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1. INTRODUCTION

This first paper is restricted to direct current situations, in which voltages generated by the
rate of change of flux and the resulting eddy-current effects are negligible. This situation therefore
includes slowly varying magnets used to ramp the energy of beams in storage rings, together with
the normal effects of energising and de-energising magnets in fixed energy machines.

Formally, the term 'field' refers to the magneto-motive force in a magnetic circuit, expressed
in Amps/metre and for which the conventional symbol is H. In a medium or free space this
generates a magnetic flux (units Webers, symbol Φ ). The flux per unit cross section is referred
to as either the 'flux density' or the 'induction'; this has units of Tesla (T) and symbol B. Students
new to the topic may well be confused by the almost universal habit, in conversations involving
accelerator and magnet practitioners, of referring to 'flux density' also as 'field'. This can be
justified by the identical nature of the distributions of the two quantities in areas of constant
permeability and, particularly, in free space. This, of course, is not the case for the units of the two
quantities. Hence, when distributions only are being referred to, this paper will also use the term
field for both quantities. Further difficulties may arise due to the use of the old unit Gauss (and
Kilo-Gauss) as the unit of flux density (1T = 104 G) in some computer codes.

2 MAGNETO-STATIC THEORY

2.1 Allowed Flux Density Distributions in Two Dimensions.

A summary of the conventional text-book theory for the solution of the magneto-static
equations in two dimension is presented in Box 1. This commences with the two Maxwell
equations that are relevant to magneto-statics:
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div B=0

curl H =j

The assumption is made, at this
stage, that electric currents are not
present in the immediate region of the
problem and hence j , the vector cur-
rent density, is zero. The fuller signifi-
cance of this will appear later; it does
not imply that currents are absent
throughout all space.

With the curl of the magnetic
field equal to zero, it is then valid to
express the induction as the gradient
of a scalar function Φ, known as the
magnetic scalar potential. Combining
this with the divergence equation gives
the well known Laplace's equation.

The problem is then limited to
two dimensions and the solution for
the scalar potential in polar coordi-
nates (r, θ) for Laplace's equation is
given in terms of constants E, F, G, and
H, an integer n, and an infinite series
with constants J

n
, K

n
, L

n
 and N

n
. The

terms in (ln r) and in r -n in  the  summa-
tion all become infinite as r tends to
zero, so in practical situations the co-
efficients of these terms are zero. Like-
wise, the term in θ is many valued, so
F can also be set to zero.

This gives a set of cylindrical
harmonic solutions for Φ expressed in
terms of the integer n and and two
associated constants J

n
 and K

n
. It will

be

Maxwell's equations for  magneto-statics:

∇.B = 0 ;
∇×H = j ;

In the absence of currents:
j = 0.

Then we can put:
B = ∇ Φ

so that:
∇2 Φ = 0  (Laplace's equation)

where  Φ  is the magnetic scalar potential.

Taking the two dimensional case (constant in the
z direction) and solving for  coordinates (r,θ):

Φ = (E+Fθ)(G+H ln r) ∑
n=1

∞
 
(J

n
 r n cos nθ +

         K
n
 r n sin nθ +L

n 
r -n cos nθ + M

n 
r -n sin nθ )

In practical magnetic applications, this becomes:

Φ= ∑
n 
(J

n
 r n cos nθ +K

n
 r n sin nθ),

with n integral and J
n
,K

n
 a function of geometry.

This gives components of flux density:

B
r
 =  ∑

n 
(n J

n
 r n-1 cos nθ +nK

n
 r n-1 sin nθ)

Bθ =  ∑
n 
(-nJ

n
 r n-1 sin nθ +nK

n
 r n-1 cos nθ)

Box 1: Magnetic spherical harmonics
derived from Maxwell's equations.

seen that these are determined from the geometry of the magnet design. By considering the grad
of  Φ, equations for the components of the flux density (B

r
 and Bθ) are  obtained as functions of

r and θ.

It must be stressed that all possible physical distributions of flux density in two dimensions
are described by these equations. For a particular value of n, there are two degrees of freedom
given by the magnitudes of the corresponding values of J and K; in general these connect the
distributions  in  the two planes. Hence, once the values  of the two  constants  are defined, the



distributions in both planes are also defined. Behaviour in the vertical plane is determined by the
distribution in the horizontal plane and vice versa; they are not independent of each other. The
practical significance of this is that, provided the designer is confident of satisfying certain
symmetry conditions (see later section), it is not necessary to be concerned with the design or the
measurement of magnets in the two transverse dimensions; a one-dimensional examination will
usually be sufficient.

The condition relating to the presence of currents can now be defined in terms of the polar
coordinates. The solution for Φ in Box 1 is valid providing currents are absent within the range
of r and θ under consideration. In practical situations, this means areas containing free space and
current-free  ferro-magnetic material, up to but excluding the surfaces of current-carrying
conductors, can be considered.

2.2 Dipole, Quadrupole and Sextupole Magnets

Each value of the integer n in the magnetostatic equations corresponds to a different flux
distribution generated by different magnet geometries. The three lowest values, n=1, 2, and 3
correspond to dipole, quadrupole and sextupoles flux density distributions respectively; this is
made clearer in Boxes 2, 3 and 4. In each case the solutions in Cartesian coordinates are also
shown, obtained from the simple transformations:

B
x
 = B

r 
cos θ - Bθ sin θ,

B
y
 = B

r
 sin θ + Bθ cos θ.

For the dipole field (Box 2),
the lines of equipotential, for the
J=0, K non-zero case, are equis-
paced and parallel to the x axis.
The gradient gives a constant ver-
tical field; if J were zero, the lines
of B would be horizontal. This
therefore is  a simple, constant
magnetic distribution combining
vertical and horizontal flux densi-
ties,  according to the values of J
and K and is the common magnetic
distribution used for bending mag-
nets in accelerators.

Note that we have not yet
addressed the conditions necessary
to obtain such a distribution.

