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Abstract
Effects arising from the discrete, or quantized, nature of the emission of
synchrotron radiation are considered.  Combined with the results of the
previous Chapter on radiation damping, the equilibrium beam
distributions and loss of particles due to finite acceptance (quantum
lifetime) are derived.  The changes in the equilibrium values that are
introduced by insertion devices are also considered.

1 . INTRODUCTION

In the previous Chapter it was shown that the loss of energy due to the emission of
synchrotron radiation (SR) and its replacement in the r.f.  cavities can give rise to a damping of
the betatron and synchrotron oscillations.  When this process was first understood it led to
speculation that the bunch size would eventually become so compressed that emission of
coherent radiation would set a severe limit on the maximum beam intensity [1–3].  However it
was later realized, firstly in connection with the energy oscillations [4,5] and later also for the
betatron oscillations [6,7], that the emission of SR gives rise to another effect – quantum
excitation – that causes a growth in the oscillation amplitudes, and that the combination of the
two effects can give result in a stable equilibrium.

How can the emission of SR give rise to both a damping and excitation ? As shown in the
previous Chapter, radiation damping is related to the continuous loss and replacement of
energy.  However, energy is lost in discrete units or "quanta", i.e.  photons, whose energy and
time of emission vary randomly.  This randomness introduces a type of noise or diffusion,
causing growth of the oscillation amplitudes.  The damping effect is linearly proportional to the
energy loss or gain, δε, and so the total effect depends on the sum of such events, Σ (δε)i, and
therefore on the total energy loss per turn Uo, independent of how the photons are distributed in
energy.  However, as will be seen later, the quantum effect depends on (δε)2 and so the total
effect is no longer simply related to the total energy loss per turn – Σ (δε)i2 ≠ Uo2 – but
depends on the numbers of photons with different photon energies i.e. the photon distribution
function.  A further distinguishing feature of expressions that describe the quantum excitation is
that they all contain Planck's constant, h, whereas in the expressions for the radiation damping
this factor is absent.  

In this Chapter we consider the equilibrium distribution of the particles that results from
the combined effect of quantum excitation and radiation damping, and derive expressions for
the emittance, energy spread and bunch length.  An estimate is also made of the rate of loss of
particles resulting from the finite acceptance for the betatron and synchrotron oscillations,
known as the quantum lifetime.  A basic approach has been taken, following closely that of
Sands [8];  more sophisticated treatments may be found in Refs. [9,10].  An introduction is
also made to the topics of low emittance lattices and the effect on the equilibrium beam
properties caused by insertion devices.   

2 . ENERGY OSCILLATIONS

2 . 1 Mean-square energy deviation

We recall the basic equations for the energy oscillations, with no damping:
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ε (t) = A cos (Ωt - φ) (1)

τ (t) = 
-α

E0 Ω   A sin (Ωt - φ) (2)

where α is the momentum compaction factor and Ω the synchrotron oscillation frequency.  The
invariate oscillation amplitude is thus given by:

A2 = ε 2 t( ) + E0Ω
α







2

τ2 t( )  . (3)

When a photon is emitted the energy deviation changes, ε → (ε - u), and so the change in
A2 is therefore:

δ A2 = - 2 ε u + u2 (4)

The first term is linear in u and corresponds to the radiation damping, as can be seen as
follows.  If the energy loss (u) were independent of energy deviation (ε) then over the
synchrotron oscillation period this term would average to zero, i.e. no damping.  However, by
including the linear part of the variation of the energy loss with energy deviation, and averaging
over one turn, we arrive at an equivalent expression for the damping as derived in the previous
Chapter but in terms of A2 rather than A:

dA2

dt    =  
-A2

T0
  

dU
dE   =  

-2A2

τε
 (5)

where τε is the synchrotron oscillation damping time.

