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Abstract
The design of a conventional RF system is always complex and must
fit the needs of the particular machine for which it is planned.  It
follows that many different design criteria should be considered and
analyzed, thus exceeding the narrow limits of a lecture.  For this
reason only the fundamental components of an RF system, including
the generators, are considered in this short seminar.  The most
common formulas are simply presented in the text, while their
derivations are shown in the appendices to facilitate, if desired, a more
advanced level of understanding.

1. INTRODUCTION

In dynamic machines the charged particles exchange energy with the electric field
(positive or negative acceleration).  The acceleration can be:

a) along a straight path - linear accelerators, (single-pass acceleration);
b) along a closed orbit - cyclic accelerators, (many-pass acceleration).

In both cases, because the curl of the electric field cannot be zero, it follows that a static

field cannot be used. In fact we know that:  — x E =  − ∂B

∂t
 .

In principle any non-constant E.M. field could be used, but due to the huge amount of
technology derived from radio communications, sinusoidal radio-frequency fields are used.
The equipments, which create and apply the field to the charged particles, are known as the
RF-systems or, more simply, the RF.

2. THE ACCELERATING GAP

Basically RF acceleration is obtained by creating a suitable RF field inside one or more
gaps of the vacuum chamber which is supposed to be metallic.  These accelerating gaps can
be obtained using two conceptually different devices:

- drift tubes;
- cavity resonators.

First of all we study the behaviour of a gap (no matter how it is made).  We make the
hypothesis that the field Ez is uniform along the axis of the gap and depends sinusoidally upon
the time:

Ez  =E0  cos (wt + j).

Phase j is referred to the particle which for t = 0 is in the middle of the gap (z = 0).  The
voltage gain is then:

V = E0 E0
−G/2

+G/2

∫  cos ωt + ϕ( )  dz  . (1)
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Fig. 1  RF gap

Normally the energy imparted in a single pass is small compared with the kinetic energy
of the particle.  In this case we assume that the speed of the particle does not change during
the transit.  Consequently z = bct and Eq. (1) becomes:

V = E0 cos 
ωz

βc
+ ϕ





 
−G / 2

+G / 2

∫ dz  = 2E0 cos ϕ
sin 

ωG

2βc
ω
βc

 .

Rearranging we write:

V = E0G cos ϕ
sin 

ωG

2βc
ωG

2βc

= E0Gτ cos ϕ. (2)

where t is the well-known transit-time or gap factor.

If we define the transit angle q  = 
ωG

βc
= 2πG

βcT
= 2π G

λ p

 , where lp is the distance

covered by the particle during one period T of the RF field, then the transit-time factor
becomes:

τ = sin θ / 2
θ / 2

 . (3)

3. THE DRIFT TUBE

Schematically we can imagine that a portion of the vacuum chamber is replaced by a
shorter tube which is connected with the RF voltage (Fig. 2).  If the free-space wavelength of
the electric field is much larger than the physical length L-G, then we can assume that the
whole drift tube has the same voltage.  Consequently if the electric field in gap (1) is:

E1 = V

G
 cos ωt + ϕ( )

then in gap (2) we have:
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Fig. 2  The physical length of the drift tube is L-G, while G is the length of each gap

E2 = − V

G
 cos ωt + ϕ( )  .

It is then evident that the energy gained by the particle passing through gap (1) will be
doubled if and only if:

ωL

βc
= π  . (4)

Nevertheless to find the effect of the drift tube, we proceed as in the previous case and
evaluate the integral:

V = E0 cos ωt + ϕ( )  dz − cos ωt + ϕ( )  dz
L−G / 2

L+G / 2

∫−G / 2

+G / 2

∫{ }  . (5)

Using the same substitution as above, z = bct, and integrating, we obtain the general
formula:

V = E0G
sin θ / 2

θ / 2
cos ϕ −  cos ϕ + ωL

βc















  . (6)

It is then confirmed that if 
ωL

βc
= π,  then:

V = 2E0Gτ  cos ϕ  .

If lp = bcT is the distance covered by the particle during one RF period, then the
synchronism condition (4) becomes:

L =
λ p

2
= βλ

2
 . (7)



4. CAVITY RESONATORS

4.1 Definitions and assumptions

A volume of perfect dielectric limited by infinitely conducting walls can be considered
as the ideal cavity resonator.  A significant step towards the real case is the introduction of
losses inside the resonator.  This can be done by assuming that both the walls and the
dielectric are lossy.  In order to simplify the mathematical treatment, we will assume that the
dielectric is homogeneous, linear, time invariant with a finite conductivity s.  That is:  only
the dielectric is lossy.  Moreover we will assume that the charges and the impressed current
are zero inside the volume.  With these assumptions the Maxwell equations become:

∇ ⋅ e = 0  ;    ∇ ⋅ h = 0

∇ × e = −µ ∂h

∂t
 ;    ∇ × h = σe + ε ∂e

∂t






 .  (8)

Making the curl of the third equation and substituting from the fourth, we obtain:

∇ × ∇ × e = − ∂
∂t

σe + ε ∂e

∂t







µ  .