Cylindrical: Cartesian:

B
r
 = J

1
 cos θ + K

1
 sin θ; B

x 
= J

1

Bθ = -J
1
 sin θ + K

1
 cos θ; B

y
 = K

1

Φ  = J
1
 r cos θ +K

1
 r sin θ. Φ = J

1
 x +K

1
 y

So,  J
1
 = 0,    K

1
 ≠  0 gives vertical dipole field:

K
1
 =0,  J

1
 ≠  0  gives  horizontal  dipole  field.

Box 2: Dipole field given by  n=1 case.

B

φ = const.



For the n=2 case (Box 3) the quadrupole field is generated by lines of equipotential having
hyperbolic form. For the J=0 case, the asymptotes are the two major axes and the flux distributions
are normal to the axes at the axes; the amplitudes of the horizontal and vertical components vary
linearly with the displacements from the origin. With zero induction in both planes at the origin,
this distribution provides linear focusing of particles. As explained in the paper on linear optics,
a magnet that is focusing in one plane will defocus in the other. This is an important example of
the point explained above; the distributions in the two planes cannot be made independent of each
other.

The J=0 case dealt with above is described as the normal quadrupole field. For zero value
of the constant K (non-zero J) the situation is rotated by π/4 and the distribution is referred to as
a skew quadrupole field.

The equations for sextupole field distribution are given in Box 4. Again, the normal
sextupole distribution corresponds to the J=0 case. Note the lines of equipotential with six-fold
symmetry and the square law dependency of the vertical component of flux density with
horizontal position on the x axis. As explained in the papers dealing with particle optics, normal
sextupole field is used to control chromaticity - the variation in focusing with particle momentum.

Cylindrical: Cartesian:

B
r
 = 2 J

2
 r  cos 2θ +2K

2
 r  sin 2θ; B

x
 = 2 (J

2
 x +K

2
 y)

Bθ = -2J
2
 r  sin 2θ +2K

2
 r  cos 2θ; B

Y
 = 2 (-J

2
 y +K

2
 x)

Φ = J
2
 r 2 cos 2θ +K

2
 r 2 sin 2θ; Φ = J

2
 (x2 - y2)+2K

2
 xy

These are quadrupole distributions, with  J
2
 = 0 giving 'normal'

quadrupole field.

Then K
2
 = 0  gives  'skew'  quadrupole  fields (which  is  the above  rotated  by

π/4).

Box 3: Quadrupole field given by  n=2  case.

B

φ = - C φ = + C

φ = + C φ = - C 



Cylindrical : Cartesian:

B
r
 = 3 J

3
 r2  cos 3θ +3K

3
 r2  sin 3θ; B

x
 = 3 J

3
 (x2 -y2) +6K

3
 xy

Bθ = -3 J
3
 r2  sin 3θ +3K

3
 r2  cos 3θ; B

y
 = -6J

3
 xy + 3K

3
 (x2 - y2)

Φ  =  J
3
 r 3 cos 3θ +K

3
 r 3 sin 3θ; Φ  = J

3
 (x3 - 3y2x) + K

3
 (3yx2 - y3)

For J
3
 = 0, B

y
 ∝ x2.

Box 4: Sextupole field given by  n=3  case.

φ =+C

=-Cφ

φ =+C

φ =+C

=-Cφ
=-Cφ

Β

The sextupole skew field case is given by K=0, (J non-zero), and is rotated by π/6.

It is now clear that ascending powers of n give higher orders of field harmonics, the circular
symmetry having the order of 2n. It is easy to show that for any n, the vertical component of flux
density on the x axis for a 'normal' distribution is proportional to x to the power (n-1):

B
y
 (y=0) ∝ xn-1

It must be stressed that in spite of reference to practical magnetic situations, the treatment
of each harmonic separately is still a mathematical abstraction. Whilst the designer may strive to
produce a magnet generating only one type of field, in practical situations many harmonics will
be present and many of the coefficients J

n
 and K

n
 will be non-zero. A successful design will,

however, minimise the unwanted terms (particularly the skew terms in a normal magnet) to small
values.

In some cases the magnet is designed to produce more than one type of field and multiple
harmonics are required. A  classic example is the combined-function bending magnet, which
includes dipole and quadrupole field at the beam position. The different harmonic fields are
generated by the shaping of the pole and the ratio between the dipole and quadrupole components
is therefore fixed by this geometry; such a magnet can be regarded as a conventional quadrupole
with the origin shifted to provide non-zero induction at the magnet's centre. More recently, the



criticality of space in accel-
erator lattices has led to the
investigation of geometries
capable of generating dipole,
quadrupole and sextupole
field in the same magnet, with
independent control of the
harmonic amplitudes, and a
number of successful designs
have been produced.

2.3 Ideal Pole Shapes

To the basic theoreti-
cal concepts of the field har-
monics, we shall now add the
more practical issue of the
ferro-magnetic surfaces re-
quired to make up the magnet
poles. To many, it is intui-
tively obvious that the cor-
rect pole shape to generate a
particular harmonic, for the
ideal case of infinite permea-
bility, is a line of constant
scalar potential. This is ex-
plained more fully in Box 5.
This is the standard text book
presentation for proving that
flux lines are normal to a sur-
face of very high permeabil-
ity; it then follows from

At the steel boundary, with no currents in the steel:

curl H =0

Apply  Stoke's theorem to a closed loop enclosing the
boundary:

∫ ∫ (curl H).dS = ∫ H.ds

Hence around the loop:    H. ds =0

But for infinite permeability in the steel:   H=0;

Therefore outside the steel  H=0 parallel to the bound-
ary.

Therefore B in the air adjacent to the steel is normal to
the steel surface at all points on the surface.

Therefore from B=grad Φ, the steel surface is an iso-
scalar-potential line.

Box  5: Ideal pole shapes are lines of equal magnetic

Steel, µ = ∞

Air

d

ds

s
B

For normal (ie not skew) fields:

Dipole:
y= ± g/2;

(g is interpole gap).

