
Object Oriented Programming and High Energy Physics

David R. Quarrie
Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Abstract

This paper discusses some aspects of the use of object oriented programming in high energy
physics. The first section covers the goals and some fundamental concepts and asks wheth-
er OOP is merely a refinement of previous experience or whether it is a radical paradigm
shift. The following sections illustrate the use of OOP through the use of some case studies.
These focus on identifying the underlying abstractions and deriving a class hierarchy from
them. Finally the support for OOP concepts that the C++ and Eiffel programming languag-
es provide, as used in the case studies, is discussed.

1 OOP in HEP: Evolution or Revolution?

1.1 What is OOP?

Object oriented programming (OOP) is an approach to software development that encompasses
all phases, from analysis through design and implementation onto testing and maintenance. I
will use the definition from Booch [1]:

Object-oriented programming is a method of implementation in which programs are or-
ganized as cooperative collections of objects, each of which represents an instance of some
class, and whose classes are all members of a hierarchy of classes united via inheritance
relationships.

Unfortunately this definition uses terminology and concepts that are specific to OOP itself
and which will be discussed later. However, it does not restrict itself to issues of programming
language, but addresses the complete development cycle. 

1.2 The goals of OOP

In the conventional model the software development cycle starts with requirements analysis,
continues with a detailed design that addresses these requirements, then coding of an
implementation that meets the design goals and finally testing and maintenance take place. This
waterfall model is based on the underlying assumption that our knowledge during the
requirements analysis phase is complete and the resulting implementation is coupled very
tightly to that understanding. Variants of this model support the notion of some iteration
between adjacent phases, but the basic principles remain unaltered. The resulting software is
very tightly tied to our original understanding of the problem which is assumed to be complete.

Unfortunately experience teaches us otherwise; at the beginning of a project we almost
certainly don’t really understand the full implications or scope. In a survey of several hundred
software projects [2], 42% of the maintenance costs (changes in the product following initial
release) resulted from unforeseeable changes in the user requirements. A further 18% of
changes resulted from changes to the data formats. 

We frequently experience such changes within the HEP environment. Most modern
detectors undergo some upgrade to their capability during their lifetimes, or their physics goals
change, perhaps as a result of improvements in the accelerator luminosity or other outside
influences. The goal of our software should therefore not only be correctness, the ability to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25266434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


match the requirements and specification, but should also be flexibility or extendibility, the
ability to be adapted to changes in the specifications. 

Another goal is to produce software that is reusable because it is not tightly coupled to a
particular project. Reusability can lead to significant improvements in overall productivity, not
necessarily for a single project, but by applying the same software across multiple projects.

1.3 Fundamental Concepts

The following concepts are fundamental to OOP and the object oriented approach.

• Objects are entities that combine the attributes of both data and code and which can be
manipulated or changed. They thus embody state and have state variables or attributes.
They also exhibit an interface that describes how they may be manipulated. Finally, when
they are manipulated they should do something useful; they exhibit behaviour. Note that
it is what they do that is important, not how they do it. Their inner workings should be of
no concern to us, as long as their overall behaviour conforms to the specifications. The
interface to a clockwork stopwatch is essentially identical to that for an electronic one and
as long as either performs correctly, it is irrelevant for us to know the details of the internal
springs and levers or electronics components. In summary, an object has attributes to de-
scribe its state and operations to describe its behaviour.

• Abstraction is “the elimination of the irrelevant and the amplification of the essential”
[3]. The stopwatch is an abstraction that eliminates all details about its internal workings.
We can start it, stop it and reset it. All stopwatches obey this abstract interface. Anything
else is irrelevant. The focus should be on what an object does, not how it does it.

• Encapsulation or information hiding is a related concept to abstraction whereby portions
of an object are hidden from the user. This results in an overall simplification since the
programmer only has to deal with the interface or visible portion of the object, but also in
additional security since the object is protected from inadvertent tampering. Thus the pos-
sibility of side effects from modifications are greatly reduced and the software becomes
both more amenable to change, and more robust under conditions of change. The pro-
grammer wishing to make a change needs to understand a smaller portion of the overall
system than would otherwise be the case. Finally, problems are easier to localize because
the possible causes of corruption are reduced.