Expanding, taking into account the vector identity:

∇ × ∇ × A = ∇∇ ⋅ A − ∇2A

and using the first equation we obtain:

∇2e = µσ ∂e

∂t
+ εµ ∂ 2e

∂t2  . (9)

This equation must be solved with the following boundary conditions:
n x e = 0 because the e field should be normal to the perfectly conducting walls.
∇  · e = 0 because no charges are present inside the volume.

4.2 Mathematical tools

The vector eigenfunction E = E (x1, x2, x3) satisfying the problem:

∇2E + Λ2E = 0

∇ ⋅ E = 0

n × E = 0   on the boundary









(10)

exists for an infinite, discrete set of real values Ln.  The eigenfunctions En constitute a
complete set of orthogonal functions capable of representing any divergenceless vector A = A
(x1, x2, x3) perpendicular to the boundary.  Consequently we write:

A = ΣncnEn

∇2A = ∇2ΣcnEn = −ΣcnΛn
2 En






(11)

where cn are constants and A is time invariant.



If we assume that A depends on the time:  A  = A  (x1, x2, x3) j(t), then we have to
substitute the constants cn with appropriate time dependent functions:

an = an (t) . (12)

4.3 Solution of the wave equation

We rewrite Eq. (9):

∇2e = µσ ∂e

∂t
+ εµ ∂ 2e

∂t2  .

and expand the vector "e" according to (11) and (12):

e = ΣanEn  ;    ∇2e = −ΣanΛn
2 En

Substituting and factorizing the En:

Σ εµ ∂ 2an

∂t2 + µσ ∂an

∂t
+ Λn

2 an








En = 0 (13)

Since the En ≠ 0, then (13) can be satisfied if, and only if, each of the bracketed terms is
identically zero.  This means that each function an must be defined by the equation:

˙̇an + σ
ε

ȧn + Λn

εµ






2

an = 0 (14)

together with the initial conditions.  From (14), we immediately conclude that each an must be
a damped sine wave.

Now we recognize that in a real cavity the losses are due to many factors:

- The introduction of devices for exciting the cavity and for measurements.
- The introduction of lossy dielectrics and, above all, the finite conductivity of the

metallic walls.

Because the walls are not perfectly conducting, the condition n x e = 0 is no longer
exact even if, normally, the error is negligible.  For this reason the above theory is acceptable,
but total losses should be expressed by some equivalent conductivity.  This can be done using
the quality factor (see Appendix 1) and (14) becomes:

˙̇an + ωn

Qn
ȧn + ωn

2an = 0 (15)

where ωn = Λn

εµ
is the resonant angular frequency of the same cavity when the losses go to

zero (that is Qn = ∞).  Solving (15), we obtain:

an = e
−

ωn

2Q
t

A1 cos Ωnt + A2 sin Ωnt{ } (16)



where:

Ωn = ωn 1 − 1

4Q2 (17)

is the angular frequency of free oscillation (see Appendix 2) and A1, A2 are numerical
constants, which depend upon the initial conditions.

4.4 Conclusions

- The electromagnetic field contained by an undriven lossless cavity can be interpreted as
the sum of discrete resonant configurations (standing fields) which are known as the
modes.

- The modes are only the divergenceless eigenfunctions of the Laplacian operator which
fits the boundary conditions.

- The resonant frequency nn of each mode depends upon the eigenvalue corresponding to
the eigenfunction En which characterizes the mode:

νn = Λn

2π εµ
 .

- If the cavity is lossy (as is always the case) then an attenuation constant should be
associated with each mode:

αn = ωn

2Qn
 .

- The treatment of a cavity driven by an induced current can follow the same lines but
current J which appears in the Maxwell equation becomes:

J = Jlosses + Jinduced .

- This means that, depending upon the induced current, any frequency can be present
inside a driven cavity.  Moreover "all the coupled modes" are excited, with different
amplitudes and phases.

- When the frequency of the injected current is "practically" coincident with the
frequency of one mode, then the amplitude of this mode becomes dominant.

- What we have seen is valid for cavities of any shape.  The most used, in practice, are the
trirectangular and cylindrical cavities.

- In the following we will deal with the cylindrical cavities that are, by far, the most used
in particle accelerators.

5. THE CYLINDRICAL CAVITY

Normally this cavity (see Fig. 3) is used in the accelerating TM0lm mode.  This means
that the electric field should not have azimuthal variations and that component Ej should be
zero.
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Fig. 3  a) Axonometric view (with the reference versors) of the ideal cylindrical cavity.
b)  Axial section of a real cylindrical cavity where the hole for the coupling and the

cut-off axial tubes are shown.