We will consider now the second term in the above, which being always positive can be
seen to give rise to a growth in A2.  Since each emission is independent the average rate of
increase is obtained by summing the effect of the n(u) du photons emitted in each energy
interval du:

  

dA2

dt
 =  u2 n(u) du

0

∞
∫  =  N u2 (6)

where n(u) is the photon distribution function introduced in the Chapter on Synchrotron
Radiation.  Both N  and <u2> vary around the orbit, however since the effects that we are
interested in occur slowly with respect to the orbit time we may average over many turns.
Also, it can be shown that the betatron and synchrotron oscillations have only a small effect,
and so we may simply take the average over the design orbit.  Including the radiation damping
term, we have therefore the following total rate of change of A2:

  

dA2

dt
 =  

- 2A2

τε
 +  N u2  (7)

An equilibrium is reached when dA2/dt = 0, in which case the mean value of A2 is given by:

  
A2  =  

τε
2

 N u2  (8)

It follows that the mean-square equilibrium value of the energy deviation is therefore:



  
ε 2  =  

A2

2
 =  

τε
4

 N u2  (9)

2 . 2 Distribution of the energy deviation

The above calculation results in a value of the mean-square energy deviation, but tells us
nothing about the distribution function of the energy deviation, which is also of interest.  In the
approximation used so far that the energy oscillations are linear with respect to energy
deviation, we can write an expression for the energy deviation at a given time as a sum of all the
previous photon emissions, including the damping term:

ε(t) =  Σ
i,t>ti

 ui exp 
- t - ti( )

τε









 cos Ω t - ti( )[ ] (10)

Since the typical energy deviation far exceeds the typical photon energy, the sum
therefore contains a large number of small terms.  These terms are also statistically independent
and equally positive or negative (due to the phase factor).  Therefore, according to the Central
Limit Theorem of probability theory [11], the resulting distribution of the energy deviation is
Gaussian, independent of the probability distribution function for u.  Furthermore, the variance
of the distribution is equal to the sum of the variances of the individual terms:

ε 2  =  Σ
i

 
u2

2
 exp 

-2 t -  ti( )
τε









 (11)

Approximating as an integral and evaluating then gives:

  

ε 2  =  
N u2

2
 exp 

-2 t -  ti( )
τε











-∞

t

⌠

⌡
  dti =  

N u2  τε

4
 (12)

in agreement with Eq. (9).  Thus, we can relate the previous mean-square deviation to the
standard deviation of the Gaussian distribution for the energy deviation:

  
σe

2 =  ε 2  =  N u2  
τε
4

(13)

It is interesting to note that, as one might expect, the resulting value corresponds closely
to the statistical uncertainty in the number of photon emissions that occur in one damping time,
multiplied by the typical photon energy:

  σε ≅  N τε  uc (14)

2 . 3 Equilibrium energy spread

We use the following results from the previous Chapters:

uc
2  =  

11
27

 uc
2 N = 

15  3
8   

P
uc

  (15)

and therefore:



  
N u2  =  

55
24 3

 P uc  (16)

where,

P = 
e2 c

 6π ε0
  

γ4

ρ2
           

  
uc =  

3
2

 
h c γ 3

ρ
(17)

Also,

τε  =  
2 E0 T0

Jε  U0
 =  

2 E0

Jε  P
(18)

Inserting in Eq. (13) results in:

  

σε
2 =  

55
32 3

 hc γ 3 
1 / ρ3

1 / ρ2
 

E0

Jε
 (19)

The relative energy deviation is then:

  

σε
E0







2

 =  
55

32 3
 

h

mc
  

γ 2

Jε
 

1 / ρ3

1 / ρ2
  (20)

which simplifies in the isomagnetic case to:

σε
E0







2

 =  Cq  
γ 2

Jερ
   (21)

where the constant Cq is defined by:

  
Cq = 55

32 3
 

h

mc
 =  3.84 10-13   m     (electrons) (22)

Since in most existing rings the chosen bending radius increases roughly as energy [2],
the resulting energy spread values are very similar, typically about 0.1% as can be seen from
the examples given in the table below.

Table 1
Energy spread in various electron storage rings.