• Classes form the specification of an object. An object is an instance of a class or an in-
stantiation from this specification. Objects that share the same structure and behaviour be-
long to the same class.

• Inheritance is the key concept that distinguishes object oriented from object based sys-
tems. In conjunction with abstraction it is the main provider of the extendibility and flex-
ibility of OO systems. A class can be a specialization or extension of another class. A
“dog” is a specialization of a “mammal”, which is itself a specialization of an “animal”.
This is the inheritance relationship and is perhaps where the most confusing terminology
appears. The parent class is sometimes called the ancestor or superclass, whilst the child
class is sometimes called the descendant or subclass. Single inheritance is the situation
when a class has a single direct ancestor, whilst multiple inheritance describes the case
where a class has two or more direct ancestors (which might themselves have other an-
cestors).

• Polymorphism describes the relationship between classes that have identical interfaces
but different behaviours. A favourite example of this that is often quoted is a collection of



drawable objects, each of which has a draw operation, which performs the appropriate
drawing operation, a circle, rectangle etc.

• Genericity is the term used to describe parameterized interfaces. Thus a push-down stack
may contain integers or floating point numbers, or other quantities. However, all stacks
exhibit the same interface, they just operate on different data types.

• Object Lifecyle Management is the term used to describe the ability to dynamically create
new objects or destroy them. A related concept is that of garbage collection; the ability to
automatically destroy objects that are no longer referenced by any other objects and are
hence no longer needed.

• Relationships can exist between classes. A client-server or “uses” relationship is one
whereby one class, the server, provides services to another class, the client. A containment
or “has-a” relationship is one whereby an instance of one class is held by an instance of
another class. Containment is used to build classes that are composites of other classes.

1.4 The OOP Development Cycle

At the coarse level the object oriented development cycle is similar to that of the conventional,
structured approach. They both begin with a requirements analysis phase, followed by design,
implementation and finally testing and maintenance. However these phases both differ in their
details and the iterative development cycle is different. OOA consists of identifying objects and
their relationships from the problem domain. Structured Analysis consists of identifying the
data items and the processes that act on them. OOD creates an architecture for the
implementation by extending the identification of objects to the solution space, identifying
common policies for error detection and handling, memory management and generalized
approaches to control etc. Structured Design identifies a hierarchical decomposition into
modules that perform specific operations. 

One major difference between the two methodologies is the emphasis that OOP places on
incremental development, sometimes called rapid prototyping. This has several advantages
including the early and extensive testing of major system interfaces, obtaining early feedback
from end users and the ability to see early results from a working system. Another strategy is
the identification of class categories or clusters that have a close internal relationship.
Development of such clusters can proceed in parallel, following their own internal development
and testing cycle. Thus they themselves are subjected to their own iterative development,
resulting in more robust software at the completion of the project. The concept is illustrated in
Figure 1.

Analysis Design Coding Testing Maint.

Analysis Design Coding Testing Maint.

Analysis Design Coding Testing Maint.

Time

Cluster A

Cluster B

Cluster C

Figure 1: Iterative Class Cluster Development Cycles



Another difference between the OOP development cycle and the conventional cycle is
that, once every class cluster is essentially complete, an attempt should be made to se whether
any new abstractions can be identified from commonalities across the clusters. This
identification can modify class hierarchies and produce further simplification for possible reuse.

1.5 History of OOP

Object oriented programming came into being in 1967 with the design of the Simula
programming language [4] which was an extension of the Algol 60 programming language. The
two major analysis and design techniques, Structured Analysis & Structured Design (SASD)
and object oriented analysis and design (OOAD) can trace their roots back to about the same
date when both the class and structured programming were introduced as concepts [5].

