. For example,

int x[10*PROCS]::[10];

declares an array x whose first dimension is cyclicly distributed over the processes, so x[i][j]

refers to the jth element on process i mod PROCS. This is equivalent to a vector of 100*PROCS
elements block cyclicly distributed with a block size of 10. The summation example shown
above can be rewritten to use a spread array as follows.

static int sarray[PROCS]::;

/* include files should go here */

splitc_main(){

int i, sum=0;

sarray[MYPROC] = MYPROC;

barrier();

on_one{

for(i=0;i<PROCS;++i) sum += sarray[i];

printf("\nThe sum is %i\n",sum);

}

barrier();

exit(0);

}

In the preceding Split-C examples global objects have been accessed one at a time. This
is likely to be inefficient because the latency associated with the communication is paid for each
access. Split-C therefore provides bulk assignment routines for copying to or from arrays of
global objects. Thus, the broadcast example above could be implemented by having each pro-
cess call the routine bulk read to read the data from the root process into local memory in one
operation.

In addition to support for a global address space, the second important feature of Split-C is
split phase assignment. Split phase assignment allows access to a global object to be overlapped
with other useful work. The assignment initiates access to the global object, but the access is
guaranteed to have completed only after a subsequent call to the routine sync(). The “get” form
of split phase assignment places the content of a global reference into a local one, and the “put”
form places the contents of a local reference into a global one. The split phase operator is “:=”.

10

The get form of the broadcast example may be written as follows,
all_bcast_int(int root, int *val, int n)

{

int i;

int *global gptr = toglobal(root,val);

barrier();

for(i=0;i<n;i++) *(val++) := *(gptr++);

sync();

barrier();

}

In this version of the example we do not have to wait for one assignment to finish before starting
the next, so the use of split phase assignment should result in more efficient code. There are also
routines for performing bulk split phase assignment.

When storing into a global location using a standard assignment an acknowledgement is
returned to the initiating process when the store has completed. Split-C provides another form of
assignment, called store assignment, that does not perform this acknowledgement, and is hence
faster. A subsequent call to the routine all store sync synchronizes processes and waits for
all the stores to complete. The store assignment operator is “:-”. The following example shows
how to use store assignment in the put form of a broadcast in which the root stores the data on
each process.

all_bcast_int(int root, int *val, int n)

{

int *global gptr;

int i, ip;

barrier();

on_proc(root){

for(ip=0;ip<PROCS;ip++) {

gptr = toglobal(ip,val);

for (i=0;i<n;i++) *(gptr++) :- *(val++);

}

}

all_store_sync();

}

In this example the root loops over all processes, creates a global pointer into each process’ mem-
ory, and then does a store assignment to that location. There is also a bulk store assignment rou-
tine for the store assignment of arrays.

Only a brief introduction into Split-C has been given here. Split-C also contains a number
of macros and auxiliary library routines for performing tasks such as broadcast and reduction.
For further details the reader is referred to the tutorial introduction by Culler et al. [15]. The
software for implementing Split-C, as well as other information, is available from the world wide
web [6].

5 Message Passing Libraries

This section describes two message passing libraries that have emerged as potential standards:
PVM and MPI. These libraries are designed for use with a sequential programming language
such as C or Fortran. Central to each library is a set of routines for performing point-to-point

11

communication between pairs of processes. Additional routines perform collective communica-
tion operations, such as broadcasts and reductions, and process and job management. A recent
special issue of the journal Parallel Computing on the topic of message passing contains articles
on several widely-used message passing environments [1].

5.1 Parallel Virtual Machine (PVM)

The earliest version of PVM was developed by Vaidy Sunderam in 1989 and 1990 while visiting
Oak Ridge National Laboratory (ORNL) [33]. Later versions of PVM were developed by a team
of researchers at ORNL, the University of Tennessee, Knoxville, Emory University and Carnegie
Mellon University. PVM enables a collection of different computing systems to be viewed as
a single parallel machine. In particular, it has been very widely used to connect networks of
workstations (NOWs) together to execute parallel programs. The component computers in the
parallel virtual machine need not be all of the same type, and PVM will transparently handle any
necessary data conversions when messages are passed between machines with different internal
data representations. Currently C and Fortran interfaces to PVM exist.