With the above conditions Eq. (10) is easily solvable (see appendix 3) and we obtain:

  

Ez = E0J0
P0l

r0
r







 cos 
mπ
h

z

Er = E0
mπ
P0l

r0

h
J1

P0l

r0
r







 sin 
mπ
h

z

Λ0lm
2 = P0l

r0







+ mπ
h







2
















(18)

where J0 and J1 are, respectively, the Bessel functions of order zero and of order one while
P0l is the lth zero of the Bessel function of order zero.

It is interesting to observe that (see Fig. 4):

a) If l = 1 and m  = 0 then we have the fundamental accelerating mode and the lines of
force are straight, without any variation along z, and the resonant frequency does not
depend upon the length h of the cavity.  Because P01 = 2.405 we obtain:

E = E0J0
2.405

r0
r







 ;   Λ010 = 2.405
r0

 ,    ω010 = Λ010

εµ

ν010 = ω010

2π
= 1.147  109

r0
 ;    λ010 = 1

ν010 εµ
= 2π

Λ010
= 2.61r0











b) If, with l = 1, we make m = 1 then the component Er steps in and from (18) we obtain:



Ez = E0J0
2.405

r0







 cos 
π
h

z

Er = 1.306
r0

h
EJ10

2.405
r0

r






 sin 
π
h

z

Λ011 = 2.405
r0







2

+ π
h







2

 ;    λ011 = 2.61r0

1 + 1.706
r0

h






2




















z 

(a) 

z 

(b) 

Fig. 4  Lines of force for the electrical field as in modes TM010 (a) and TM011 (b)

It should be noted that in case (b) the cavity length contains one half of the cavity wavelength:

h =
λg

2
 where lg must not be confused with the free space wavelength l.

6. TEM CAVITIES

The pill-box cavity, (and its derivations), solves our problem of creating a gap where
the accelerating field can be confined.

Another class of resonant cavities is based on the uniform transmission line, the most
common example of which is the coaxial cable (Fig. 5).  For this kind of transmission line,
inductance L and capacitance C, per unit of length, are as follows:

L = µ
2π

 ln 
R2

R1
 ;    C = 2πε

ln 
R2

R1

 . (19)

For any kind of uniform transmission line, product LC depends only upon the permittivities of
the medium and:

Vp = 1
LC

= 1
εµ

(20)

is the speed of a signal propagating along a uniform, lossless, transmission line.
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Fig. 5  Axial and normal section of a coaxial cable

For a lossless transmission line the characteristic equations written for the steady state
situation (see Appendix 4) are as follows:

V x( ) = VL cos γx + jZ0IL sin γx

I x( ) = IL cos γx + j
VL

Z0
 sin γx

(21)

where: x is the distance from the load (x = 0).
VL and IL are respectively the voltage and the current in the load ZL.
γ = ω εµ = 2π / λ is the propagation constant and w is the angular frequency.

 Z0 = L / C is the characteristic impedance (real) of the line which depends upon the
shape of the line and the permittivities of the medium.

In addition to its use for power transmission, an element of line can be used as a pure
reactance.  The ratio V(x)/I(x) is the input impedance of an element of line terminated on the
load ZL. From Eq. (21) we obtain:

Z x( ) = Z0
ZL + jZ0 tan γx

Z0 + jZL tan γx
(22)

A very important case is met when ZL = 0  and we obtain:

Z(x) = jZ0 tan γx (23)

So we conclude that a stub of transmission line short-circuited at one end shows the following
behaviour:

- Its input impedance can show any reactance.
- If the physical length of the element is equal to l/4 then the stub exhibits an infinite

(real) impedance and we have the quarter-wavelength resonator.

The above behaviour is used in the TEM (coaxial) resonators.  One end of the coaxial
line is short circuited (x = 0) and the other is connected to the capacity C of the accelerating
gap as shown in Fig. 6.  The resonant condition is met when Y = 0.



x = l 

C 

x = 0 

  

ν x( ) = ν0
sin γx

sin γl

I x( ) = − j
ν0

Z0

cos γx

sin γl










  

Y = jωC + 1
jZ0 tan γl

γ = 2π
λ

= 2π
VpT

= ω
Vp

If µ = µ0 and e  = e0 then
Vp = 1 / εµ  coincides with
the speed of the light.

Fig. 6  The foreshortened coaxial resonator and its equivalent scheme for the TEM modes

7. l/2 CAVITY (Fig. 7)

In this case the E fields at the two gaps must be 180˚ apart and this means that the two
ends should oscillate in phase.  This cavity is devised to "contain" the drift tube, so reducing
the losses and eliminating the radiation.  It is made with a piece of coaxial line loaded at the
two ends with the capacity of the gap, and at the center with the output capacity of the driving
tube.

Fig. 7  Simplified axial section and equivalent scheme of the l/2 cavity



The resonant frequency of this cavity can be determined with a very simple procedure.
The equivalent circuit can be bisected along "aa" and we obtain two identical circuits where,
instead of capacitor k2 , we have capacitor k2/2.  Then we consider the admittance Y of the
stub connected, at one end, to capacitor k1.