SASD and OOAD diverged almost immediately thereafter, with structured programming
becoming very popular from the late 1960s, through the 1970s and early 1980s and finding its
way into many large scale commercial software projects. For much of this period OOP
remained in research labs and educational institutions and there were few languages that
supported the concepts. Smalltalk was created during the 1970s [6], C++ [7] and Objective-C
[8] in the early 1980s and Eiffel in 1985 [2]. Many other OO languages were created during this
period but most have not survived in widespread use. Object oriented languages may be
classified as either hybrid, building upon an already existing procedural language, or pure.
Smalltalk and Eiffel are pure OO languages whilst Simula and C++ are hybrids.

Over the same period several OOA and OOD methodologies and notations have been
created. A recent bibliography discussed 21 such notations [9]. Many share similarities, not
surprising given their common support of the underlying object model. Perhaps the most
popular are Booch [1] and Object Modelling Technique (OMT) [10].

1.6 OOP within HEP

The history of OOP within HEP goes back to a project using Simula in 1978 [11]. Other
relatively early projects that I’m aware of are the Pions project at CERN [12] and the REASON
project [13] at SLAC.

Despite these pioneering efforts, most projects involving OOP within HEP are still
relatively small scale, and have tended to focus on components of on-line systems or graphics
systems. However the Gismo [14] and GEANT4 [15] simulation frameworks and the work of
several CERN R&D projects targeted at the LHC experiments are significant developments in
the off-line environment. The BaBar collaboration at SLAC [16] is also intending to base its on-
line and off-line code development on the OO methodology, using C++ as the implementation
language. However, they recognise the large body of existing expertise in Fortran and C and are
not excluding some continued development in those languages, albeit using object oriented
analysis and design.

It is therefore clear that OOP is gradually becoming accepted within the mainstream of
HEP software development. Crucial to this are not only the potential advantages of this
technology, but also the continued ability to use the large body of legacy software, mainly
written in Fortran. Unfortunately such inter-language interfaces are not well defined and this is
an area of some concern. One possible solution to this problem is the Interface Definition
Language (IDL) defined by the Object Management Group (OMG) as part of the Common
Object Request Broker Architecture (CORBA) for distributed object applications [17]. This
defines object interfaces in a programming language independent manner and also defines



bindings to several programming languages including C, C++ and Smalltalk. A prototype
binding to Fortran 90 is underway [18]. 

1.7 Evolution or Revolution?

Given its common ancestry with structured programming, it is clear that OOP is evolutionary
and not revolutionary in origin. Does that mean that the impact and potential results are only
evolutionary and not revolutionary? The jury is still out on that issue. Reusability is a prime goal
of OOP and this should bring about significant gains in productivity amortised across several
projects. However, other than user interface and data structure libraries there have been
relatively few successful class libraries in other problem domains. This might change with the
work of the OMG and the distributed object services [19] component of CORBA. The real
revolution will perhaps come when the focus of most people’s attention within the HEP
computing community is on the complete software development cycle rather than the details of
programming language issues. Analysis and design are hard and the OO approach considerably
improves the intuitive decomposition of the problem and the flexibility of the resulting solution.

2 Case Study 1: On-line Run Control

The role of the data acquisition system in a high energy physics experiment is to take digitized
event data from the front-end electronics, gather together the many fragments for a single
trigger to form an event, perhaps reject events in a processor farm and then record those that
survive on some form of archival storage. 

A conceptual data acquisition system is shown in Figure 2a. It takes the form of a pipeline
having several stages. The trigger indicates the occurrence of a potentially interesting physics
interaction. Event fragments are digitized in the multiple front-end modules (FEM), processed
in the read-out controllers (ROC), typically by having pedestals subtracted and channels with
values below some threshold being suppressed. The Event Builder (EVB) creates complete
events from the multiple fragments and the processor farm typically acts as a software trigger
processor, performing a physics selection filter on complete events, accepted events being
written to archival storage, typically magnetic tape. Events or event fragments might be
buffered at some or all stages in the pipeline.