Ring E (GeV) ρ (m) σε/E (%)
EPA 0.6 1.43 0.06
ESRF 6.0 25 0.10
PEP 18.0 166 0.12
LEP 55.0 3100 0.08

2 . 4 Equilibrium bunch length

A Gaussian distribution in energy results in a similar distribution in the time deviation τ ,
and hence a Gaussian bunch shape in the longitudinal direction with standard deviation given
by:



στ  =  
α

Ω E0
   σε (23)

In the isomagnetic case therefore:

στ
2 =  

a

Ω






2

 Cq 
γ 2

Jε  ρ
 (24)

Inserting the expression for the synchrotron oscillation frequency,

Ω 2 =  
α

T0 E0
 eV̇0 (25)

we obtain:

στ
2 =  

Cq

mc2( )2  
α T0

Jε  ρ
 

E0
3

eV̇0
 (26)

Expressing the slope of the r.f. voltage in terms of the overvoltage, q = eV̂ / U0 , for the

case of a sinusoidal variation in voltage with peak value V̂ :

eV̇0 = q2 −1( )1/2
 U0 ωr. f . (27)

gives the following:

στ
2 =  

E1

2π
 

α T0

Jε  E0
 

1

q2 −1( )1/2
 ωr. f .

 (28)

where ωr.f. is the angular r.f. frequency, E1 is a constant = (55 3  / 64)   hc / r0  = 1.042 108 eV,
and r0 is the classical electron radius (2.818 10-15 m).

The bunch length, cστ, thus depends on many parameters such as energy, r.f. frequency
and voltage, and the momentum compaction factor, which depends on the lattice design.
Typical bunch lengths lie in the range 1–5 cm, however there are wide variations as can be seen
from the examples in the table below:

Table 2
Natural bunch lengths in various electron storage rings

Ring E (GeV) r.f. (MHz) cστ (cm)
EPA 0.6 19.3 25
SLC damping ring 1.2 714 0.5
ESRF 6.0 352 0.5
LEP 55.0 352 1.6

In a given ring the bunch length is most commonly adjusted by changing the r.f. voltage.
If the overvoltage (q) is large, then Eq. (28) shows that the bunch length is inversely
proportional to q .  Another possibility is to change the r.f. frequency, by using a separate set
of accelerating cavities.  For example, using two r.f. systems (62.4 and 500 MHz) and r.f.



voltage adjustment the bunch length in the BESSY storage ring was varied over a wIDe range
between 0.7 and 8 cm [12].  A further technique that has been used in some cases is an
additional r.f. cavity operating on a higher harmonic of the r.f. frequency in order to change the
slope of the r.f. voltage, V0  in Eq. (26).

It should be noted that the bunch length calculated above is usually only obtained in
practice with very small beam currents.  Most rings exhibit the phenomenum of "bunch
lengthening" as a function of the beam current, due a collective interaction of the beam with its
surroundings.

3 . BETATRON OSCILLATIONS

3 . 1 Horizontal plane

We recall from the previous Chapter that photon emission at a point with non-zero
dispersion gives rise to a change in the off-energy orbit, and hence introduces a change in the
betatron motion.  For an individual photon of energy u therefore:

δ xβ = - D(s) 
u
E0

 δ xβ' = - D'(s)  
u
E0

 (29)

The betatron oscillation invariant is given by:

A2 = γx2 + 2αxx' + βx'2 (30)

and hence the change due to the photon emission is therefore:

δA2  = ( )γD2 + 2αDD' + βD'2   
u2

E02 (31)

Only terms in u2 have been included, since the linear terms correspond to the radiation
damping, as was the case with the energy oscillations.

Defining the important quantity, H:

H(s) =  γD2 + 2αDD' + βD'2 (32)

and following the same procedure as for the energy oscillations, the average rate of increase of
A2 is then given by:

  

dA2 

dt
 =  

N u2  H

E0
2 (33)

where as before the average is taken around the design orbit.  Including the radiation damping
term:

dA2

dt    =  
-2A2

τx
  (34)

results in an equilibrium with mean-square value given by:



  

A2

2
 =  

τx

4
 

N u2  H

E0
2 (35)

This defines the important quantity known as the (horizontal) beam emittance, εx, which by
analogy with the earlier result for the energy oscillations is given as follows:

  

ε x  =  
A2

2
 =  Cq 

γ 2

Jx
 

H / ρ3

1 / ρ2
(36)

The same argument about the cumulative affect of a large number of small deviations can
be applied in this case also, leading to the conclusion that there is a Gaussian distribution in the
conjugate variables x,x '.  Figure 1 illustrates this distribution, which consists of a series of
ellipses each with a constant value of A2.  The ellipse with A2 = εx defines the "1 σ" contour
and hence the r.m.s.  beam size (σx) and divergence (σx') of the distributions projected on the
x, x' axes respectively.