PVM is more than just a message passing library — it is a complete environment for het-
erogeneous parallel computing consisting of four main parts.

1. The PVM daemon. This runs on every host computer in the parallel virtual machine. It
controls PVM resources on each host and mediates interactions with other hosts.

2. The PVM console. This is a user interface that allows the user to interactively configure
the parallel virtual machine.

3. The PVM group server. This manages process groups.
4. The PVM library. The set of routines for performing message passing, and managing tasks

and process groups.
The remainder of this subsection will focus on the PVM library.

The most natural way to program with PVM is to use a host-worker model of computation
in which a single host process is responsible for doing I/O and for spawning a set of worker
processes that concurrently perform most of the computation. The host and worker processes
are each uniquely identified by an integer known as the task ID.

In PVM, point-to-point messages are typed, and tagged. A typed message is one in which
the message passing system is aware of the datatypes of the components making up a message.
PVM is capable of sending messages of mixed datatypes. A tagged message is one that has an
integer “tag” associated with it. When a message is sent the destination is specified by the task
ID of the receiving process. Similarly, when a message is received the source of the message is
identified by its task ID. Message selectivity is by source task ID and tag. Thus, when a message
is received the source task ID and tag associated with the message must match those specified
in the argument list of the receive routine, unless either is wildcarded. If the receive routine is
passed a value of�1 for the source task ID then this criterion will be ignored in message selection
and we say that it is wildcarded. The tag may be wildcarded in a similar way.

Message passing is done by calls to routines in the message passing library and makes use
of system controlled buffers. Typically, sending a message takes place in three phases. First the
system send buffer is cleared and prepared for use. Next the message is packed into the message
buffer. Lastly the message is sent. Receiving a message usually takes place in two phases. First
the message is received into the system receive buffer and then it is unpacked into the application
space. The following code fragment shows how one processes sends a message consisting of one
integer followed by two floats to another process.

12

tid = pvm_mytid();

if (tid == source){

bufid = pvm_initsend(PvmDataDefault);

info = pvm_packint(&i1, 1, 1);

info = pvm_packfloat(vec1, 2, 1);

info = pvm_send (dest, tag);

}

elseif (tid == dest){

bufid = pvm_recv(source, tag);

info = pvm_upkint(&i2, 1, 1);

info = pvm_upkfloat(vec2, 2, 1);

}

In this example each process calls the routinepvm mytid() to determine its task ID. It is assumed
that the values of source and dest are distinct valid task IDs for the set of processes executing
the code. The source process initializes the send buffer, and packs an integer (i1) and two floats
(the first two elements of vec1) into it. Finally the source process sends the data to the destination
process, dest. The destination process waits to receive the message with the specified tag value
from the source process. Once it has been received it unpacks the integer into variable i2 and
the two floats into the first two elements of vec2.

The receive routine pvm recv is blocking, i.e., if no message satisfying the selection cri-
teria is available it will wait until one is available. The send routine pvm send is nonblocking
in the sense that a call to pvm send initiates the send operation and then returns. PVM provides
a receive routine pvm nrecv that is nonblocking in the sense that if a message satisfying the se-
lection criteria has not arrived when it is called it returns a value of zero, otherwise it receives
the message into a new receive buffer and returns the strictly positive buffer ID. PVM also pro-
vides a receive routine that times out if a suitable message is not received within a specified
time. The packing and unpacking of data is useful when messages of mixed datatype need to
be communicated, but is rather inconvenient for messages of a single datatype. In such case the
routines pvm psend and pvm precv may be used. For these routines the data buffer to send, or
receive into, is specified in the argument list, together with the datatype. The routine pvm psend

is blocking, i.e., it will not return until it is safe to reuse the data buffer. The routinepvm precv is
also blocking, just like pvm recv. Finally, the routine pvm probe can be used to check if a mes-
sage with a specified tag from a specified source is ready for receipt without actually receiving
it.