Figure 2a: Conceptual Data Acquisition System

Host

Control and Monitoring

Figure 2b: Simplified State Transition Diagram

Booted

Configured

Downloaded

Prestarted

Paused Active

ConfigureDownload

End

Prestart

Configure

Pause

Go

Terminated

End

Start

Terminate

Terminate

Terminate

Trigger

FEM

FEM

FEM

ROC

FEM

FEM

FEM

ROC

EVB

FARM

FARM

FARM

Output



The role of the Run Control application is to control the elements of this pipeline during
the various stages of data acquisition - starting a data taking run, perhaps pausing and resuming
it and finally ending it. It plays no part in the actual flow of event data from the detector through
the data pipeline, but communicates with the pipeline elements via a (conceptually) separate
control and monitoring network. Most elements in the pipeline will be programmable, operating
under control of a network aware real-time operating system, and require both code and data to
be downloaded to them, depending typically on the type of data taking run that is to be
performed and perhaps the results of a prior calibration process. Because of the buffering at the
various stages on the pipeline, care must be taken to ensure that all such buffers are correctly
flushed when pausing or ending a run.

The following discussion is based loosely on the CODA Run Control application [20] for
the CEBAF data acquisition system which was implemented in the Eiffel programming
language [2].

2.1 The Abstractions

2.1.1 Finite State Machines

The main abstraction is that of a Finite State Machine (FSM). A FSM can belong in one of
several states, responding to external stimuli by performing an action and transitioning to
another state. For our example, all elements of the pipeline react to the same set of external
stimuli, obeying the same State Transition Diagram as shown in Figure 2b. This describes the
various phases of a data taking run and the transitions that take place. Some of the main
transitions are:

• Configure. This transition determines the conditions under which the forthcoming data
taking run is to be performed. It might involve selecting one of several run types (e.g.
physics, cosmics, calibration) that will modify the details of subsequent transitions.

• Download. This transition involves loading the distributed elements with the information
that is appropriate for the forthcoming run. This might be implemented as actually down-
loading all the code and data, or might involve just informing the elements of the config-
uration details, letting them upload themselves over the network.

• Prestart. This primes the system for a new run without performing a new download oper-
ation, perhaps zeroing out scalers etc.

• Pause & Go. These initiate and halt data taking temporarily during a run.

• End. This terminates a run, perhaps closing the file on the output device.

2.1.2 Pipeline, Pipeline Stages and Pipeline Elements

The conceptual data acquisition system is based on a pipeline having multiple stages, each stage
having possibly multiple elements. Each element is accessible from the host computer via the
control and monitoring network and this access forms the basic granularity of the system.
Typically the FEMs are not intelligent enough to be directly attached to the network so the
ROCs are treated as agents for communication to them. If this simplified model is inadequate,
the FEMs are treated as the second pipeline stage, the ROCs as the third. The event builder,
processor farm and output device form the remainder of the pipeline stages.

A Pipeline Element is a software object that acts a proxy for the corresponding hardware
element in the pipeline. The details of the communication protocol can be deferred to a
discussion of the implementation classes. It will not be discussed further here.



The pipeline, the pipeline stages and pipeline elements all act as FSMs, obeying the same
state diagram. This view raises the issue as to what state the pipeline or a pipeline stage is
considered to be in while it is waiting for all its elements to complete their transitions. In the
formal FSM model each transition is considered to be instantaneous, but in our model, it might
take a finite amount of time for an element to complete a transition. This can be addressed by
introducing additional “transitioning” states such as “going”, “pausing”, “downloading” etc. 

Finally one must address the issue of how to deal with a situation where a transition is
initiated but for some reason one of the elements fails to complete it successfully. The approach
taken for this example does not conform to the formal FSM approach, but assumes that the
pipeline as a whole will also fail to make the transition and so remain in its original state, albeit
indicating that an error has occurred. All elements apart from the element that failed will
however have completed their transition to the new state. Once operator or automatic
intervention has corrected the problem with the failing element, the pipeline can be re-
transitioned. This will act as a no-operation on all but the failing element since they are all in
the desired state; only that element will be re-transitioned to re-synchronize the pipeline.

2.1.3 Sequencing

One aspect of the problem that is not immediately obvious is that the sequencing by which the
various pipeline elements are transitioned. In general the elements at the same pipeline stage are
independent of each other and so may be transitioned in parallel, but the different pipeline stages
will need to be transitioned sequentially. Consider the situation when issuing a “Go” request to
activate data taking. It is essential that the request is first issued to the tail of the pipeline, then
to the penultimate stage and so on until the hardware trigger at the head of the pipeline is
enabled. Conversely, when pausing a run, the pause request must first be issued to the hardware
trigger, then the system must wait for event fragments to be flushed out from the next stage
before the subsequent stages can be paused in sequence.