  

Y = 1
Z0

Z0 + jZL tan γl
ZL + jZ0 tan γl

= 1
Z0

Z0 + 1
ωk1

 tan γl

1
jωk1

+ jZ0 tan γl
 .

Yt = jω k2

2
+ Y  is the total admittance of each stub and the resonant condition is met when

Yt ∫  0.

  
Z0ω k2

2
+ ωk1Z0 +  tan γl

1 − ωk1Z0 tan γl
= 0  .

Length L = 2l of the drift tube is assigned together with the output capacity of the tube.
Consequently the capacity k1 of each gap together with the value of Z0 must be chosen
according to the resonant condition.

8. RE-ENTRANT  CAVITY

This cavity (Fig. 8) can be considered as being derived from the pill box-cavity or from
a foreshortened coaxial cavity.  In many particle accelerator and specialized books it is
considered as the limit of a resonant device made of many identical loops connected to two
parallel disks.  When the number of loops becomes infinite the device is completely closed
and becomes a resonant cavity.

Fig. 8  Axial and equatorial section of a re-entrant cavity

The resonant frequency of this cavity can be studied rigorously (and it is a complicated
study) but it can be also approximated with a very simple procedure.  Consider Fig. 9 where
the magnetic circuit is defined by the cylindrical sleeves of radii r1 and r2 limited by the two
circular crowns separated by distance k.  The currents injected onto the inner walls by the
capacitor create a flux f whose lines of force are circular and centered on the axis of the
cavity.  If the cross section of the toroid is approximately square and if we suppose that the
magnetic field obeys the Biot-Savart law then the flux passing through the cross section dA of
a cylindrical crown with thickness equal to dr is:



dφ r( ) = µ0H r( )dA = µ0
I

2πr
k  dr

where I is the peak of the alternating current due to the capacitor.  The total flux is obtained
by integration.  Taking into account that:

L = f/I
we obtain:

L = µ0

2π
k  ln  

r2

r1
 .

If ε0πr1
2 / d  is the capacity due to the central disk we obtain for the resonant frequency:

f 0 = 1
2π LC

=

1
2π ε0µ0r1

k

2d
 ln 

r2

r1

=

0.225
ε0µ0

r1
k

d
 ln 

r2

r1

 .

Fig. 9  Cross section of 'LC' cavity with the gap on one side

It should be emphasized that the heuristic procedure already outlined cannot give a very
good approximation unless special geometrical conditions are fulfilled.  In fact:

i) The fringing field around the capacitor has been ignored but the contribution of this
field to the total capacity may be large.

ii) The magnetic field in the cross section is a function both of r and z. Consequently the
use of the Biot-Savart law may result in a very naive approximation.

iii) It is immediately seen, from the Maxwell equation, that the magnetic field cannot be
zero inside the capacitive region.  Similarly, the electric field cannot be zero inside the
inductive, or H, region.

In Fig. 10 three examples of LC cavities are indicated together with the lines of force of
the electric fields and the value of the resonant frequencies.  (The sizes of the cavities are
r2 = 0.40 m, r1 = 0.10 m, k = 0.3 m.  The gaps are 0.01, 0.02 and 0.06 meters for a), b) and c)
respectively.)



Fig. 10  Three different profiles of LC cavities (the cavities are symmetric and only half the
section is shown). n0 is  the resonant frequency from a computer program while the
value between parenthesis comes from the analytical formula.

9. COMMON RF ACCELERATING STRUCTURES

9.1 Drift-tube (Alvarez) structures

As we have seen, the cavity resonator is a powerful device which can "contain" the RF
fields with very small losses so preventing irradiation of the chamber by the particles being
accelerated.  The ideal situation is shown in Fig. 11 where the "charged particle" sees the field
only when it is inside the gap.  This situation can be developed in many ways which end in
the creation of many gaps inside one cavity driven at resonance.

z 

z 

E z 

Fig. 11  Field in a resonant cavity

If the number of gaps is small then the device is called an "accelerating structure".  If
the number of gaps is large, or very large, then the structure is known as a "linear
accelerator".  When we deal with particles with low b, the gaps are made from "drift-tubes" as
shown in Fig. 12, which is the so-called Alvarez cavity, named after its inventor.



z 

Fig. 12  Sketch of the Alvarez cavity

If the structure is operated in the TM101 mode then all the gaps are excited in phase and
the length L of each drift tube should be:

L ≅ βCT = βλ = λ p

where lp is the distance covered by a particle during one period of the RF field.

Obviously other modes of resonance are possible for this device.  If the fields in the
gaps oscillate in anti phase then the length of each drift tube should become:

L = βC
T

2
= β λ

2
=

λ p

2
 .

For the previous mode the supports of the drift tubes should not carry any RF current
while for the latter mode they become a fundamental part of the structure.  (This is evident
looking at the figures in Appendix 5.)