In addition, to point-to-point communication and related routines PVM also includes a
small set of collective communication routines. These routines involve coordinated commu-
nication within groups of processes. PVM provides mechanisms that allow processes to asyn-
chronously join or leave a process group, and groups are identified by a user-supplied string.
The three collective communication operations are barrier synchronization, broadcast, and re-
duction. The barrier routine ensures that no process in the group exits the routine until they all
have entered it. The broadcast routine sends data from one process in the process group to all
processes in the group. The reduction routine combines the values provided in the input buffer
of each process in the group using a specified function. Thus, if Di is the data in the ith process
in the group, and � is the combining function, then the following quantity is evaluated,

D = D0 �D1 �D2 � � � � �Dn�1 (1)

where n is the size of the process group. The resultD is returned to a specified root process. The

13

combining function is supplied by the user, although PVM provides some pre-defined functions,
such as summation.

Further details of PVM can be best obtained from the PVM users’ guide and tutorial which
is available as a book [22]. The PVM web page provides further documentation, recent news on
PVM, research projects involving PVM, and pointers to other PVM resources [7]. The software
for implementing PVM in a variety of computing environments is also available from the web
page.

5.2 Message Passing Interface (MPI)

MPI is a proposed standard message passing interface. The design of MPI was a collective effort
involving researchers in the United States and Europe from many organizations and institutions.
MPI includes point-to-point and collective communication routines, as well as support for pro-
cess groups, and application topologies.

In MPI there is currently no mechanism for creating processes, and an MPI program is
parallel ab initio, i.e., there is a fixed number of processes from the start to the end of an appli-
cation program. All processes are members of at least one process group. Initially all processes
are members of the same group, and a number of routines are provided that allow the user to
create (and destroy) new subgroups. Within a group each process is assigned a unique rank in
the range 0 to n � 1, where n is the number of processes in the group. This rank is used to
identify a process, and, in particular, is used to specify the source and destination processes in a
point-to-point communication operation, and the root process in certain collective communica-
tion operations. As in PVM, message selectivity in point-to-point communication as by source
process and message tag, each of which may be wildcarded to indicate that any valid value is
acceptable.

The key innovative ideas in MPI are the communicator abstraction and general, or derived,
datatypes. These will be discussed before describing the communication routines in more detail.
Communicators provide support for the design of safe, modular software libraries. Here “safe”
means that messages intended for a particular receive routine in an application will not be incor-
rectly intercepted by another receive routine. Thus, communicators are a powerful mechanism
for avoiding unintentional non-determinism in message passing. This is a particular problem
when using third-party software libraries that perform message passing. The point here is that
the application developer has no way of knowing if the tag, group, and rank completely disam-
biguate the message traffic of different libraries and the rest of the application. Communicator
arguments are passed to all MPI message passing routines, and a message can be communicated
only if the communicator arguments passed to the send and receive routines match. Thus, in ef-
fect communicators provide an additional criterion for message selection, and hence permit the
construction of independent tag spaces.

If communicators are not used to disambiguate message traffic there are two ways in which
a call to a library routine can lead to unintended behavior. In the first case the processes enter
a library routine synchronously when a send has been initiated for which the matching receive
is not posted until after the library call. In this case the message may be incorrectly received in
the library routine. The second possibility arises when different processes enter a library routine
asynchronously, as shown in the example in Figure 1, resulting in nondeterministic behavior. If
the program behaves correctly processes 0 and 1 each receive a message from process 2, using
a wildcarded selection criterion to indicate that they are prepared to receive a message from any
process. The three processes then pass data around in a ring within the library routine. If separate

14

communicators are not used for the communication inside and outside of the library routine this
program may intermittently fail. Suppose we delay the sending of the second message sent by
process 2, for example, by inserting some computation, as shown in Figure 2. In this case the
wildcarded receive in process 0 is satisfied by a message sent from process 1, rather than from
process 2, and deadlock results. By supplying a different communicator to the library routine
we can ensure that the program is executed correctly, regardless of when the processes enter the
library routine.

Process 0 Process 1 Process 2

recv(any) recv(any) send(1)

send(0)

recv(1)

send(2)

recv(0)

send(1)

send(0)

recv(2)

Figure 1: Use of communicators. Time increases down the page. Numbers in parentheses indicate the
process to which data are being sent or received. The gray shaded area represents the library routine
call. In this case the program behaves as intended. Note that the second message sent by process 2 is
received by process 0, and that the message sent by process 0 is received by process 2.