A simple sequencer might just be hardcoded to loop over the pipeline stages in the desired
direction for each transition, but a more complex one might allow more flexibility.

2.1.4 Transitioners

At any state in the State Diagram, only a few stimuli and transitions to new states are valid. For
example, it is not possible to transition from the Booted state directly to the Prestarted state.
These restrictions are handled by the concept of transitioners that act on a target object, taking
it from an initial state to a final state. The target of a transitioner could be the complete pipeline,
a pipeline stage or an individual pipeline element. Transitioners understand the intermediate
transitioning states and apply timeouts in order that the pipeline should not stall if a single
element fails.

One possibility would be to allow sequences of allowed transitions. Thus one might be
allowed to transition directly from the Configured to the Active state by passing through the
Downloaded and Prestarted states. This would allow flexibility in the user interface and perhaps
speed error recovery operations.

2.1.5 Data Taking Run

This concept just embodies the overall behaviour of a data taking run. It is a slightly broader
concept than the pipeline since it has additional information associated with it. For example, it
holds the knowledge of the current run number and the run type. It has a containment association



with the pipeline. The data taking run is the abstraction that the operator really wishes to interact
with when controlling the experiment.

2.2 The Classes

The class diagram is shown in Figure 3. This uses the Booch notation [1] where the arrowed
lines denote an inheritance relationship (the arrow pointing towards the ancestor) and the lines
with a solid ball at one end denote containment relationships, the cardinality of which is
expressed by the numbers appearing alongside.

The STATE_MACHINE class imposes the Finite State Machine on its descendant classes.
Thus it requires that they respond to “Configure”, “Download”, “Pause” etc., without specifying
an implementation. The PIPELINE, PIPELINE_STAGE and PIPELINE_ELEMENT classes are
direct descendants of STATE_MACHINE. The PIPELINE class contains an ordered list of
PIPELINE_STAGE objects and the PIPELINE_STAGE class contains a list of
PIPELINE_ELEMENT objects. In this simple implementation the sequencing of transitions is
performed by appropriate traversal of the list of PIPELINE_STAGE objects contained by the
PIPELINE object. One difference between the implementations of the PIPELINE and
PIPELINE_STAGE classes is that the PIPELINE class must transition its pipeline stages
sequentially, whereas the PIPELINE_STAGE class transitions all its PIPELINE_ELEMENTS in
parallel.

The RPC_ELEMENT and CORBA_ELEMENT classes are concrete classes that
implement specific communication protocols between the proxy objects and the corresponding
hardware. 

STATE_MACHINE

PIPELINE_ELEMENT

PIPELINE_STAGE

CORBA_ELEMENTRPC_ELEMENT

Figure 3: The class diagram

PIPELINE

N

N
1

1

TRANSITIONER

N

1

DAQ_RUN

1

1

A

A

A



The DAQ_RUN class adds the attributes of the run number and run type and contains a
single instance of the PIPELINE class. It performs transition or status requests by delegation to
the pipeline object.

The diagram is somewhat simplified in that not all the relationships between the
STATE_MACHINE hierarchy and the TRANSITIONER class are displayed. Similarly,
descendant classes of TRANSITIONER corresponding to the various transitions are not
displayed.

2.3 Eiffel Language Support for OOP Concepts

This application is implemented in the Eiffel programming language. It’s support for the various
OOP concepts discussed in Section 1 is shown in Table 1.

3 Case Study 2: An Application Framework

The described application framework is suitable for general HEP reconstruction programs and
is designed to provide flexibility without the need for recompilation. The implementation upon
which this discussion is based is described in Reference [21]. 

Concept Implementation Code Example

Abstraction Deferred Classes deferred class FS_MACHINE 
....
pause ( run: DAQ_RUN ) is

deferred
end;

Encapsulation Explicit export control
Restricted export

class DAQ_RUN 
feature {NONE}

....
feature {DAQ_RUN}

....