Quadrupole:
xy= ± R2/2;

(R  is  inscribed  radius).

Sextupole:
3x2y - y3 = ± R3;

Box 6:  Equations of ideal pole shape

the definition:

B = grad Φ

that this is also an equi-potential line.

The resulting ideal pole shapes for
(normal) dipole, quadrupole and sextupole
magnets are then given in Box 6. These are
obtained from the Cartesian equipotential
equations with the J coefficients set to zero,
and geometric terms substituted for K. For
perfect, singular harmonics, infinite poles
of the correct form, made from infinite
permeability steel with currents of the cor-
rect



Magnet Symmetry Constraint

Dipole φ(θ) = −φ(2π -θ) All  J
n 
=

 
0;

φ(θ) = φ(π -θ) K
n
 non-zero only  for:

n = 1, 3, 5, etc;

Quadrupole φ(θ) = −φ(π -θ) K
n 
= 0  for all odd n;

φ(θ) = −φ(2π -θ) All  J
n 
=

 
0;

φ(θ) =  φ(π/2 -θ) K
n
 non-zero only  for:

n = 2, 6, 10, etc;

Sextupole. φ(θ) = −φ(2π/3 -θ) K
n 
= 0  for all n not

φ(θ) = −φ(4π/3 -θ) multiples of 3;
φ(θ) = −φ(2π -θ) All  J

n 
=

 
0;

φ(θ) = φ(π/3 -θ) K
n
 non-zero only  for:

n = 3, 9, 15, etc.

Box 7:  Symmetry  constraints  in normal  dipole,  quadrupole  and
sextupole  geometries.

magnitude and polarity located at infinity are sufficient; in practical situations they are happily
not necessary. It is possible to come close to the criterion relating to the steel permeability, for
values of µ in the many thousands are possible, and the infinite permeability approximation gives
good results in practical situations. Various methods are available to overcome the necessary
finite sizes of practical poles and certain combinations of conductor close to high-permeability
steel produce good distributions up to the surface of the conductors. Before examining such
'tricks', we shall first investigate the theoretical consequences of terminating the pole according
to a practical geometry.

2.4 Symmetry Constraints

The magnet designer will use the ideal pole shapes of Box 6 in the centre regions of the pole
profile, but will terminate the pole with some finite width. In so doing, certain symmetries will
be imposed on the magnet geometry and these in turn will constrain the harmonics that can be
present in the flux distribution generated by the magnet. The situation is defined in a more
mathematical manner in Box 7.

In the case of the normal, vertical field dipole, the designer will place two poles equi-distant
from the horizontal centre line of the magnet; these will have equal magnitude but opposite
polarity of scalar potential. This first criterion ensures that the values of J

n
 are zero for all n.

Providing the designer ensures that the pole 'cut-offs' of both the upper and lower pole are
symmetrical about the magnet's vertical centre line, the second symmetry constraint will ensure
that



all K
n
 values are zero for even n. Thus, with two simple symmetry criteria, the designer has ensured

that the error fields that can be present in the dipole are limited to sextupole, decapole, fourteen-
pole, etc.

In the case of the quadrupole, the basic four-fold symmetry about the horizontal and vertical
axes (the first two criteria) render all values of J

n
 and the values of K

n
 for all odd n equal to zero.

The third constraint concerns the eight-fold symmetry ie the pole cut-offs being symmetrical
about the π/4 axes. This makes all values of K

n
 zero, with the exception of the coefficients that

correspond to n=2 (fundamental quadrupole), 6, 10, etc. Thus in a fully symmetric quadrupole
magnet, the lowest-order allowed field error is twelve pole (duodecapole), followed by twenty
pole, etc.

Box 7 also defines the allowed error harmonics in a sextupole and shows that with the basic
sextupole symmetry, eighteen pole is the lowest allowed harmonic error; the next is thirty pole.
Higher order field errors are therefore usually not of high priority in the design of a sextupole
magnet.

Given the above limitations on the possible error fields that can be present in a magnet, the
magnet designer has additional techniques that can be used to reduce further the errors in the
distribution; these usually take the form of small adjustments to the pole profile close to the cut-
off points.

It must be appreciated that the symmetry constraints described in this section apply to
magnet geometries as designed. Construction should closely follow the design but small tolerance
errors will always be present in the magnet when it is finally assembled and these will break the
symmetries described above. Thus, a physical magnet will have non-zero values of all J and K
coefficients. It is the task of the magnet engineer to predict the distortions resulting from
manufacturing and assembly tolerances; this information then becomes the basis for the
specification covering the magnet manufacture, so ensuring that the completed magnet will meet
its design criteria.

Before leaving the topic of magnetic cylindrical harmonics, it is necessary to put this
concept into the wider context of the interaction of beams with magnetic fields. Particles are not
able to carry out a cylindrical harmonic analysis and are therefore not sensitive to the amplitude
or phase of a particular harmonic in a magnet. They  see flux densities B and, in resonance type
phenomena, the spatial  differentials of B, sometimes to high orders. It is a mistake, therefore, to
associate a certain order of differential with one particular harmonic, as all the higher harmonic
terms will contribute to the derivative; the magnet designer may well have balanced the
amplitudes and polarities of a number of quite high harmonics to meet successfully a stringent flux
density criterion within the defined good field region of the magnet.

The two-dimensional cylindrical harmonics are therefore a useful theoretical tool and give
a valuable insight  into the allowed spatial distributions of magnetic fields. However, when
judging the viability of a design or the measurements from a completed magnet, always re-
assemble the harmonic series and examine the flux density  or its derivatives. These are the
quantities corresponding to the physical situation in an accelerator magnet.



3 PRACTICAL ASPECTS OF
MAGNET DESIGN

3.1 Coil Requirements

Current-carrying conductors will now
be added to the consideration of magnet
design. Central to this development is the
equation:

curl H =j ,

and the application of the well known Stoke's
theorem to the magnetic circuit. This is sum-
marised in Box 8. This shows the transfor-
mation of the vector equation into the scalar
relationship equating the line integral of the
field H to the area integral of the enclose
current density j . The resulting equation is
fundamental to all electromagnetic applica-
tions.