Process 0 Process 1 Process 2

recv(any) recv(any) send(1)

compute

send(0)

send(0)

recv(2)
recv(1)

recv(0)

Figure 2: Unintended behavior of program. In this case the message from process 2 to process 0 is
never received, and deadlock results.

Communicators are opaque objects, which means they can only be manipulated using MPI
routines. The key point about communicators is that when a communicator is created by an MPI
routine it is guaranteed to be unique. Thus it is possible to create a communicator and pass it to
a software library for use in all that library’s message passing. Provided that communicator is
not used for any message passing outside of the library, the library’s messages and those of the
rest of the application cannot be confused.

Communicators have a number of attributes. The group attribute identifies the process
group relative to which process ranks are interpreted, and/or which identifies the process group
involved in a collective communication operation. Communicators also have a topology at-
tribute which gives the topology of the process group. Topologies are discussed below. In addi-
tion, users may associate attributes with communicators through a mechanism known as caching.

15

All point-to-point message passing routines in MPI take as an argument the datatype of the
data communicated. In the simplest case this will be a primitive datatype, such as an integer or
floating point number. However, MPI provides a number of routines for creating more general
datatypes, and thereby supports the communication of array sections and structures involving
combinations of primitive datatypes.

In many applications the processes are arranged with a particular topology, such as a two-
or three-dimensional grid. MPI provides support for general application topologies that are spec-
ified by a graph in which processes that communicate a significant amount are connected by an
arc. If the application topology is an n-dimensional Cartesian grid then this generality is not
needed, so as a convenience MPI provides explicit support for such topologies. For a Cartesian
grid periodic or nonperiodic boundary conditions may apply in any specified grid dimension. In
MPI, a group either has a Cartesian or graph topology, or no topology. In addition to providing
routines for translating between process rank and location in the topology, MPI also:

1. allows knowledge of the application topology to be exploited in order to efficiently assign
processes to physical processors,

2. provides a routine for partitioning a Cartesian grid into hyperplane groups by removing a
specified set of dimensions,

3. provides support for shifting data along a specified dimension of a Cartesian grid.
By dividing a Cartesian grid into hyperplane groups it is possible to perform collective commu-
nication operations within these groups. In particular, if all but one dimension is removed a set
of one-dimensional subgroups is formed, and it is possible, for example, to perform a multicast
in the corresponding direction.

A set of routines that supports point-to-point communication between pairs of processes
forms the core of MPI routines for sending and receiving blocking and nonblocking messages are
provided. A blocking send does not return until it is safe for the application to alter the message
buffer on the sending process without corrupting or changing the message sent. A nonblocking
send may return while the message buffer on the sending process is still volatile, and it should
not be changed until it is guaranteed that this will not corrupt the message. This may be done by
either calling a routine that blocks until the message buffer may be safely reused, or by calling a
routine that performs a nonblocking check on the message status. A blocking receive suspends
execution on the receiving process until the incoming message has been placed in the specified
application buffer. A nonblocking receive may return before the message has been received into
the specified application buffer, and a subsequent call must be made to ensure that this has oc-
curred before the application uses the data in the message.

In MPI a message may be sent in one of four communication modes, which approximately
correspond to the most common protocols used for point-to-point communication. In ready mode
a message may be sent only if a corresponding receive has been initiated. In standard mode a
message may be sent regardless of whether a corresponding receive has been initiated. MPI in-
cludes a synchronous mode which is the same as the standard mode, except that the send opera-
tion will not complete until a corresponding receive has been initiated on the destination process.
Finally, there is a buffered mode. To use buffered mode the user must first supply a buffer and as-
sociate it with a communicator. When a subsequent send is performed using that communicator
MPI may use the associated buffer to buffer the message. A buffered send may be performed
regardless of whether a corresponding receive has been initiated. In PVM message buffering
is provided by the system, but MPI does not mandate that an implementation provide message
buffering. Buffered mode provides a way of making MPI buffer messages, and is useful when
converting a program from PVM to MPI.