P(
x'

) 
x' 

x 

P(x) 

σ x

σ x' 

x' 

x 

Area = π ε 

Fig. 1  Gaussian distribution of electron density in the (x,x') plane

It follows from the properties of the ellipse defined in Eq. (30) that:

σx  =  ε β(s) σx'  =  ε γ(s) (37)

Thus, although the emittance is a constant for a given lattice and energy, the beam size
and divergence vary around the design orbit.  At a symmetry point in the lattice therefore,
where α  = 0 and γ(s) = 1/β(s), we have the simple interpretation that the emittance is the
product of the beam size and divergence, ε = σx σx'.

At a point in the lattice where there is finite dispersion the total horizontal beam size and
divergence includes also a contribution from the energy spread.  Since the betatron and
synchrotron motions are uncorrelated the two widths add quadratically, and hence:



σ x  =  ε x  βx (s) +  D2 (s) 
σε
E0





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2











1/2

 

(38)

σ x '  =  ε x  γ x (s) +  D' 2 (s) 
σε
E0





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2











1/2

 

In a given ring both the emittance and energy spread vary with E2, and so the beam size
and divergence vary linearly with energy.  This is in sharp contrast to the situation for heavier
particles for which radiation effects are negligible.  In that case, the normalized phase-space
area occupied by the beam is constant, in other words emittance is inversely proportional to
energy.

3 . 2 Vertical plane

In the usual case of no bending and hence no dispersion in the vertical plane, the previous
calculation would predict no quantum excitation and hence zero emittance in the vertical plane.
A small effect arises due to the fact that the photons are not emitted exactly in the direction of
the electron motion, which was neglected in the previous Section.  If a photon of energy u is
emitted at angle θz with respect to the median plane, the change in angle of the electron is given
by:

δz' =  
u
E0

   θz (39)

and hence the change in vertical oscillation amplitude is:

δA2 = 
u2

E02  θz
2 βz(s) (40)

By comparison with the previous formulae, and approximating as follows:

u2 θz
2  ≈  u2  θz

2   ;   θz
2  ≈  1 / 2 γ 2 (41)

the resulting equilibrium emittance becomes:

εz  =  
Cq

2
 

1
Jz

 
βz / ρ3

1 / ρ2
 (42)

which in the isomagnetic case is:

εz  =  Cq 
βz

2ρ
          bending magnets (43)

where the average is taken over the bending magnets.  Taking into account the value of Cq,       
Eq. (22), it can be seen that this value is very small indeed.

In practice the vertical emittance is not given by the value above, but arises from other
processes:



- coupling of the horizontal and vertical betatron motion, arising from skew-quadrupole
field errors.  The latter can arise from angular positioning errors of the quadrupole
magnets, and also from vertical closed orbit errors in sextupole magnets.

- vertical dispersion errors, arising from vertical bending fields produced by angular
positioning errors of the dipoles, and vertical positioning errors of the quadrupoles.

The resulting vertical emittance thus depends only on errors, which can only be estimated
statistically.  It is common to describe the effect in terms of a coupling coefficient, κ , defined
such that the sum of the horizontal and vertical emittances is constant:

εx = 
1

1+κ
   εx0

εz  =  
κ

1+κ
   εx0

(44)

The quantity εx0, calculated with Eq. (36), is often called the "natural beam emittance".  The
vertical beam size and divergence are then calculated as follows:

σz (s)  =  εz βz(s) σz'(s)  =  εz γz (s) (45)

Typically, without correction, the coupling has a value of 1–10 %.  In a given ring the
coupling can be adjusted by means of an appropriate distribution of skew-quadrupole magnets,
which excite a linear coupling resonance [13].