The application of this to a simple
dipole circuit with a high permeability ferro-
magnetic core is shown in Box 9. This dem-
onstrates how, with approximately constant
flux density B around the complete circuit,
the Ampere-turns are concentrated across
the gap g. This gives the required Ampere-
turns in a dipole circuit. The expression,
relating the flux density to the magneto-
motive force and the magnet dimensions is
roughly analogous to the simple expression
for current in an electrical circuit containing
an emf and resistance. The similarity is
strengthened by the nomenclature that refers
to the terms 'g' and 'l/µ' as the reluctance of
the gap and the steel core respectively.

In Box 10, one method for establish-
ing the required Ampere-turns per pole for
quadrupole and sextupole magnets is shown.
The method can be applied generally to
higher-order multipole magnets.Note that
the strength of the quadrupole in Box 10 is
defined in terms of the 'gradient'. In the case
of the quadrupole, this is unambiguous, for if

Stoke's theorem for vector V:
∫ V.ds =∫ ∫ curl V.dS

Apply  this  to:
curl H  = j ;

Then  for  any  magnetic  circuit:
∫ H.ds = NI;

NI  is  total  Amp-turns through loop  dS.

Box 8: Magneto-motive force in a
magnetic circuit.

dS

ds

V

B  is  approx  constant  round loop l & g,

and H
iron

 = H
air

 /µ ;
B

air
 = µ

0
 NI / (g + l/µ);

g,  and  l/µ are  the  'reluctance'  of  the
gap  and  the  iron.
Ignoring  iron  reluctance:

NI = B g /µ
0

Box 9: Ampere-turns in a dipole.
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the field is expressed as:

B
y
 = gx

where g is the quadrupole gradient, then

dB
y 
/dx = g

ie, g is both the field coefficient and the
magnitude of the first derivative. For a
sextupole, the second differential is
twice the corresponding coefficient:

B
y
 = g

S
 x2

d2B
y 
/dx2  = 2 g

S

In the case of sextupoles and higher
order fields, it is therefore essential to
state whether the coefficient or the
derivative is being defined.

3.2 Standard Magnet Geometries

A number of standard dipole magnet
geometries are described in Box 11. The
first diagram shows a 'C-core' magnet.
The coils are mounted around the upper
and lower poles and there is a single asym-
metric backleg. In principal, this asymme-
try breaks the standard dipole symmetry

Quadruple has pole  equation:

xy = R2 /2.
On x axes

B
y
 = gx,

g  is gradient  (T/m).

At  large  x (to  give  vertical  B):

NI = (gx) ( R2 /2x)/µ
0

ie
NI = g R2 /2 µ

0
(per pole)

Similarly,  for  a  sextupole,  (field coeffi-
cient  g

S,
),   excitation  per  pole  is:

NI = g
S 
R3/3 µ

0

Box 10: Ampere-turns in
quadrupole and sextupole.

described in section 2.4 but, providing the core has high permeability, the resulting field errors
will be small. However, a quadrupole term will normally be present, resulting in a gradient of the
order of 0.1%  across the pole. As this will depend on the permeability in the core, it will be non-
linear and vary with the strength of the magnet.

To ensure good quality dipole field across the required aperture, it is necessary to
compensate for the finite pole width by adding small steps at the outer ends of each of the pole;
these are called shims. The designer must  optimise the shim geometry to meet the field
distribution requirements. The maximum flux density across the pole face occurs at these
positions, and as the shims project  above the face, it is essential to ensure that their compensating
effect is present at all specified levels of magnet operation. Some designers prefer to make the
poles totally flat, resulting in a considerable increase in required pole width to produce the same
extent of good field that would be achieved by using shims. Non-linear effects will still be present,
but these will not be as pronounced as in a shimmed pole.

The C-core represents the standard design for the accelerator dipole magnet. It is straight

x B



Box 11: Dipole goemetries, with advantages and disadvantages.
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Shim Detail

'C' Core:

Advantages:
Easy access;
Classic design;

Disadvantages:
Pole shims needed;
Asymmetric (small);
Less rigid;

'H' Type

Advantages:
Symmetric;
More rigid;

Disadvantages:
Also needs shims;
Access  problems.

'Window Frame'

Advantages:
No pole shim;
Symmetric;
Compact;
Rigid;

Disadvantages:
Major access problems;
Insulation thickness.
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Box 12: Standard quadrupole magnet geometry

forward to manufacture and
provides good access to the
vacuum vessel and other beam-
line components.

The 'H-type' dipole is
very similar to the C core, but
has two return backlegs, mak-
ing the magnet fully symmetri-
cal. Quadrupole error fields are
therefore eliminated at the ex-
pense of restricting access to
the pole area. To allow such
access, and to mount the coils
during magnet assembly, it is
necessary to split the magnet at
the horizontal median plane.
Note that pole shims are still
required for this design.

The third design is re-
ferred to as a 'Window-Frame'
magnet. This is a very com-
pact, rigid design in which the

coils are placed on either side of the gap. This has the major advantage of significantly improving
the dipole field distribution. Providing the copper conductor extends very closely to the pole, the
linearity of exciting Ampere-turns across the gap matches the uniform distribution of the scalar
potential in this region, and good field will be achieved right up to the surface of the conductor.
In practical situations, the coil insulation takes up a finite space and the good field region is
reduced. However, the window frame design has valuable advantages and a number of accelera-
tors have used this concept. There are, however, major access problems.

Box 12 shows a standard design for the quadrupole magnet geometry. The core is symmetric
around the four poles, with the coils mounted on the pole sides. This is the equivalent of the H
dipole design and shims are required to compensate for the finite pole width. A design
corresponding to the window-frame dipole would have the coils on the vertical and horizontal
axes, fitting tightly between the extended pole surfaces. This produces good quality field, but
provides difficulties in the coil design. In this arrangement, the pole sides diverge by an angle of
90° from the pole face, and the design is therefore suitable for a high gradient quadrupole, where
saturation in the pole root could be a problem.