9.2 Corrugated structures

This topic is vast, complex and cannot be summarized without some knowledge of
wave-guides (see Appendix 6) and periodic-structures theory.  Consequently here we remain
within the limit of a simple and heuristic presentation.

Consider a pill-box cavity modified as shown in Fig. 13 a) and b).  If the ring which
loads each cavity is very small, then it can be treated as a small perturbation of the original
pill-box cavity and we can recognize that the indicated modes are the TM101 and TM011
respectively.  In reality the loading rings are much more than a simple perturbation and the
resonant frequencies change accordingly.  It is evident that for relativistic particles (b ~1) the
second mode of operation is more effective.  Resonant cavities with many cells have been
made in this way including the super conducting cavities.

z 

a) b) 
Fig. 13  Ez component for the modes of oscillation zero and π

In the above example the coupling between adjacent cavities depends upon the
thickness and the inner radius of the rings (the washers) and the coupling is mainly capacitive.



Large fields demand a small inner radius of the rings and the consequent small coupling may
be intolerable in view of the overall efficiency of the structure.  The introduction of "inductive
coupling" improves  the situation as shown in Fig.14.

Fig. 14  Axial and normal section of an accelerating structure made of two half and two full
cavities mostly inductively coupled

9.3 Linacs

The accelerating structure described above is resonant and for technical reasons cannot
be made of very many cavities (the number of possible modes of oscillations increases with
the number of elements).  However, it is perfectly possible to build a structure "similar" to the
one shown in Fig. 14 where the last short-circuiting wall is substituted with a matched load
and the RF power is supplied at the first cell, also with a matched coupling.  (This means that
the reflection at both ends is eliminated.)  In this situation the structure does not resonate
whereas it can propagate an electromagnetic wave from the first to the last cell (with small
losses).  This wave can efficiently accelerate the charged particles if the phase velocity Vp of
the wave is equal to the speed of the particles (for electrons or positrons Vp = c).

A matched structure is less critical than the corresponding resonant one and can be
made with a large number of cavities.  The latter are known as travelling wave linacs and are
known to be very efficient.  Structures working at 3000 MHz and containing ~240 cavities
have been constructed, and 200 MeV per structure are now possible (34 MeV/meter).

10. COUPLING TO THE CAVITIES

10.1 Magnetic coupling

Here the electrical power excites a loop that is coupled to the cavity.  This means that
the magnetic field created by the loop should have a component in common with the
magnetic field of the mode we wish to excite in the cavity.  As shown in Fig. 15, the loops are
placed in the region of the cavity where the magnetic field is stronger.

Fig. 15  Two examples of loop coupling



10.2 Electric coupling

In this case a capacitive coupling is created by placing the exciting electrode where the
electric field is stronger.  This coupling is simple and efficient but creates high field gradients
which must be carefully evaluated to avoid the risk of dark and/or glow discharges.

Fig. 16  Two examples of electric coupling

10.3 Direct coupling

In this case the generator is connected directly to the cavity.  This may be convenient if,
avoiding the transmission line, the plate or the cathode of the final tube can be directly
connected with the "hot" electrode of the cavity.

 
Fig. 17  Two examples where the plate of the final tube is directly connected to the "hot"

electrode of the cavity

An intermediate situation is indicated in Fig. 18, which is self explanatory.  (The
"tuning magnet", operated with an external current, changes the permittivity of the ferrite and
allows a continuous tuning of the cavity.)



Fig. 18  Accelerating cavity for the SSC Low-Energy Booster [1] © 1991 IEEE

11. SHUNT IMPEDANCE

This is an important topic for the whole RF field.  Basically we can say that the shunt
impedance Rsh (always a real quantity) of an RF structure is the parameter which relates the
level of excitation of the structure with the power W which has to be provided.  The
determination of Rsh depends upon the fact that, for each arbitrary selected pattern l inside
the structure, a voltage V can be defined and considered as the measure of the excitation level.

  

V = E x, y, z( )
pattern

∫ dl

and consequently: Rsh = V 2

2W
 .

For a first determination of W it is common practice to evaluate the linear density
(amp/meter) of the current j along the walls of the selected structure.  First the walls are
considered to be lossless and then the losses are introduced taking into account the finite
conductivity s of the walls.

Since for a perfect conductor we have j = n x H, then:

W = Rs

2
H

s
∫

2
ds

where s is the inner surface of the structure and Rs = πνµ / σ  is the familiar surface

resistance of an imperfect conductor (for copper Rs = 2.61 10-7 ν  Ω).



12. RF POWER AMPLIFIERS

1) The power needed to drive the accelerating structures ranges between a few kilowatts
and a few megawatts (c.w.).

2) The wave shape is always sinusoidal.  Amplitude and frequency modulation may be
requested.

3) Due to these facts tuned amplifiers are always used (both for narrow and broad band
operation).

4) The tuned amplifier is used because it has high efficiency and allows the generation of
sinusoidal carriers independently upon the shape of the current inside the tube.

5) In a tuned amplifier both the input and the output circuits should be resonant (tuned).

