View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by CERN Document Server

Computer Graphics and Human Computer Interfaces

J.R.Gallop
CCLRC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK

Abstract

This paper provides a brief summary of some of the topics being covered in the
lectures on computer graphics at the CERN School of Computing.
Keywords: Computer Graphics.

1. Uses of computer graphics

Computer graphics is now in wide use across a multitude of applicatcts include
science, engineering, education, entertainment and medicine. It can be used:

» as part of thelesignprocess: a computenodel of a prposed artefact - whether
a cassette recording head ocial airliner - isconstructed, assessed, updated
and used as the master for consultation, manufactmantenance and
upgrading.

* to visualize complexdata from experimentalsources or from a computer
simulation.

 to provide information

 to entertain with fast moving and/or complex games

2. A pixellated world

When talking about computer graphics, one commonly sees reference to
addressability, RAM, bitmaps, pixels, limited colour mapsd soon. These are
important, butthey representhe limitations inherent irthe hardware wedve at our
disposal.

It is importantnot to beover-influenced bythe discretdimitations ofthe actual
devices. The usavishes to perceive @presentation of aiealised model - whether
this be an enginpart of acivil airliner, acar in aracing game oearthsensingdata.
The user alsavishes tointeract with thddealised model eontrol the ew of it, alter
it, evaluate it. The task of computer graphics is to allow (indeed encourage) the user’s
active engagement with th@ealised model and teeduce thenhibitions imposed by
the limitations of actual devices. These limitations can include:

» spatial resolution,
* number of colours and brightness levels,
e time.

https://core.ac.uk/display/25266433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Idealised computer Convince

description graphics the user !
device

R

Figure 1. The ideal and the reality

Most devices in uséoday are rastedlevices, which rely on being able store a
pixel value at each cell of mster. Thenumber of available pixels i@ach of x and y
limits the spatial resolution ofthe device. Thenaximumvalue at eaclpixel restricts
the brightness and range of coldlat ispossible. We show in this table sotypical
values for commonly found devices.

X*y dpi possible
pixel values

Laser printer 60(2
Dye sublimation 300 v
printer
Publication 2400 8
printer
Quiality display | 2000*1500 150 ¥
VR headset 640 * 480 -

Table 1: Table of device capabilities

How manybrightness valueare enough? Although theiman visual system can
detect enormousrightness range. (approximatelyaator of 168° to 1 between bright
sunlight andhe dimmestdetectabldist source [1]), it does not do sl at the same
time, as the aperture”of the eye compensates. The higher end of the dynamic range of a
CRT is approximately 200 and the typical range for black and white printiocgaiad
paper is about 100 (black and white on newsprint is 10).

Supposinghat thebrightness levelareevenlydistributed over thelynamicrange
of the display device, one could make a calculation of the numbmraté required (a
more detailed discussion appeargdl). We must realizehat theeye perceives the
ratio betweentwo intensity levelsnot the arithmetidifference:thus theperceived
difference betweef.1 and0.2 appears to be tleame as betweeh4 and0.8. The
reproduction on the graphicaitput medium isperceived to be continuous when the
ratio is about 1.01. Thus if thdynamicrange is d and theumber of levels is n, we
have

1.01=d

Typical values of n of a goo@RT under good conditions are 530 and for black
and white orcoated paper, 465. Bavenly distribting the brightness levelsver the
dynamic range is difficult to achieve

Note that we have been discussing the requirements for contitareudf we are
using colours to present distincheanings tahe observer, the situation asfferent.
Consider as an examplee map ofthe underground traigystem ofLondon or Paris.
Beyondabout 10 coloursdistinguishing certain pairs afndergroundines is quite
difficult.)

The limitations of timeare partlythose of speed - can the processchieve the
task fast enough. However even if the processor is fast, we also have osstieny
software problems which may prevent us achieving synchronisation and time accuracy.
For some applications (video-conferencing, movie playback), synchronisation between
vision and sound is vitalFor theseandotherapplications (visualizing a time-varying
sequence), time accuracy is essential.

Let us recap. Theapplication programmer has adealised description of the
graphics to be presented and the interactions to be allowedaSkef computer
graphics software is to overcome tipgantising effects anotherlimitations of actual
devices so that the user can interact with the idealised model as faithfully as possible.

3. 2D graphics

Although 3D graphics is becomingore widely used as hardware capable of
supporting it well becomes cheaper, 2D graphics continues to be importemades,
schematics, charts and diagrams.

3.1 The idealised form

As we discussed, in most applicatiothere is anidealised model othe geometry
under consideration. Somehow this needs to be convertedet@ctual, discrete
graphics device.