Other variations on the basic quadrupole scheme include a single-sided yoke design,
corresponding to the C-cored dipole. This is frequently used in synchrotron radiation sources,
where radiation emerges close to the centre of the quadrupole and space is required for a beam
pipe in an area that would normally house the outer return yoke.



 j = NI/A
C

where:
j is the current density,
A

C 
the area of copper in the coil;

NI is the required Amp-turns.

E
C
 = K (NI)2/A

C

therefore
E

C
 = (K NI) j

where:
E

C
 is energy loss in coil,

K is a geometrical constatnt.

Therefore, for constant NI, loss varies as j.

Magnet capital  costs  (coil &  yoke  materials,
plus assembly,  testing  and  transport)  vary as
the size of the magnet  ie as   1/j.

Total  cost  of  building  and  running  magnet
'amortised'  over  life  of  machine  is:

£ = P + Q/j + R j

P, Q, R and therefore optimum   j
  
depend  on

design,  manufacturer, policy, country,  etc.

Box 13: Determination  of  optimum  current
density  in  coils.

3.3 Coil Design

The standard coil design uses
copper (or occasionally aluminium)
conductor with a rectangular cross
section. Usually, water cooling (low
conductivity de-mineralised water)
will be required and in d.c magnets
this is  achieved by having a circular
or racetrack-shaped water channel
in the centre of the conductor. The
coil is insulated by glass cloth and
encapsulated in epoxy resin.

The main tasks in coil design
are determining the optimum total
cross section of conductor in the coil
and deciding on the number of indi-
vidual turns into which this should
be divided.

The factors determining the
choice of current density and hence
copper cross section area are de-
scribed in Box 13. Unlike the other
criteria that have been examined in
earlier parts of this paper, the prime
consideration determining conduc-
tor area is economic. As the area is
increased, the coil, the magnet mate-
rial and the manufacturing costs in-
crease, whilst the running costs de-
crease. The designer must therefore
balance these effects and make a
policy based judgement of the num-
ber of years over which the magnet
capital costs will be 'written off'. The
optimum current density is usually
in the range of  3 to 5 A/mm2, though
this will depend on the relative cost
of electric power to manufacturing
costs that are applicable. Note that
the attitude of the funding authority
to a proposed accelerator's capital
and running cost will also have a
major influence on the optimisation
of the coil.
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I  ∝ 1/N, R
magnet

 ∝ N2 j, V
magnet

∝ N j, Power ∝ j

Box 14: Variation of magnet parameters with N and j (fixed NI).

Having determined the
total conductor cross section,
the designer must decide on
the number of turns that are to
be used. Box 14 shows how
the current and voltage of a
coil vary with the current den-
sity j and number of turns per
coil, N. This leads to the crite-
ria determining the choice of
N, as shown in Box 15.

The choice of a small
number of turns leads to high
currents and bulky terminals
and interconnections, but the
coil packing factor is high. A
large number of turns leads to
voltage problems. The opti-
mum depends on type and size
of magnet.  In  a large dipole

Large  N (low  current) Small N (high  current)

* Small, neat  terminals. * Large, bulky terminals

* Thin interconnections * Thick, expensive inter-
  - low cost & flexible.   connection.

* More  insulation layers  * High  percentage  of
  in coil, hence  larger coil,    copper  in  coil.  More
  increased assembly  costs.    efficient use of  volume.

* High  voltage  power * High  current  power
   supply - safety  problems.   supply - greater losses.

Box 15: Factors  determining  choice  of  N.

magnet, currents in excess of 1,000A are usual, whereas smaller magnets, particularly quad-
rupoles and sextupoles would normally operate with currents of the order of a few hundred Amps.
In small corrector magnets, much lower currents may be used and if the designer wishes to avoid
the complication of water cooling in such small magnets, solid conductor, rated at a current
density of 1A/mm2 or less, may be used; the heat from such a coil can usually be dissipated into
the air by natural convection.

3.4 Steel Yoke Design

The steel yoke provides the essential ferro-magnetic circuit in a conventional magnet,
linking the poles and providing the space for the excitation coils. The gross behaviour of the
magnet is determined by the the dimensions of the yoke, for an inadequate cross section will result
in excessive flux density, low permeability and hence a significant loss of magneto-motive force
(ie Ampere-turns) in the steel. The examination of the properties of steel used in accelerator
magnets will be covered in the second conventional magnet  paper, which is concerned with a.c.
properties. This paper will therefore be restricted to a few general comments relating to yoke
design and the significance of coercivity in determining residual fields.

The total flux flowing around the yoke is limited by the reluctance of the air gap and hence
the geometry in this region is critical. This is shown in Box 16, indicating that at the gap, in the
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Φ ≈ B
gap 

(b + 2g) l.

Box 16: Flux  at magnet gap.

transverse plane, the flux extends outwards
into a region of fringe field. A rule of thumb
used by magnet designers represents this fringe
field as extending by one gap dimension on
either side of the physical edge of the magnet.
This then allows the total flux to be expressed
in terms of the pole physical breadth plus the
fringe field. Sufficient steel must be provided
in the top, bottom and backleg regions to limit
the flux  density to values that will not allow
saturation in the main body of the yoke. Note
however that it is usual to have high flux
densities in the inside corners at the angles of
the yoke. The flux will be distributed so that
the reluctance is constant irrespective of the
length  of the physical path through the steel

In a continuous ferro-magnetic core, residual
field is determined by the remanence B

R
. In a

magnet with a gap having reluctance much
greater than that of the core, the residual field
is determined by the coercivity H

C
.

With no current in the external coil, the total
integral of field H around core and gap is zero.