6) Sometimes the RF output circuit is the accelerating structure (resonant).

The basic elements of most RF power amplifiers are the triode or the tetrode with which
it is possible to cover a frequency range from a few to a few hundred megahertz.  At higher
frequencies another device is preferred:  the klystron.  As will be shown later, this is an
electron device which, by its own nature, is an amplifier.  Both the electron tube and the
klystron are considered as RF generators.

13. RF GENERATORS

13.1 Introduction

RF generators constitute a "universe" similar to our own in that it is expanding and
contains galaxies.  In fact it contains very many groups of elements with something in
common but, on the other hand, far apart from each other technically speaking.

The dawn of the modern RF generators started with the invention of the triode by L. de
Forest in 1906, a discovery of so great practical importance that it made the electronic
industry possible.  The actual industrial frontier is represented by the Gyrotron which is a
powerful generator in the range of the millimetric waves while the very promising free
electron laser is still under laboratory development.

It is important to notice that each new class of generators does not render the previous
ones obsolete.  This is due to the different applications for which the generator is required.
For instance, triodes are still commonly manufactured together with other more modern
devices.

13.2 Triode amplifier

It is well known that in a triode, the current Ia depends upon the plate and the grid
voltages referred to the cathode.  Let Vpk and Vgk be those voltages.  Roughly the anode
current obeys the "adapted" Langmuir-Child law:

Ia = k Vpk + µVgk( )3/2
 (24)

where k is the perveance of the tube and µ its amplification factor.  Unfortunately these
parameters are not constant (because they depend upon the current) and should be considered
as average values.  For this reason the characteristics of each tube provided by the
manufacturers should be carefully studied for each application.



The power handling capacity of a triode can be very large.  For instance assume the
typical values for large triodes µ ∫ 40 and k = 3 10-5 (A/V1.5).  Then with a minimum Vpk =
2000 V while the grid attains its maximum, say Vgk = 300 V, the plate current is ~ 50 A and
the instantaneous input power is 100 kW.  The relation:

Ia = f Vpk ,Vgk( ) (25)

between the anode current and the voltages applied to the tube is normally given by graphics.
The most used for the design of the power RF amplifier is the graphic of the lines of "constant
currents" in the plane of the anode and grid voltages.  An example of the constant current
characteristic for a medium power tube is given in Fig. 19 and it is evident that the "useful"
anode current must be contained between the cut-off and the diode (dotted) lines.
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Fig. 19  Constant current characteristic of a medium-power tube

Usually the voltages Vpk and Vgk are resolved into the components:

Vpk = Ep + Vp  ;    Vgk = Eg + Vg

where Ep and Eg are the polarization (bias) voltages and Vp, Vg are the variations around Ep
and Eg (the quiescent point) corresponding to the signals.  Then Eq. (25) is expanded, with the
Taylor series, around the quiescent point and the anode current becomes:

Ia = I0 + Ip

where I0 and Ip are the static and the dynamic components of the anode current.  (The reader
should be aware of the fact that I0 depends upon both the quiescent current and the other
terms of the series).

If we assume that:

Ep >> |Vp | ;   |Eg | >> |Vg
 |   (small signals theory)



then the higher-order terms of the series can be neglected and we write:

Ip =
∂Ip

∂Vp
Vp +

∂Ip

∂Vg
Vg = 1

ρ
Vp + GmVg (26)

where r (the plate resistance) and Gm (the transconductance) are constants in a small range
around the quiescent point.  The product Gm r = µ is the familiar amplification factor.  From
Eq. (26) it is immediately evident that in a circuit the triode can be replaced by its equivalent
circuits as shown in Fig. 20a) and 20b), where the inter-electrode static capacities are
considered.
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The basic scheme of a tuned amplifier is given in Fig. 21, where the "normal" operating
conditions are indicated.

Z =
Req

1 + jQ
F

F0
− F0

F







For the tuned case we have:

Vpk t( ) = Ep + Vp sin ωt

Vgk t( ) = Eg + Vg sin ωt







In this case the load line is straight and it is defined by the four voltages Ep, Eg, Vp, Vg.   The
load line crosses the constant current characteristics and the anode current is determined.  The
fundamental component of this current should be consistent with the anode voltage Vp and
with the value of Req.  The diagrams illustrate a class C2 operation.  The output circuit always
has a quality factor so high that the higher-order harmonics of the anode current has a
negligible effect on the anode signal which remains sinusoidal.