Inheritance Single & Multiple class RUN inherit
FS_MACHINE;

feature
....

end

Polymorphism Unless frozen class RUN
feature

frozen set_name( name: STRING ) is
....
end;

Genericity Generic Classes
Constrained Genericity

class LIST[T]
class HASH_TABLE[T->HASHABLE]

Lifecycle Object Creation
Garbage Collection

class RUN
creation

make

!!run.make;

Table I: Eiffel Language Support for OOP Concepts



Underlying concepts for the following discussion are those of data taking runs and events.
A data taking run, identified by a run number, is a management unit of stability during data
acquisition for an experiment. Such runs are characterized by having sets of adjustable
parameters that are appropriate for data accumulated within the run, but which might differ from
the values for adjacent runs. Thus any analysis code that wishes to operate on the data for a
particular run must be given the opportunity to first access the appropriate parameters.

An event comprises the data for a single interaction or trigger of the experimental
apparatus and is typically organized as a hierarchical set of data structures corresponding to the
digitized output from the various detector subsystems.

A typical scenario for event reconstruction is the following: the events from one or more
data taking runs are used as the input to an application that manipulates them, perhaps
subsequently rejecting some of them as being uninteresting physics, or sorting them according
to the underlying physics processes. 

3.1 The Abstractions

3.1.1 Modules

The application framework is based on the concept of modules. A module is a fragment of
executable code that has a well-defined interface and performs a well-defined service. The
interface is imposed by requiring that each module inherit from an abstract parent class.
Generally modules are totally independent of each other, operating purely on the basis of their
own internal configuration, data taking run specific information and the input event data. A
module might generate new information which might be added to the existing event information
or might perform a filter function based on the event characteristics or might perform some
statistical operation, integrating the results from multiple events. 

Each module will provide an interface to the framework that includes a unique name and
functions that will be called at the beginning and end of the job, at the beginning and end of each
data taking run (i.e. when the run number changes) and a per event function. 

Several types of specialized modules are supported within the framework. These include
the following:

• Input modules, which act as the source of data. One example might read data from a data
file or files, another might access events from the event server in the on-line environment
and another might select events on the basis of a collection of objects stored in an object-
oriented database (OODBMS). In all of these cases the remainder of the executable mod-
ules should be unaffected by the origin of the data. Only one Input Module can be active
at any one time.

• Output Modules. These act as the sink of data. One will output event data to several pos-
sible output data files, thus supporting the concept of simultaneous output streams. An-
other will make events available to the on-line event server and another might store up-
dated events in an OODBMS. 

• Filter Modules. A filter module can terminate or re-direct the subsequent processing of an
event based on its filter criteria and the characteristics of the event. A simple filter module
can signify success or failure, terminating processing of the event in the latter case. A
more complex filter module can act as a switcher, causing subsequent processing to be
redirected to one of several other modules.



3.1.2 Sequences and Paths

Multiple modules can be combined into a sequence having a unique name. A sequence may also
include other sequences to provide an arbitrary nesting depth. 

A path is a list of modules and sequences that begins at the input module and terminates
at the output module. The processing for a path may be prematurely terminated by the action of
a filter module. Multiple paths are supported, corresponding perhaps to different physics
processes.

3.2 The Classes

The framework class diagram is shown in Figure 4. The Sequence class appears twice because
a sequence can itself contain another sequence.

3.2.1 Executable

The basic underlying abstraction is that of an Executable, an entity that provides the following
services:

• A beginning of job service. This is requested once per job.

• A beginning of run service. This is requested whenever the run number changes.

• A per-event service. This is requested for each event that enters the processing chain.

• An end of run service. This is the complement of the beginning of run service.

• An end of job service. This is requested at the end of each job.

Note that these services are purely abstract, the main goal of the Executable class being to
impose the interface upon its children, forcing them to provide implementations.