Thus, if H
g
 is the field in the gap, l and g are

the path lengths in core and gap respectively:

∫
l 
H

C
 . ds + ∫

g
H

g
  . ds  =  0,

B 
resid

 =  -  µ
0 
H

C
 l /g

Box 17: Residual field in gapped magnets.

H
C

-

H

B

B R

and this implies that low permeabili-
ties will be encountered in the cor-
ners. Providing the region of low
permeability does not extend com-
pletely across the yoke, this situation
is acceptable.

The effect of the gap fringe
field has less significance in the lon-
gitudinal direction, for this will add
to the strength of the magnet seen by
the circulating beam; a high fringe
field will result in the magnet being
run at a slightly lower induction.
Thus, the total longitudinal flux is
determined by the specified mag-
netic length and the fringe field in
this dimension can be ignored when
considering both the flux density in
the steel yoke and the inductance in
an a.c. magnet.

The yoke will also determine
the residual flux density that can be
measured in the gap after the magnet
has been taken to high field and then
had the excitation current reduced to
zero. In Box 17 it is explained that
the residual field in a gapped magnet
is not determined by the 'remanence'
or 'remanent field' (as might be ex-



pected from the names given to these parameters) but by the coercive force (in Amps/m) of the
hysteresis loop corresponding to the magnetic excursion experienced by the steel. This is because
the gap, as previously explained, is the major reluctance in the magnetic circuit and the residual
flux density in the gap will be very much less than the remanent field that would be present in an
ungapped core. The total Ampere-turns around the circuit are zero and hence the positive field
required to drive the residual induction through the gap is equal and opposite to the line integral
of (negative) coercive force through the steel.

Typical shims for dipole and quadrupole magnets are shown in Box 18. The dipole shim
takes the form of a trapezoidal extension above the pole face, whilst the quadrupole shim is
generated from a tangent to the hyperbolic pole, projecting from some point on the pole face and
terminating at the extended pole side.

In both cases, the area A of the shim has the primary influence on the edge correction that
is produced. In the dipole case, it is important to limit the height of the shim to prevent saturation
in this region at high excitations; this would lead to the field distribution being strongly dependent
on the magnet excitation level. On the other hand, if a very low, long shim is used, the nature of
the field correction would change, with different harmonics being generated. The shim size and
shape is therefore a compromise that depends on the field quality that is desired and on the peak
induction in the gap; shim heights and shapes vary widely according to the magnet parameters and
the quality of field that is required.

3.6 Pole Calculations

It is the task of the magnet designer to use iterative techniques to establish a pole face that
produces a field distribution that meets the field specification: ∆B/B for a dipole,  ∆g/g for a
quadrupole, etc, over a physical 'good-field region'. The main tool in this investigation is one or
more computer codes that predict the flux density for a defined magnet geometry; these codes will

Dipole Shim:

Quadrupole  Shim:

Box 18:  Standard pole shims.

A

A

3.5 Pole face design

Whilst this subject is just a particu-
lar feature of the yoke design, it is proba-
bly the most vital single feature in the
design of an accelerator magnet, for it
will determine the field distribution seen
by the beam and hence  control the be-
haviour of the accelerator. In the early
part of this paper, the various types of
field were derived from the cylindrical
harmonics and the allowed and forbid-
den harmonics were established in terms
of the magnet's symmetry. It was ex-
plained that the remaining error fields,
due to there being a non-infinite pole,
could then be minimised by the use of
shims at the edges of the pole.
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Very large pole, no shim
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Large pole, small shim

Smaller pole, large shim
(note change in vertical scale)

Box 19: Effect of shim and pole
width on distribution.
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be described in the next section. The vari-
ables in the optimisation  are the width of
the pole and the size and shape of the
shims. For economy sake (particularly in
an a.c.magnet where stored energy deter-
mines the power supply rating) the de-
signer will usually wish to minimise the
pole width. Having made an initial esti-
mate of a suitable pole width, the magnet
designer will explore a range of shims in an
attempt to establish a good geometry. If
this proves to be impossible, the pole width
is increased; if it is easy, economies can
possibly be made by reducing the pole
width. In this work,  past experience is very
valuable, and time and trouble is saved by
having a rough idea of what will result
from a given change.

In an attempt to steer the student who
is new to the topic through this rather
intuitive subject, the following brief notes
are offered as a guide; they do not repre-
sent a definitive procedure for establishing
a design:

i) Start with a small shim to explore the
sensitivity of the distribution to the shim
area. Use this to obtain a better estimate
of the size of shim that you need. In a
dipole, the shim height will normally be
a few percent of the gap, extending over
less than five percent of the pole face.

ii) Note that the above numbers are very
dependent on the required field quality;
very flat dipole fields (of the order of 1
part in 104) will need very low shims
and a wide pole, whilst a bigger shim,
which produces a significant rise in
field at the pole edge before it falls off
rapidly, can be used for lower quality
fields. This will  give  a saving in pole
width. The effects of pole width and shim  size are described in Box 19.

iii) When near the optimum, make only small changes to shim height; for an accelerator dipole,
with gaps typically between 40 and 60 mm, a 20µm change across the shim makes some
difference when the field is close to optimum. This sensitivity gives a clear indication of the



dimensional tolerances that will be needed
during magnet construction.

iv) In the case of a quadrupole, vary the
point at which the tangent breaks from the
pole; this of course will also vary the posi-
tion of the corner of the pole. Make changes
of 1 mm or less at the position of the tangent
break; again, sensitivity to 20µm changes in
the vertical position of the corner will alter the distribution for a  typical accelerator quadrupole.

v) For a sextupole, the pole shaping is less critical; the ideal third-order curve would be
expensive to manufacture and is not necessary. Start with a simple rectangular pole and make
a linear cut symmetrically placed at each side of the pole. Optimise the depth and angle of this
cut and it will usually be found to be adequate.

vi) When judging the quality of quadrupole and sextupole fields, examine the differentials, not
the fields. When using numerical outputs from the simpler codes, take first or second
differences. This is illustrated in Box 20.

vii) In all cases, check the final distribution at different levels of flux density, particularly full
excitation. If there is a large change in distribution between low and high inductions (and these
are unacceptable), the shims are too high. Start again with a slightly wider pole and a lower,
broader shim.

viii) Steel-cored magnets are limited by saturation effects. In dipoles, this appears as an inability
to achieve high values of flux density without using excessive currents. In the case of
quadrupoles and sextupoles, saturation may also limit the extent of the good field region at full
excitation. In this case, the only solution is to lengthen the magnet and reduce the gradient.