4 . SYNCHROTRON RADIATION INTEGRALS

The equations derived above and in the previous Chapter can be expressed in a general
form that is valID also in the case of a non isomagnetic lattice, using the following Synchrotron
Radiation Integrals [14]:

I2 =  
1

ρ2  ds ⌠
⌡

I3 =  
1

ρ3
 ds 

⌠

⌡


(46)

I4 =  
D

ρ
 

1

ρ2  -  2k






 =  
⌠

⌡


1 − 2n( ) D
ρ3  ⌠

⌡
  

I5 =  
H

ρ3
 ds 

⌠

⌡


It should be noted that a modulus sign has been included in some cases, in order that the correct
values are obtained for elements with an opposite curvature to that of the main bending magnets
e.g. in insertion devices.  The beam parameters that can be calculated using the integrals are as
follows:

Energy loss per turn:

U0 = 
ε2

6π ε0
   γ4 I2 (47)

Damping partition numbers:

Jx = 1 - 
I4
I2

 Jz = 1 Jε = 2 + 
I4
I2

 (48)

Damping times:



τx = 
3 T0

r0 γ3
  

1
I2  - I4

 τz = 
3 T0

r0 γ3
  

1
I2

 tε = 
3 T0

r0 γ3
  

1
2I2 + I4

 (49)

Energy spread:







σε

E0
 
2
  =  Cq γ2  

I3
2I2+I4

   =  
Cq γ2

Jε
  

I3
I2

 (50)

Natural emittance:

ε x0
 =  Cq γ 2 

I5

I2 -  I4
 =  

Cq γ 2

Jx
 

I5

I2
 (51)

where Cq is defined in Eq. (22).  It can be noticed in the above that I2 and I4 are related to the
radiation damping, whereas I3 and I5 are related to the quantum excitation.

At this point it is worth mentioning that the above equations are valID also for protons,
with appropriate numerical values for r0 and Cq.  In a given lattice therefore, the energy loss
and damping times are reduced as the fourth power of the ratio of the masses of the particles
(mp/me = 1823) and the energy spread and emittance as the third power.  Thus, even in the case
of the next generation of high energy proton machines such as LHC and SSC, the equilibrium
values calculated from the above formulae are so small that in practice the beam dimensions will
be limited by other processes such as intra-beam scattering.   

5 . QUANTUM LIFETIME

5 . 1 Betatron oscillations

The distribution of beam intensity, both radially and vertically, is Gaussian and therefore
in principle extends to infinity.  However, the aperture defined by the vacuum chamber is finite
and so there will be a constant loss of those electrons that approach the vacuum chamber walls.
To calculate the effect we cannot simply use the probability distribution of the beam
displacement (x) at a given point in the ring, since the particles at a given x but lying on
different phase ellipses will arrive eventually at different maximum values (see Fig. 1).  We
need therefore the probability distribution for the maximum value reached at that point in the
ring, xmax, or equivalently the invariant A2, since xmax2 = A2β.  

h(W) 

W 

C 
W 0 

h(W) 

W 

A B 
W 0 

a) b) 

Fig. 2  Distribution of oscillation energies with no aperture (a) and with an aperture (b)

A2, which we shall call W , is a kind of "oscillation energy".  It can be shown that the
probability distribution for W is as follows:

h W( ) =  
1
W

 exp  
- W
W







 
(52)



Consider the number of electrons with oscillation energies increasing above or decreasing
below a value Wo which corresponds to the aperture limit, i.e. Wo = xmax2/β.  Figure 2
illustrates the situation.  With no aperture, and in the steady state, the number of electrons
crossing Wo in each direction must be equal (A = B).  If the aperture is sufficiently far from the
centre of the beam distribution the number of electrons which increase in amplitude, and hence
are lost on the aperture limit, will be very nearly the same as if there were no aperture i.e. A ~_ 
C.  Hence the loss rate (C) can be estimated by the rate at which particles cross the limit Wo due
to radiation damping, in the steady state (B).  The rate is therefore:

dN

dt




 W0

 =   
dN

dW
  

dW

dt




 W0

(53)

where:

dN

dW
 =  N h W( ) =  

N

W
 exp 

-W0

W





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(54)

and:

  

dW

dt
 =  

-2W0

τx
 ,   since W =

)
W exp -2t / τx( ) (55)