16

In addition, MPI provides routines that send to one process while receiving from another.
Different versions are provided for when the send and receive buffers are distinct, and for when
they are the same. The send/receive operation is blocking, so does not return until the send buffer
is ready for reuse, and the incoming message has been received.

MPI includes a rich set of collective communication routines that perform coordinated
communication among a group of processes. The process group is that associated with the com-
municator that is passed into the routine. MPI’s collective communication routines can be di-
vided into two groups: data movement routines and global computation routines. There are five
types of data movement routine: broadcast, scatter, gather, all-gather, and all-to-all. These are
illustrated in Fig. 3.

There are two global computation routines in MPI: reduce and scan. The MPI reduction
operation is similar in functionality to that provided by PVM. Different versions of the reduction
routine are provided depending on whether the results are made available to all processes in the
group, just one process, or are scattered cyclicly across the group. The scan routines perform
a parallel prefix with respect to a user-specified operation on data distributed across a specified
group. If Di is the data item on the process with rank i, then on completion the output buffer of
this process contains the result of combining the values from the processes with rank 0; 1; : : : ; i,
i.e.,

Di = D0 �D1 �D2 � � � � �Di (2)

Two versions of the MPI specification exist. One is dated May 5, 1994 (version 1.0), and
the other June 12, 1995 (version 1.1). The latter document incorporates corrections and clari-
fications to the former, but the two do not differ in any substantial way. At the time of writing
version 1.1 is only available electronically [17]. The book on using MPI by Gropp, Lusk and
Skjellum, who played an active role in MPI’s design, gives a good introduction to application
programming with MPI [23]. An annotated reference manual based on version 1.1 of MPI will
be available by the end of 1995 [29]. A large amount of information about MPI is available via
the web, including portable implementations of MPI, information about efforts to extend MPI,
and publications related to MPI [8].

6 Summary

This paper has given an overview of the main features of some of the most interesting and/or
widely-used approaches to programming parallel computers based on message passing. While
it is not intended as a complete survey it is hoped that readers will have gained a good idea of
the options open to them when using such machines. An obvious question to ask is “What is
the best approach to parallel programming?” Of course, this is not a trivial question to answer,
and often the depends on complicated trade-offs between performance, expressivity, ease-of-
programming, maintainability, and portability. Languages such as occam and Fortran M are
very good at expressing parallelism in a modular way, and offer guarantees of program correct-
ness which may be particularly important in realtime programming. Split-C aims to give good
performance through the use of bulk transfer operations while providing the convenience and
ease-of-use of a global address space. Linda’s main advantages are its simplicity and expres-
sivity, and the fact that it is a commercially-supported product. Message passing libraries are
perhaps the most widely-used way of programming parallel computers. Although it is often ar-
gued that the popularity of message passing libraries rests on their flexibility and the fact that
they permit the memory hierarchy to be managed to give good performance, the root cause may
actually be economic and historical. When commercial parallel computers first become popular

17

A0 A1 A2 A3 A4 A5
one-all scatter

one-all gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

all-all scatter

A0

B0

C0

D0

E0

F0

all-all broadcast

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

one-all broadcast
pr

oc
es

se
s

A0

A0

A0

A0

A0

A0

Figure 3: One-all and all-all versions of the broadcast, scatter, and gather routines for a group of six
processes. In each case, each row of boxes represents contiguous data locations in one process. Thus,
in the one-all broadcast, initially just the first process contains the data A0, but after the broadcast all

processes contain it.

18

a decade ago the vendors supplied them with message passing libraries because that was (and
still is) the cheapest type of parallel programming software. Users quickly developed portable
message passing libraries on top of the vendor libraries, a development that ultimately led to
PVM and MPI. PVM and MPI currently owe much of their popularity to the fact that they are
supported on a large number of platforms, allowing software based on them to be easily ported,
and they are freely available. Unfortunately no detailed study comparing different parallel pro-
gramming paradigms ever seems to have been conducted. In the absence of such studies any
attempt to rank them is largely subjective.