Dipole: plot (B
Y 

(x) - B
Y 
(0))/B

Y 
(0)

Quad: plot  dB
Y
 (x)/dx

Sext: plot  d2B
Y
(x)/dx2

Box 20: Judgement of field quality.

3.7 Field computation codes

A number of standard codes are available for the pole design process described above. Three
well known packages are compared in Box 21. The first two are simpler, two-dimensional codes,
and are ideal for those new to the subject.

MAGNET is a 'classical' two-dimensional magnetostatic code with a finite rectangular
mesh, differential analysis and  non-linear steel. Separate  iterations  for  the  air  and  steel
regions are used to converge on the solution with  permeabilities approximating to the physi-
cal situation. The first solution (cycle 0) uses infinite permeability in steel; this is then ad-
justed on subsequent cycles. Output is B

X
 and B

Y
 in air and steel for the complete model, plus

plots of permeability in steel and vector potential in air (to give total fluxes) and (in one
version) an harmonic analysis. It is quickly and easily learned but suffers from the lack of pre-
and post-processing. This means that all input data is numerical and the complete geometry
has to be worked out exactly in Cartesian coordinates before entering into the code. Likewise,
the output is in terms of numerical flux densities (in Gauss) and any calculation of gradients
etc must be carried out by hand calculation or by typing into another code. A potentially mis-



leading feature of MAGNET is the way the program interprets input data  by registering
boundaries only on the lines of the fixed rectangular mesh. This means that data containing points
that are not on a mesh line in at least one plane can be seriously misinterpreted and the geometry
used for the prediction will differ from that intended by the designer.

A number of different versions of POISSON now exist. They offer similar capability to
MAGNET, but go a long way to overcoming the more major problems with that program. A
flexible triangular lattice is used and this is 'relaxed' by the software to fit the geometry during the
first stage of execution. This overcomes the data input problem outlined above, it allows a more
complex set of input specifications to be used (linear and curved boundaries can be specified) and
post-processing gives output graphs in the interactive versions. The triangular mesh can be
concentrated into areas of high induction, resulting in better handling of saturation. It is still,
however, two dimensional.

Advantages Disadvantages:

 MAGNET :

* Quick to learn, simple to use; * Only 2D predictions;
* Small(ish) cpu use; * Batch  processing  only - slows down

   problem turn-round time;
* Fast execution time; * Inflexible  rectangular lattice;

* Inflexible data input;
* Geometry errors possible from
   interaction of input  data with lattice;
* No pre or post processing;
* Poor  performance in high saturation;

POISSON:

* Similar computation as MAGNET; * Harder to learn;
* Interactive input/output possible; * Only 2D predictions.
* More  input options with greater

flexibility;
* Flexible lattice eliminates

geometery errors;
* Better handing of local saturation;
* Some post processing available.

TOSCA:

* Full three dimensional package; * Training course needed for
* Accurate prediction of distribution familiarisation;

and strength in 3D; * Expensive to purchase;
* Extensive pre/post-processing; * Large computer needed.

* Large use of memory.
* Cpu time is hours for non-linear 3D

problem.

Box 21: Comparison of three commonly used magnet computation codes.



By comparison, TOSCA is a state-of-the-art, three dimensional package that is maintained
and updated by a commercial organisation in U.K. The software suite is available from this
company, and training courses are offered to accustom both beginners and more experienced
designers to the wide range of facilities available in the program.

There are now a large number of field computation packages available for both accelerator
and more general electrical engineering purposes. The decision not to mention a certain package
in this paper does not imply any criticism or rejection of that program. The three chosen for
description are, however, 'classic' packages that perhaps represent three separate stages in the
development of the computation program.

It should not be believed that the lack of three-dimensional information in the simpler
packages prevents the designer obtaining useful information concerning the magnet in the
azimuthal direction. The next two sections will therefore deal with the topic of magnet ends and
how they are addressed numerically.

3.8 Magnet ends

Unless the magnet is playing a relatively unimportant role in the accelerator, the magnet
designer must pay particular attention to the processes that are occurring at the magnet ends.
The situation is summarised in Box 22. A square end (viewed in the longitudinal direction)
will collect a large amount of flux from the fringe region and saturation may occur. Such a
sharp termination also allows no control of the radial field in the fringe region and produces a
poor quality distribution. This fringe area will normally contribute appreciably to the inte-
grated field seen by the beam, the actual percentage depending on the length of the magnet. It
is quite pointless to carefully design a pole to give a very flat distribution in the centre of the
magnet if the end fields totally ruin this high quality. The end distribution, in both the longitu-
dinal and transverse planes, must therefore be controlled.

Box 22: Control  of longitudinal  field distributions in magnet ends.

Square ends:

* display non linear effects (saturation);
* give no control of radial distribution in the

fringe  region.

Chamfered ends:

* define magnetic length more precisely;
* prevent saturation;
* control transverse  distribution;
* prevent flux entering iron normal to

lamination  (vital for ac magnets).

Saturation



Dipole:

Quadrupole:

Box 23: Contol of transverse distribu-
tion in end regions with non-standard

poles.