Hence:

dN

dt
 =  - N

2
τx

  
W0

W
 exp 

- W0

W





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(56)

The loss is therefore exponential:

N =  N0 exp -t / τq( );  
dN

dt
 =  

-N

τq
(57)

where τq is the "quantum lifetime" defined by:

τq =  
τx

2
 

W

W0
 exp 

W0

W







(58)

We can write this in the standard form:

τq = τx

2
 
exp ξ( )

ξ
(59)

where:

ξ =  
W0

W
 =  

xmax
2

2σ x
2 (60)



The lifetime is determined by the minimum value of xmax/σx, or equivalently xmax/√β,
that occurs at some point around the ring (neglecting the effect of any closed orbit errors).  This
is known as the limiting acceptance, which because of the dependence on β may not correspond
to the smallest physical aperture.  Because of the exponential factor the quantum lifetime
increases rapidly with ξ and hence xmax/σx.  To illustrate this fact, the table below gives values
of the quantum lifetime for a range of values of xmax/σx for a typical damping time of 10 ms.

Table 3
Quantum lifetime as a function of limiting aperture.

xmax/σx 5 5.5 6.0 6.5 7.0

τq 1.8 min 20.4 min 5.1 h 98.3 h 103 days

Hence, one arrives at the 'Golden Rule' for long lifetime:

xmax/σx   ≥   6.5     (61)

i.e. the beam aperture should be at least 13 times the r.m.s. beam size in order that the quantum
lifetime does not play a significant part in determining the overall beam lifetime.  Other
processes will then dominate, such as scattering off resIDual gas molecules, Touschek
scattering etc. [15].

5 . 2 Energy oscillations

There is also a quantum lifetime resulting from the finite r.f. acceptance for the energy
oscillations.  The synchrotron oscillations become non-linear at large energy deviations, but if
we assume that the maximum possible energy deviation, εmax, is large compared to the r.m.s.
energy deviation, the calculated loss rate should be approximately correct.  We can estimate this
loss rate in the same way as for the betatron oscillations.  With the oscillation amplitude given
by:

W =  A2  =  ε 2 +   
E0 Ω

α






2

 τ2 (62)

we obtain a similar result to Eq. (59):

τq =  
τε
2

 
 exp ξ

ξ
(63)

where:

ξ = W0

W
 =  

εmax
2

2σε
2 (64)

Inserting expressions for εmax and σε derived earlier we can write:

ξ =  E1 
Jε E0

αh
 F q( ) (65)

where F(q) is the 'energy aperture' function defined by [8]:



F q( ) =  2 q2 -1( )1/2
 −  cos-1 1 / q( )


(66)

and h is the harmonic number of the r.f. system (r.f. frequency divided by orbit frequency).

The overvoltage (q) required to ensure adequate quantum lifetime therefore is smallest in a
lattice with small momentum compaction (α) and high harmonic number (h).  As an example,
the 2 GeV SRS storage ring in its first phase had a relatively large momentum compaction        
(α = 0.135) which gave rise to a high overvoltage requirement of 7.2, for 100 hours quantum
lifetime.  After changing the magnet lattice in order to reduce beam emittance this also resulted
in smaller momentum compaction (α = 0.029) and hence a significantly smaller overvoltage
requirement of 2.7, with a consequent reduction in r.f. power demands.

It can be seen that similar terms appear in the expression above for ξ as in the expression
for the bunch length, Eq. (28).  We can use this fact to make a rough estimate for the bunch
length under the conditions that the quantum lifetime is large.  Combining the relevant equations
we obtain:

στ
Tr.f .





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2

 =  
F(q)

ξ q2 −1( )1/2   
1

2π( )2 (67)

where Tr.f. is the r.f. period, i.e. the time interval between r.f. buckets.  Approximating
F(q)/(q2 - 1)1/2 by its limiting value for large overvoltage (=2) then gives:

σt

Tr.f .





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2

 ≈  
1

2π2ξ
(68)

Thus, with a value of ξ = 21 for good lifetime (equivalent to a value of εmax/σε = 6.5), we
obtain the simple result that the total bunch length (for example, the full wIDth half maximum)
is about 10% of the bunch separation.