Some 2D graphics softwasdlows the application program tepecify thisideal
form and is therefore responsible for achieving the best possible resultsgrapthies
device. Points and vectors aspecified in acoordinatesystem (usually Cartesian)
chosen by thepplication programmer. Colouere specified as real numbers. An
example of thisoftware is the ISO standard for 2fbaphics programming, afhich
the most recent version is GKS-94 [3].

Other (lower leel) softwareallowsthe application program to have close control
over thespecific pixels othe graphics deviclib (in the X Window System) allows
this. It is theresponsibility ofthe application program tonap fromthe application's
idealised model to the specific points and colours of the graphics device.

3.2 Output functions

To allow the application to speciffhe 2D output in adealised form, whabutput
functions do we need. In principle, we need a 0D funcfdnaw points), a 1D

function (draw lines) and a 2D functiodraw areas). In practidhis istoo spartan
and an application programming interface needs more support than this.

It is instructive to summaristhe outputfunctions supplied in GKS-94 as these
will be regarded as a minimum for other packages in future.

« SET OFPOLYLINE: set of curves, each efhich is asequence of connected
lines defined by a point sequence

 SET OF NURB: set of curves, each of which is a NURB (discussed later)
 SET OF CONIC SECTION: set of curves each of which is a conic section
« POLYMARKER: set of symbols of one type centred at given positions

» SET OFFILL AREA: set of areas each which is defined by alosed sequence
of connected lines

+ elliptic arc primitives
o TEXT
* CELL ARRAY: array of cells with individual colours

» DESIGN: atiling may beextruded through atencil whichmay consist of area
boundaries, closed contours and others.

3.3 2D transformations

Having defined 2D objects by means of some output functions, we need to think about
how 2D graphics are transformed. There are two main reasons:

* We may becomposing a complex schematic such as a floor plan. It is convenient
to define anobject shape and then to place it schematic. Placing it may
involve rotating it andscaling it as well asranslating the object to idesired
place.

» Having definedhe complete flooplan, wemay wish to viewdifferentparts of it
at different magnitudes. We can think of a camera panning, zooming and
rotating. In 2Dthis panning and zoomingsually achieved whethe coordinates
are convertedrom the 2D world of theapplication tothose of thedevice.
However in 3D, viewing becomes amore complex issue athe camera
movements can be more complex.

These 2D transformations can be achievedhieyapplication of straightforward
2D matrixoperations. We can represent a point lmgetor [Xx,y] - manyintroductory
texts in fact use the convention of a column vector.

To rotate a point about the origin, multiply the point by a rotation matrix.
To scale a point with respect to the origin, multiply the point by a scaling matrix.

But, totranslate a point, add a translatiector. This isunfortunate because (for
efficiencyandsimplicity) wewould like to transform the point in one operation. If we
could only use matrixmultiplication for everything, we couladvin. What can we do
about translation?

The answer is to introduce homogeneous coordinates. We can represent a 2D
point by a vector

:
3
HE

By taking care with zero, we can establish the convention that
(wx{J

(xO
g and M
38 BwE

are the same point.
We can make scale and rotate work as before by extending them with O's and 1's:
s t 00O

D(E 000
5’[= S‘ v 0g %’D
AE ®© 0 A0

We can now create a“matrix for translation which allows us to use multiplication:
xX+txC [@ 0 txOxOd

y+ve =0 1 vgan

B1E ® 0 1FAH

This is a greatlsimplified viewand more detail can be foundtime introductory
texts [2] and [4].

3.4 Obiject structure

In many applications it becomes important group objects so thathey can
manipulatedogether orseparately. Agroup of objectsnay need to be identified by

the userusing some pickmechanismand hence selectively madavisible or
highlighted in some way. This becomes even more important when we think about 3D.

Various methods have been used. PHIGS (and PHIGS PLUGsEs)a method
of hierarchicalstructures.This design is usefulor manipulating scenes made up of
objects which are made up of a collection of rigid parts.

GKS-94 uses an approadalled NameSets. Eachoutput primitive created
through GKS-94as aset ofnamesassociated with it and filters can subsequently be
applied. Instead ahe herarchicalapproach of PHIGShis can behought of as a set
of layers which can be handled independently. @bisroach has promise the field
of cartography.

Open GL also uses a hierarchical scene database.

3.5 2D computer graphics file transfer and archival

At some point it becomes necessary to transfer picturemntdhersystem or to
archive them. One way is treate animage and archive arstore that. There are
many image formats and most readers will be aware of them.

Less commonlknown about is the Comput&raphics Metafilg CGM). This is
an I1SO standard/hich was revised in 1992 [6]. It contains graphics primitives, not
just images. Converters and interpretaes available onPCs, Macintosh’s andnix
workstations and aariety of graphicsoftware can create as a CGM asoarmput
driver.

CGM can also fill a hole in the World Wide Web. Images havetblelem of not
being scalable and alsequire muchnetwork bandwidth even when compressed.
Many pictures are better stored in the form of geometric primitives which CGM does.