This is usually achieved by 'chamfering'
or 'rolling off' the magnet  end, as shown in
Box 22. A number of standard algorithms have
been described for this, but the exact shape is
of  no great importance except in very high
flux density magnets. The important criteria
for the roll off are:

i) It should prevent appreciable non-linear
(saturation) effects at the ends for all levels
of induction.

ii) It should provide the designer with con-
trol of transverse distribution throughout
the region where the fringe flux is contrib-
uting appreciably to the magnet strength.

iii) It should not occupy an uneconomically
large region.

iv) It should, in a.c. applications, prevent
appreciable flux entering normal to the
plane of the laminations.

practice to profile the magnet pole to attempt to maintain good field quality as the gap increases
and the flux density reduces. Box 23 describes the typical geometries that are used. In the case of
the dipole, the shim is increased in size as the gap gets larger; for the quadrupole the pole shape
is approximated to the arcs of circles with increasing radii. It should be appreciated that such
techniques cannot give ideal results, for it must be assumed that the pole width was optimised for
a given gap dimension. Hence, no shim will be found that can give a good field distribution with
the same pole width and larger gap. However, the fringe region will only contribute a certain
percentage to the overall field integral and hence the specification can be degraded in this region.
In some cases, integrated errors in the end region can be compensated by small adjustments to the
central distribution; however, to use this technique, the designer must be particularly confident
of the end-field calculations.

3.9 Calculation of end field distributions

Even using two-dimensional codes, numerical estimates of the flux distribution in the
magnet ends can be made. The use of an idealised geometry to estimate the longitudinal  situation
in a dipole is shown in Box 24. The right hand side of the model approximates to the physical
magnet, with the end roll-off and the coil in the correct physical positions. However, the return
yoke and the coil on the left are non-physical abstractions; they are needed to provide the magneto-
motive force and a return path for the flux in the two dimensional model. Thus the flux distribution
in the end region will be a good representation of what would be expected on the radial centre plane
of the magnet. This model can therefore be used to check the field roll off distribution, the

Looking at these chamfered end regions
in  the  transverse plane  again,  it  is  then  the



flux density at the steel surface in the chamfer, and the expected integrated field length of the
magnet; this last parameter is, of course, of primary importance as it determines the strength of
the magnet.

In the case of the quadrupole, the similar calculation is less useful. The same model can be
used, taking a section through the 45° line, ie on the inscribed radius, but this will look like a dipole
and predict a non-zero field at the magnet centre. The only useful feature will therefore be an
examination of the flux densities at the steel surface in the end regions by normalising to the value
predicted for the central region in the transverse calculations. As saturation on the pole is seldom
encountered in a quadrupole (if present, it is usually in the root of the pole), this is of little value.

It is not usually necessary to chamfer the ends of sextupoles; a square cut off can be used.

Turning now to the transverse plane in the end region, it is quite practical to make
calculations with the increased pole gap and enlarged shim for each transverse 'slice' through the
end. The shim can be worked on to optimise the field distribution as best as possible, and the
prediction of transverse distribution used with some confidence. However, the predicted ampli-
tude of flux density will be incorrect, for there will be a non-zero field derivative in the plane
normal to the two-dimensional model. In principle, the distribution is also invalidated by this term,
but experience indicates that this is a small effect. Hence, the designer must normalise the
amplitude of the flux density in each 'slice' to that predicted in the longitudinal model. The
resulting normalised distributions can then be numerically integrated (by hand calculation!) and
added to the integrated radial distribution in the body of the magnet. This gives a set of figures
for the variation of integrated field as a function of radial position - the principal aim of the whole
exercise. Of course, all this can be avoided if a full three-dimensional program is used and the
complete magnet will be computed in one single execution. However, the above procedure  gives
a very satisfactory prediction if an advanced code is not available; it also gives the designer a good
'feel' for the magnet that is being worked upon.

The diagram shows an idealised geometry in the longitudinal  plane of a dipole, as
used to estimate end-field distributions. The right hand coil is at the correct physical
position; the coil and return yoke on the left are idealised to provide excitation and a
return path for the flux in two dimensions.

Box 24:  Calculation of longitudinal  end effects using two-dimensional  codes.
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3.10 Magnet manufacture

This is a specialised topic, the details of which are perhaps best left to the various
manufacturers that make their living by supplying accelerator laboratories. However, a few
comments should help the designer when preparing for this exercise.

For  d.c. accelerator magnets, yokes are usually laminated. This allows the 'shuffling' of steel
to randomise the magnetic properties. Laminations also prevent eddy current effects which, even
in d.c. magnets, can cause problems with decay time constants of the order of minutes.
Laminations are therefore be regarded as essential in storage rings which are ramped between
injection and full energy.

The laminations are 'stamped' using a 'stamping tool'. This must have very high precision
and reproducibility (~20µm). Manufacturers involved in standard electrical engineering produc-
tion will regard this figure as stringent but possible. The dimensions of the lamination must be
checked on an optical microscope every five to eight thousand laminations.

Assembly of the laminations is in a fixture; the number of laminations in each stack is
determined by weight and hydraulic pressure is used to define the length. At one time, the stacked
laminations were glued together, but now it is more usual to weld externally whilst the stack is
firmly held in the fixture. If a.c. magnets are being assembled the welding must not produce
shorted turns.

Coils are wound using glass insulation wrapped onto the copper or aluminium  conductor
before receiving an 'outerground' insulation of (thicker) glass cloth. The assembly is then placed
in a mould and heated under vacuum to dry and outgas. The mould is subsequently flooded with
liquid epoxy resin that has been mixed with the catalyst under vacuum.  The vacuum tank is let
up to atmosphere, forcing the resin deep into the coil to produce full impregnation. 'Curing' of the
resin then occurs at high temperature. Total cleanliness is essential during all stages of this
process!

Rigorous testing of coils, including water pressure, water flow, thermal cycling and 'flash'
testing at high voltage whilst the body of the coil is immersed in water (terminals only clear) is
strongly recommended. This will pay dividends in reliability of the magnets in the operational
environment of the accelerator.
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Many magnet designs for accelerator applications have been described in detail in the series
of International Conferences on Magnet Technology. Given below are the dates and venues of
these conferences; the proceedings of these Conferences provide many examples of d.c, a.c. and
pulsed magnet design:
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