6 . LOW EMITTANCE LATTICES

Here we examine two applications of an electron storage ring in which a low emittance is
a particular requirement.

6 . 1 Synchrotron radiation sources

A small beam size and divergence, i.e. a small beam emittance, is a general requirement of
synchrotron radiation sources, in order to increase the brightness of the emitted radiation.
From the expressions derived earlier, e.g. Eq. (51), it can be seen that to obtain low emittance
requires a lattice design which minimizes the average H function in the bending magnets.  In
particular a small dispersion is required, which is not achieved in the classic separated function
lattice, the FODO.  Various types of lattice have therefore been developed in order to achieve
this [16,17].  The first was the Chasman-Green (CG) structure, which is based on an
achromatic arc composed of a pair of bending magnets with a focusing quadrupole in between
[18].  Such a design results in zero dispersion in the straight sections between achromats which
are therefore suitable locations for insertion devices (see Section 7).  The limited flexibility of
this lattice has led to the extended CG or double-bend achromat (DBA) and triple-bend
achromat (TBA).  For each lattice type there is a minimum achievable emittance which is given
by an expression of the form:



ε x0 , min =  f  
Cq γ 2

Jx
 θb

3 (69)

where θb is the bending angle, assumed equal for all magnets.  The factor f varies depending
on the lattice type from 0.05 in the case of a DBA lattice to 0.36 for a FODO lattice.  It should
be noted however that in all cases the emittance increases as the square of the energy and varies
inversely with the third-power of the number of bending magnets.  In the case of several of the
third generation synchrotron radiation sources that are under construction, the typical natural
emittance is 7 10-9 m rad even though the rings vary widely in energy from 1.5 to 8 GeV.  This
is achieved by adjusting the number of achromats (and hence θb) between 10 and 44.

It can be seen from the equations in Section 4 that some reduction in the emittance can be
obtained by increasing Jx which can be achieved by adding a vertically focusing field gradient
(k and n positive) in the dipole magnets [19].  Some new storage rings (e.g. ALS, Berkeley,
and ELETTRA, Trieste) employ such a gradient field both for emittance reduction and for
optimization of the lattice β functions.  In the latter case for example, the bending magnet has a
field index of 13, giving Jx = 1.3.

6 . 2 Damping rings

A damping ring serves as a temporary storage ring to reduce the emittance of an injected
beam by means of radiation damping.  It can be seen from Eqs. (33) and (34) that a
combination of quantum excitation and radiation damping processes leads to a general equation
for the emittance, of the form:

dε
dt   =  constant  - 

2ε
τx

 (70)

The emittance (ε) therefore varies in time as follows:

ε(t)  =  εi exp 




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



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
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2t

τx
 (71)

where εo is the equilibrium emittance (t = ∞) and εi is the injected beam emittance (t = 0).  For a
given storage time, the optimum ring energy is thus a compromise between the need for both
small equilibrium emittance (low energy) and fast damping (high energy).  Since from Eq. (49)
the damping time is proportional to Toρ/Eo

3 it follows that a fast damping requires also a small
orbit circumference and small bending radius (high field strength).  An example is the
1.21 GeV SLC positron damping ring [20], which has a small circumference (35 m) and
bending radius (2 m, corresponding to a 2 T magnetic field) resulting in a small damping time
of 3.1 ms, sufficient to reduce the initial positron beam emittance by about a factor of 300 with
a storage time of 11.1 ms.

7 . CHANGES IN BEAM PROPERTIES DUE TO INSERTION DEVICES

An insertion device (ID) is a magnetic device located in a straight section of a ring that
produces a transverse field component that alternates in polarity along the beam direction.  Such
devices are used both as special sources of synchrotron radiation [see Chapter on Synchrotron
Radiation] and as a means of controlling various beam parameters [21].  In general, IDs give
rise to both additional radiation damping and quantum excitation, and so result in different
equilibrium values of damping times, emittance and energy spread etc. which depend on the ID
parameters and on the lattice functions at the ID location.