Executable

Module Sequence

Path

Framework
InputModule

OutputModule

UserModule

Figure 4: The framework class diagram

Sequence

N

1

N

1

1
N

N

N

N 1

1

1

A



3.2.2 Module

The interface for the Module class is identical to that of Executable, but here it makes sense for
there to be some default action for each of the services. This default implementation is a null
operation (i.e. no action), but this is different from the situation with the Executable class, where
there was no implementation specified. Each instance of the Module class may be enabled or
disabled. This allows an application to be created containing a large set of modules, only some
of which are of interest at any one time.

User supplied modules will inherit from Module, overriding the default implementations
as they require, providing specific implementations for them as appropriate. 

The InputModule, OutputModule and FilterModule classes are specialization of Module 

3.2.3 Sequence

The Sequence class exhibits the identical interface to that of Executable, but the implementation
of each service involves delegation to the members of the sequence. Thus the concrete
implementation of each service will involve looping over all members of the sequence,
delegating the request to them. In the case where the member is itself a sequence, it will again
delegate the request to its members. This is an example of polymorphism, where several classes
exhibit the same interface but have different implementations.

3.2.4 Paths

A Path is a specialized sequence and has the identical interface, and in the simplified model, the
same implementation. However, it is treated as a descendant class because it has specific
attributes in the full implementation that are not discussed here.

3.2.5 Framework

What is not perhaps immediately obvious is that the framework itself exhibits the same interface
as Executable. It must provide services for the beginning of the job, beginning of run etc. It is
only the implementation that is specific. In particular:

• The beginning of job service is delayed such that the beginning of job service for each
module is accessed on the first occasion that the module is enabled.

• The beginning of run service is implemented as a loop over all enabled modules, access-
ing their beginning of run service.

• The end of run service is implemented as a similar loop to the beginning of run service.

• The end of job is implemented as a loop over all modules that have been enabled at some
point in this execution, accessing their end of job service.

• The per-event service is implemented as an access to the event service for the enabled in-
put module, followed by a loop over each path, accessing the event service for each se-
quence or module in the appropriate sequence. If a path is terminated through the action
of a filter module, processing proceeds to the next path. Finally, the event service for the
enabled output modules is accessed.



3.2.6 Lists and Hash Tables

Common to many of the application-specific abstractions is the concept of a list. A list is an
object that chains other objects together, allowing a client to ask for each object in sequence. It
has a head and a tail and mechanisms for inserting or removing elements.

Many possible implementation of a list are possible. The most space efficient are those
based on arrays, but these are less efficient for adding or removing items within the list itself.
Other implementations are singly (or doubly) linked lists, where node objects are defined that
contain a pointer to the next (and previous) node as well as containing the item itself. 

The main point here is that the application code should deal with an abstract list interface
without worrying about the details of the implementation other than when instantiating the list.
A subsequent decision to change the requirements resulting in a change in the list
implementation (perhaps to allow for more efficient backwards traversal) then has very
localized consequences; only the actual instantiation code has to be modified.

Another requirement is that the names of modules, sequences and paths be unique. Thus
each new module must have its name checked against all the already existing ones. Whilst a list
could be used for this purpose, a hash-table is a more efficient method of performing this,
especially in this environment where wild-carding of names is not allowed. A hash-table uses a
simple hash key, in this case derived from the name, and stores items indexed by this key,
resolving collisions where two names hash to the same key. Access is then very efficient, most
items being located following a single hashing operation. Contrast this to the situation where a
list of names is maintained, every item of which has to be checked for a name clash.

The important point here is that the interface to an abstract hash table should be defined.
Several different concrete classes that provide different implementations of this interface might
then be provided. Initially an implementation based on a list class might be adequate. Eventually
tests might show that the performance of this was no longer acceptable and another, more
efficient concrete class having the same interface might be implemented. In this case the only
change to the user code would be to instantiate the appropriate concrete class. No other changes
would be necessary.

4 C++ Language Support for OOP Concepts

This framework is implemented in the C++ programming language. It’s support for the various
OOP concepts discussed in Section 1 is shown in Table 2.