Fig. 21  Characteristics of a tuned amplifier

13.3 Internal feedback

This is due to the unavoidable internal capacities.  To alleviate this problem the tetrode
was invented where the grid and the plate circuits are separated by the screen grid which,
normally, is held at constant voltage.  In any case some form of neutralization is required and
one important example of a neutralized circuit (for frequencies below ~ 50 MHz) is given in
Fig. 22, where as indicated, the grid and the plate circuits are on the two diagonals of a
bridge.  Balancing the bridge the two circuits ignore each other and neutralization is achieved.



i 
2 

3 

1 

i 

RF OUT  

4 

1 4 

3 2 

Grid circuit 

P 

G Anode 
circuit 

Fig. 22  Neutralized circuit

The most common solution (for triodes and tetrodes) at higher frequencies is the
grounded-grid configuration shown in Fig. 23 with its equivalent circuit.
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Fig. 23 Grounded-grid configuration
Note that:

1) The control grid (and for a tetrode also the screen grid) are grounded from the RF point
of view. So the residual feedback capacity (between anode and cathode) is very small.

2) The RF drive should come from a very low output impedance source (≤ 50 Ω) because
we are driving the cathode.

3) In the normal situation (plate and cathode circuits tuned to the same frequency) the
input and output voltages are in phase.

The mounting scheme of the grounded-grid amplifier, which is normally used in the
range from ~40 to 250 MHz, is sketched in Fig. 24.  It is easy to see that the tube is connected
to two foreshortened coaxial resonators which, due to the input and output capacity of the
tube are both shorter than l/4.  The two resonators are tuned by varying the position of the two
short circuits at the bottom while the useful power is picked off with a capacitive coupling.
The decoupling between the d.c. biases and the a.c. components is ensured by lumped or
distributed capacitors.

Some important comments are in order:

i) The cathode is heated from the central pin of the tube.
ii) The drive is applied between grid and cathode, normally with a loop coupling.
iii) Operation is "normally" in class C2 which means that the quiescent current in the tube is

set to zero, that the grid to cathode voltage becomes positive for a short period of the RF
cycle and that the plate current is different from zero for less than half a cycle of the RF
voltage.



Fig. 24  Grounded-grid amplifier

iv) The tuned high-Q plate circuit practically filters out all the harmonic components of the
plate current.

v) Sometimes the tube can be mounted directly on the cavity which acts as the resonant
anode circuit.

vi) Tetrodes are used as well as triodes.

13.4 Klystron amplifier

The klystron is a narrow-band, tuned amplifier capable of  delivering a very large
amount of power with wavelength from about one meter to a few centimeters (while the
triode is a wide-band generator which is used to make narrow or wide-band tuned amplifiers).
It is inherently a narrow-band amplifier because it relies on the interaction between the
electrons emitted by the cathode and two or more cavity resonators.  A simplified scheme of a
klystron amplifier is given in Fig. 25.

The anode block, always at ground potential, consists of two resonant cavities separated
by a drift tube.  This block ends with a collector which, normally, is water cooled.  Under the
anode block there is a ceramic tube which contains the optics capable of creating a powerful
electron beam and the cathode.  The cathode is supplied with a negative voltage which can be
very high (even more than 100 kV).  The working principle is as follows:
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Fig. 25  Schematic of a klystron amplifier

The RF signal to be amplified is sent to the buncher cavity and some voltage is
developed at the gap.  The continuous electron beam which comes from the cathode enters the
gap of the first cavity and the speed of the particles is slightly varied according to the phase of
the voltage at the entrance.  In this way the uniform beam comes out slightly modulated in
velocity.  It should be noticed that this operation does not involve energy exchange between
the cavity and the beam as long as the entering beam is uniform and the impressed changes in
the speed are small.  The emergent beam travels along the drift tubes and, due to the
differences in speed of the particles, undergoes the process of bunching.  (This is a very
complicated process especially if the space-charge effects are taken into account.)

At some distance from the buncher a position exists, the first focus, where the electrons
arrive in bunches, theoretically with infinite longitudinal density.  The gap of the second
cavity (the catcher) which becomes excited by the train of bunches (one per period) is placed
at this point.  The output coupling loop absorbs power from the cavity so its gap voltage
remains in the prescribed limits.  Having lost the greatest part of their kinetic energy, the
bunches inside the catcher are finally absorbed by the collector.  In other words:  part of the
kinetic energy of the electrons coming from the cathode is converted into RF power.

It should be remembered that the above description is an over simplification of the
whole phenomenon of the energy conversion in a klystron.

For instance, two or three "idle" cavities, which improve the bunching action, are
normally inserted between the buncher and the catcher.  Moreover a focusing solenoid is
placed along the bunching region.

The pulsed power from an industrial klystron can be as large as 50 MW and for those
levels of power a waveguide output is preferred.  In continuous-wave operation a power of
1 MW has been reached at 350 MHz.
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APPENDIX 1

QUALITY FACTOR OF A RESONATOR

We consider a parallel "L-C" circuit, where the inductor L is lossless while the capacitor,
with capacity C, is made of two parallel plates (with equivalent surface s and separated by
distance d), which contains a dielectric with electrical permittivity ε and conductivity σ.  (That

is C = ε s

d
 .)

For this circuit ω = 1 / LC  is, obviously, the resonant angular frequency while if V is
the voltage on the circuit then:

Us = V 2

2
ε s

d
 ;    Ud = V 2

2
σs

d

2π
ω

are, respectively, the stored energy and the energy wasted per cycle 
2π
ω

= T



.