The Robinson, or gradient, wiggler introduced in the previous Chapter was the first type
of insertion device, and was developed as a means of overcoming the radial anti-damping of
combined function lattices.  Such a device can also be used in separated function lattices that are
already damped in all 3 planes as a means of reducing beam emittance. The dominating effect is
the change introduced in the I4 integral, which affects the damping partition numbers.  It can be
seen directly from Eq. (51) that an increase in Jx from its usual value of 1 to 2 can reduce the
emittance by a factor of 2, while still allowing damping of all oscillation modes.

The more common type of insertion device is the dipole or damping wiggler, which in
general contributes to all of the Synchrotron radiation integrals.  It can be seen from the
equations in Section 4 that I2 always increases and hence the damping times all reduce, as
described in the previous Chapter.  The effects on energy spread and emittance are however
more complicated.  It follows from Eq. (50) that the ratio of the modified to the original (no ID)
equilibrium values can in general be written as follows:
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ID( ) /  2I2 +  I4( )
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







1/2

(72)

where the contributions of the insertion device to the integrals are labelled ID.  In the common
case of a sinusoidal field variation these contributions can be written as follows:

         I2
ID =  

L

2 ρID
2            I3

ID =  
4

3π
 

L

ρID
3            I4

ID =  -
1

32 π2  
λo

2

ρID
4  L (73)

where L is the length of the ID, λo the period length and ρΙ∆ is the bending radius
corresponding to the peak field of the ID.  The I4ID term arises from the dispersion generated
by the device itself, the so called self-dispersion.  In most cases however it is negligible
compared to the larger I2ID term.  Simplifying for the isomagnetic lattice case, and also
neglecting the I4 term, i.e.  assuming Jx = 1, results finally in the following:
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It can be seen from the above that if the peak field in the ID is less than that of the bending
magnets (ρID > ρ) there is a reduction in energy spread, whereas if the peak ID field exceeds
the bending magnet field (ρID > ρ)the energy spread is increased.

In the case of the emittance the effect is complicated by the fact that the ID self-dispersion
must be added to the dispersion that is present in the straight section without the ID:
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The net result must in general be evaluated numerically, however some limiting cases can be
examined.  In the case that the dispersion in the straight section is large we can write (in the
isomagnetic case):
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Thus the emittance can be increased or decreased depending on the relative values of H
and ρ in the insertion device and in the bending magnets.  It can be seen that if H/ρ in the ID
exceeds H/ρ in the bending magnets then the emittance will be increased.  In modern
synchrotron radiation sources therefore, where it is usually wanted to preserve the low
emittance, the insertion devices are usually placed in straight sections with zero dispersion.  If
however they are placed in a straight section with finite dispersion and if it is wanted to
minimize the emittance increase then it can be seen from the above that the quantity 1 / ρ3 ds∫
should be minimized in the magnet design.

In the case where there is zero dispersion in the straight section, the self-generated
dispersion in the ID dominates.  The largest term involved is:

I5
ID =  

λ0
2

15π3ρID
5  βx  L (77)

A similar expression can be derived in the case of a rectangular, rather than sinusoidal, field
model.  From the above a condition for the emittance not to be increased can be derived as
follows:

λ0
2  B3 ≤  5.87 109  

 E [GeV] ε x0

βx
(78)

It can be seen therefore that except for very high field devices in low emittance and low energy
rings the emittance is generally reduced by the ID.

Fig. 3  Beam emittance in PEP as a function of the total damping wiggler length

It follows from the above that dipole wigglers may be used as a means of either
increasing or decreasing the beam emittance.  For example, they have been proposed as a
means of obtaining a very low emittance in PEP, for operation as a synchrotron radiation
source [22].  With a 1.26 T wiggler with a period length of 12 cm, Fig. 3 shows that a



reduction in emittance of nearly a factor of 10 can be achieved, albeit with a total wiggler length
of some 200 m.  The possibility of including dipole wigglers in the design of damping rings for
the next generation of linear colliders has also been considered [23].

Two sets of dipole wigglers are in routine operation in LEP [24].  One set is located in a
dispersion free region and is used at injection to increase the energy spread and bunch length by
5–6 times the normal value in order to improve beam stability.  A second set is in a finite
dispersion region and is used to increase the emittance in order to optimize the beam luminosity.
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