At present CGM is 2D, but there are moves to produce a 3D version.

4. 3D graphics

3D graphics is now in widespread use. It ieextensive usdéor ComputerAided
Design. Data visualizationsoftware often results in an abstract 3D model. Virtual
Realitypresents a 3D world to the participant and triegite the besipossible sense
of “being there”. Most home computer have some 3D graphics software.

Although it is usually not necessary to understanide underlying algorithms,
people who are creatingpplication softwareusing 3D graphics need some
understanding of themany options. Even people who anesing pre-written
applications software need some grasgemable better choices to be made. In this
section we introduce some of the problems that need to be thought about.

4.1 Models and views

When discussing 2D graphics, weroduced thedea of composinghe floorplan and
as a separate operatigiewing it through a cameraThis distinction betweethe two
processes, which is often blurred in 2D systems, is even more important in 3D.

A 3D graphics system allows scenes to be composed of objects. The objects
themselvesnay bedefined in a hierarchical way i.#here are subobjects. A table may
consist of a table top, a number of legs anthafdetail matters téhe application, the
fixings thathold it together. Thecenamay be aoomwhich mayconsist of thewalls
doorsand also the contents of theom. At the lowestevel eachobject needs to be
defined in terms of some output primitives.

A 3D graphics system also allows scenes to be viewedoaadmethod is to
simulate a camera, with a position and a view direction.

4.2 Output primitives

Output primitives fall into a number ofcategories (PHIGS PLUS is used here as a
source of examples).

Someoutput primitives are inherited from a 2D systefout areavailable in 3D
space. Examples of this are polyline, polymarker and fill area.

Other primitives consist of multiple polygons. Examplese triangularset,
triangularsetand quadrilateral mesh. An objenay berepresenteentirely in terms
of triangles in whictcase itmay berepresented by the singbeimitive triangularset,
which allowsthe 3D graphicsystem to handle shading and hidden surface removal
correctly.

The other category is represented by cuasas surfaces. Often théeal for the
application is a curved line or surface. Complex mesifien result from an object
that has already been approximated.

There aremanyways of representing eurve. If atall complex, it has become
common to use a piecewise representatdnch avoids a polynomiakpresentation
of a high degree.

The B-splineconcept is onexample of this. It can be uniform or non-uniform,
which refers to thespacing ofthe knots - the knotdivide the subintervalover which
each piece is defined. A B-splineay consist of non-rational or rationpblynomials.
With the rational form, weights asgpplied tocontrol parts of the spline motightly.
The most general of thesetige non-uniform, rational B-spline i.¢he NURB.This is
found in PHIGS PLUS and other systems.

B-splines have a number of advantages:

» Compared with somethertypes of curve, it ipossible tcexertlocal control of
the shape of the curve. This is important in many design applications.

* A NURB can be used to modall conics exactly with amallnumber ofcontrol
points.

* NURBS are invariant under perspective transformation.

4.3 3D transformations

In 2D graphics, the operations of translateale andotate are achieveasing 3 x 3
matrices and, with themodification we describedor translate, using matrix
multiplication. This allows aiser to expect a graphisgstem to composeren-trivial
transformation without loss of performance.

The sameoperations can be used in 3Bing 4 x 4 matrices and non-trivial
transformations may be composed in the same way.

However in 3D we alstave to deal with projectinthe 3D scenento a 2D
graphics device. We have to assume a viewer or a camera, pointing at a screen
through which the scene can be viewed.

camera screen object
X,y,z=0 zZ=v (X,Y,2)

Since we have 3Dotations and translations, we can always transform the 3D
coordinatesystem sdhat the coordinates asamplified asshown. We seek thi,y)
coordinates of the projection of the object on the screen.

For a perspective projection, this is a straightforward division:

(XvizZ, YvIZ)
and we retain Z for any calculations relying on depth.

For a parallel projection, it is even simpler as there is no division.

4.4 Rendering, lighting and shading
A 3D scene can be rendered in a number of straightforward ways:
» wire frame: display all edges

» hiddenline removal - display onlyhose edges and parts of edgdsch are not
obscured by solid objects

« flat shading (or constant shading).

These have the attraction laéingfast, but providdimited informationabout to
the user about the scene. Itdifficult to perceivethe relative depths and gradients.
We therefore need to think about lighting and shading. First a simple principle:

We see thingghat are nothemselves lighsources, by the action dfht being
reflected off them of transmitted through them.

Therefore we need to understand surfaces (and interiors) and lights.

4.4.1 Conventional model for surfaces and incident light

There is no real agreement on the most suitable surface and lighting model to use.
Often the determining factors are pragmatic ones. We outline here a simplified model
which is in common use.