References

[1] Special issue on message passing of Parallel Computing, 20(4), April 1994.
[2] The URL of the world-wide web page for the occam language is

http://www.hensa.ac.uk/parallel/languages/occam/index.html.
[3] The URL of the Fortran M world-wide web page is

http://www.mcs.anl.gov/fortran-m/FM.html.
[4] The URL of the Linda world-wide web page at Yale University is

http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html.
[5] The URL of the Linda web page at York University, U.K., is

http://indy200.cs.york.ac.uk:8080/linda/linda.html.
[6] The URL of the Split-C web page at UC Berkeley is

http://http.cs.berkley.edu/projects/parallel/castle/split-c/.
[7] The URL of the PVM web page is http://www.epm.ornl.gov/pvm/.
[8] The URL of a good MPI web page is http://www.mcs.anl.gov/mpi/. This has links to

other extensive MPI pages at Mississippi State Engineering Center and Oak Ridge National
Laboratory.

[9] H. E. Bal. Orca: a language for parallel programming of distributed systems.
IEEE Trans. Software Engineering, 18(3):190–205, 1992. See also the web page at
http://www.cs.vu.nl/vakgroepen/cs/orca.html.

[10] R. M. Bulter and E. L. Lusk. Monitors, messages, and clusters: The p4 parallel program-
ming system. Parallel Computing, 20(4):547–564, April 1994.

[11] R. Calkin, R. Hempel, H.-C. Hoppe, and P. Wypior. Portable programming with the PAR-
MACS message passing library. Parallel Computing, 20(4):615–632, April 1994.

[12] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444–458, 1989.
[13] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course. MIT Press,

1990.
[14] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman. The Linda alternative to message

passing systems. Parallel Computing, 20(4):633–655, April 1994.
[15] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T von

Eicken, and K. Yelick. Introduction to Split-C, version 1.0. Technical report, Department
of Computer Science, University of California, Berkeley, April 1995.

[16] J. Feo, D. Cann, and R. Oldehoeft. A report on the SISAL language project. J. Par-
allel and Distributed Comput., 12(10):349–366, 1990. See also the web page at
http://www-atp.llnl.gov/sisal.

[17] The MPI forum. MPI: A message passing interface standard (version 1.1). Available elec-
tronically from http://www.mcs.anl.gov/mpi/.

19

[18] I. Foster, R. Olson, and S. Tuecke. Programming in Fortran M, Version 2.0, August 1994.
Available from [3].

[19] I. T. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1994. Also
available from the world-wide web at http://www.mcs.anl.gov/dbpp.

[20] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming.
J. Parallel and Distributed Comput., 26(1):24–35, April 1995.

[21] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Current Processors, Volume 1. Prentice Hall, Englewood Cliffs, New Jersey, 1988. This
book is based on Cros III, and gives man pages in the appendix.

[22] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine. The MIT Press, 1994. Also available on the web at
http://www.netlib.org/pvm3/book/pvm-book.html.

[23] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press, 1994.
[24] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,

1978.
[25] C. A. R. Hoare. The transputer and occam: a personal story. Concurreny: Practice and

Experience, 3(4):249–264, August 1991.
[26] G. Jones and M. Goldsmith. Programming in Occam 2. Prentice Hall International, 1988.
[27] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High Perfor-

mance Fortran Handbook. The MIT Press, 1994. See also the HPF forum web page at
http://www.erc.msstate.edu/hpff/home.html.

[28] INMOS Limited. Occam2 Reference Manual. Prentice Hall International, Hemel Hemp-
stead, U.K., 1988.

[29] S. W. Otto, M. Snir, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra. MPI: The Com-
plete Reference. The MIT Press, 1995. Should be available by the end of 1995.

[30] Parasoft Corporation. A Tutorial Introduction to Express, Version 3.2, 1992. See also the
Express world-wide web page at http://www.parasoft.com/express.html.

[31] D. Pountain and D. May. A Tutorial Introduction to Occam Programming. McGraw-Hill,
1987.

[32] A. Skjellum, S. G. Smith, N. E. Doss, A. P. Leung, and M. Morari. The design and evolution
of zipcode. Parallel Computing, 20(4):565–596, April 1994.

[33] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurreny:
Practice and Experience, 2(4):315–339, December 1990.

20