Concept Implementation Code Example

Abstraction Pure Virtual Classes class Executable {
....
virtual event( ) = 0;

}

Encapsulation Public, Protected & 
Private Members

class Executable {
public:

....
protected:

....
}

Table II: C++ Language Support for OOP Concepts



5 Conclusions

Many of the abstractions in these case studies are intuitively obvious, this being one of the main
attractions of the object oriented approach. Most of them were identified during the analysis
phase of software development, but some were only identified later during the design phase. In
particular, inheritance relationships are mainly identified during the design process. Inheritance
is a powerful tool in both enforcement of a common interface and in providing a hierarchical
specialisation of concepts. Polymorphism provides a complementary mechanism for
simplification. These example demonstrate the support for OOP concepts by two different
programming languages, one of which (C++) is a hybrid, being based on an existing procedural
language, the other of which (Eiffel) is a pure object oriented language.

6 References

[1] G. Booch, Object Oriented Analysis and Design with Applications, Benjamin/Cum-
mings, 1994.

[2] B. Meyer, Object-oriented Software Construction, Prentice Hall, 1988.
[3] R. Martin, Designing Object-Oriented C++ Applications using the Booch Method, Pren-

tice Hall, 1995.
[4] O.-J. Dahl and K. Nygaard, SIMULA - An Algol-based Simulation Language, Commu-

nication of the ACM, vol 9, no. 9, pp. 671-678, 1966.
[5] O.-J. Dahl, E. Dijkstra and C. Hoare, Structured Programming, Academic Press, 1972.
[6] A. Goldberg and A. Kay, Smalltalk-72 Instruction Manual, Tech. Report SSL-76-6, Xer-

ox Palo Alto Research Center. 1976.
[7] B. Stroustrup, Data Abstraction in C, AT&T Bell Laboratories Tech. Journal, vol. 63,

no. 8, Part 2, pp. 1701-1732, Oct. 1984.
[8] B. Cox, Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley,

1986.
[9] A. Hutt, Object Analysis and Design: Description of Methods, John Wiley, 1994.
[10] J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall, 1991.
[11] C. Day, Exclusive Electroproduction of Phi and Lambda(1520), Thesis, Cornell Univ.,

Inheritance Single & Multiple class Module : public Executable {
....

}

Polymorphism Virtual Functions class Module : public Executable {
....
virtual void event( );

}

Genericity Templated Classes template<class Item> 
class List {
}

Lifecycle New & Delete
Constructor & Destructor
No Garbage Collection

Path* aPath = new Path( “MyPath” );
....
delete aPath;

Concept Implementation Code Example

Table II: C++ Language Support for OOP Concepts



1978.
[12] J. Bettels, D. R. Myers, The Pions Graphics System, CERN-DD/86/6, Mar. 1986.
[13] W. Attwood et al., The REASON Project, SLAC-PUB-5242, Apr 1990.
[14] W. Attwood et al., GISMO: An Object Oriented Program for High-Energy Physics

Event Simulation and Reconstruction, Int. J. Mod. Phys. C3, pp. 459-478, 1992.
[15] A. Dell’Acqua et al., GEANT4: An Object Oriented toolkit for simulation in HEP,

CERN/DRDC/94-29 Aug. 1994.
[16] BaBar Collaboration (D. Boutigny et al.), BaBar Technical Design Report, SLAC-R-95-

457, Mar 1995.
[17] Object Management Group, The Common Object Request Broker: Architecture and

Specification, Revision 1.1, OMG TC Document 91.12.1, Dec. 1991.
[18] D. Quarrie, Fidle: An IDL to FORTRAN 90 and Eiffel Compiler, submitted to Computing

in High Energy Physics (CHEP) Conference, Sep. 1995.
[19] Object Management Group, Object Services Architecture, OMG TC Document 92.8.4,

Oct. 1992.
[20] D. Quarrie et al., An Object Oriented Run Control Environment for the CEBAF Data Ac-

quisition System, Proceedings of the Computing in High Energy Physics (CHEP) Con-
ference, 1992

[21] F. Porter and D. Quarrie, An Analysis Framework and Data Model Prototype for the Ba-
Bar Experiment, submitted to Computing in High Energy Physics (CHEP) Conference,
Sep. 1995