We first observe that light can be modelled by considering
« ambient illuminationjn which there is no variation in intensity of direction

» and aset ofspecificlight sourcesWhen light from any othese sourcehits a
surface, the direction of incident light is defined.

We next model the reflection from a surface by splitting it into these components.
Firstly the response to ambient light depends on:

» a factor for ambient light reflection for this surface) (k
» a factor for diffuse reflection for each colour w for this surfacg)(O
* the intensity of ambient lightJ)

The response to ambient light igQy | aw

Secondly, the diffuse (rough) response to the specific light sources depends on:
 a factor for diffuse light reflection for this surface for each cologr (k

* Oqw as for ambient light

 the intensity of incident light from each specific light sourgg (I

» the angle betweerthe direction of incidentight andthe normal vector to the
surface 0)

The diffuse response isy K Isw 0SB summed over all light sources

Thirdly the specular (shiny) response to the specific light sources depends on:
 a factor for specular light reflection for this surfacg (k

» a factor for specular reflection for each colour w for this surfagg (O

» theintensity of incident light from each liglsburce (thesame agor the diffuse
responsesl)

» for eachlight source, theangle betweethe viewing direction and the direction
of the maximum reflectiond()

» a specular exponent for the surfagepressinghe concentration of the reflected
light about the direction of maximum reflection (c)

The specular response isCk, |swCOS O

This specular model wame of Phong’s contributions (except for thg ©rm) -
the Phong specular reflection model.

4.4.2 Shading interpolation

Often theapplication approximates a curved surface by a large collection of polygons.
To calculate the reflectetight, we need surface colour information (called the
intrinsic colour INPHIGS PLUS) . Alsowhen shading, wenay want tosimulate a
curved appearance, so in that case we need surface normals everywhere.

Unfortunately if the curvéas been approximated by polygotig surfacanormal
is either available only athe vertices or worsstill has beendiscarded. Inthis
situation, it is necessary to interpolabe normalsacross each polygon and, esich
point where needed, use that to calculate the reflected light everywhere. fidnsas
vector interpolation or Phong shading.

Sincethelighting calculation is expensive, an alternative is to calctlegecolour
at the vertices and interpolate colours everywhere across the polyg®ms usually
muchfaster and is therinciple behindGouraudshading which is widely implemented
in hardware. It is quitesufficient for many purposes,especially ifthere are no
highlights. There can be some visual interference if ititensity changescross the
object’s surface rapidly.

4.4.3 Ray tracing and radiosity

Algorithms described so far have gained wide acceptance in graphics hardware.
However the solutions are far from perfect. @neblem isthatonly single reflections
are taken into account. The appearance of meatlife scenes is influenced by
complex reflections and deeper algorithms are needed.

In outline, ray tracing algorithmare quite straightforward. Aght ray emanates
from a lightsource, itmay hit one or more surfaces anthy pass to thdens of the
camera. However the number of light rays that never appear in the picture is enormous
so this would be extremely w wasteful.

Instead a ray is traced backwar@sven a pixel, we have to find which light rays
contribute to it and what colour dbey contribute? The fundamentbperation is
what object did this ray come from last, at what point on its surface was it incident and
what is its angle of incidence.

Calculatingthe intersection of each object with eaely is time-consuming as
there aremanyrays and (usuallypnanyobjects. Sincehe first ray-tracing algorithms,
manyimprovements have been made, taking advantage of regularities gtene or
using parallel processing.

A full description of ray-tracing can be found in [7]

Since it is difficult totrace aray backwards beyond diffuse reflection, the
method is suited to specular reflectiamhich is waythese algorithmsusually are
usually seerproducinghighly polished surfaces. Unfortunatetyost reallife scenes
have a predominance of surfaces withigh diffusecomponent. Radiositglgorithms
attempt to solve this.

A radiosity algorithm modelall the light energy passing betweére surfaces in a
scene. It allows for light being reflected in many directions off a surface.

5. Summary

In this paper, an attempias been made to introduce in straightforward terms some of
the concepts of 2D and 3D computer graphics.

6. References

[1] S.J.Thorpelmage processing by the human visual systEnrographics Tutorial
4 (1990).

[2] J.D.Foley, A. van Dam, S.K.Feiner, and J.F.Hugh€smputer Graphics
Principles and PracticeAddison-Wesley (1990).

[3] ISO, Information technology - Computer Graphics and image processing -
Graphical Kernel System (GKS) Part 1 : Functional descriptiS&i© 7942 (1994).

[4] D.Hearn and M.P.BakeGomputer GraphicRrentice-Hall (1994).

[5] ISO, Information technology - Computer Graphics and image processing -
PHIGS PLUS ISO 9592-4 (1992).

[6] ISO Information technology - Computer Graphics and image processing -
Computer Graphics MetafillSO 8632 (1992).

[7] A.S.Glassner (edAn introduction to ray tracingAcademic Press (1991).