Consequently a very simple substitution shows that:

σ
ε

= ω

2π Us

Ud

= ω
Q

(A1.1)

where "Q" is the familiar quality factor which characterizes the "quality" of a resonance.



APPENDIX 2

RESONANT FREQUENCY

Resonant frequency νr = ω
2π

 and the frequency of free (and damped) oscillations

ν f = Ω
2π

 of a parallel "RLC" circuit are conceptually very different, even if their values may

be extremely close.

Consider the circuit and its equations given below.

i R 
R L C 

+ 

C
dV

dt
+ V

R
+ I = 0

L
dI

dt
− V = 0

(A2.1)

The voltage on the capacitor is V and I is the current in the inductor.  Solving Eq. (A2.1)
and using the normal parameters ω = 1 / LC;   Q = ωRC,  we obtain the differential equation:

˙̇V + ω
Q

V̇ + ω 2V = 0 (A2.2)

for which the general integral is:

V = A1e
α1t + A2eα2t (A2.3)

where:

α2

α1= − ω
2Q

± jω 1 − 1

2Q( )2  . (A2.4)

Assuming that the initial conditions are:

V = V0  ;   I = 0

then (A2.2) becomes:

V = V0e
− ω

2Q
t

cos Ωt − 1

4Q2 −1
 sin Ωt












(A2.5)

where:



Ω = ω 1 − 1

2Q( )2  .

It is now evident that when Q becomes very large, then Ω reduces to ω.  For instance in
a cavity with a loaded Q as low as 100, we obtain:

ω
Q

= 1 + 1.25  10−5  .



APPENDIX 3

CYLINDRICAL CAVITY

Because Eφ and 
∂
∂φ

 are supposed to be zero then:

∇2E = az∇
2Ez + ar ∇2Er − Er

r2




 (A3.1)

where, for any scalar ξ, and under the above conditions we have:

∇2ξ = ∂ 2ξ
∂r2 + 1

r

∂ξ
∂r

+ ∂ 2ξ
∂z2  . (A3.2)

Substituting into Eq. (10) we obtain:

∂ 2Ez

∂r2 + 1
r

∂Ez

∂r
+ ∂ 2Ez

∂z2 + Λ2Ez = 0

∂ 2Er

∂r2 + 1
r

∂Er

∂r
+ ∂ 2Er

∂z2 − Er

r2 + Λ2Er = 0  .










(A3.3)

Using the technique of the separation of the variables we set:

Ez = F(r) · ϕ (z) ; Er = Ψ(r) · f(z)

where F, ϕ, Ψ, f, are  functions only of the indicated variables.  Substituting into (A3.3) we
obtain:

F" + 1
r

F' + Λ2 − k2( )F = 0

ϕ" +k2ϕ = 0







(A3.4)

(A3.5)

Ψ" + 1
r

Ψ' + Λ2 − k2( ) − 1

r2





Ψ = 0

f " +k2 f = 0







(A3.6)

(A3.7)
Equations (A3.4) and (A3.6) are the Bessel equation of zero and first order respectively

while (A3.5) and (A3.7) are the familiar equation of the undamped harmonic motion.

Solving and putting for brevity α  = Λ2 − k2  we obtain:

Ez = A1J0 αr( ) + A2N0 αr( )[ ] A3 cos kz + A4 sin kz( )
Er = B1J1 αz( ) + B2N1 αr( )[ ] B3 cos kz + B4 sin kz( )









where we have indicated with J and N respectively the Bessel and the Newman function.
Because for r = 0 the Newman functions become infinite then it follows that A2 and B2 must
be equal to zero.  Moreover n x E = 0 means that Ez should be zero for r = r0 and that Er
should be zero for z = 0 and z = h.  This means that we should have:

  
αr0 = Λ2 − k2 r0 = Pol  ;    B3 = 0  ;    k = mπ

h
(A3.8)

where P0l is the lth zero of the Bessel function of zero order.  From (A3.8) the eigenvalue of
Λ is determined and we have:

  
Λolm

2 = Pol

r0







2

+ mπ
h







2

(A3.9)

The introduction of the last condition:  ∇ . E = 0 imposes two more constrains:  A4 ≡ 0
(otherwise the sum of the derivatives can never be zero) and the condition on the coefficients

  
B1

Pol

r0
− A1

mπ
h

= 0  .   The problem is then solved.



APPENDIX 4

LOSSES  IN TRANSMISSION LINES

I 

 v Cdx 

Ldx 

I 

Inductance L and the capacitance, per unit of length, are defined on the basis of the
energies stored by the fields.  We write the Kirchoff laws for the infinitesimal quadrupole
shown in the figure:

V − V + δV

δx
dx



 = Ldx

dI

dt
 ;    I − I + δI

δx
dx



 = Cdx

dV

dt
 .

Assuming the sinusoidal steady state and simplifying:

− dV

dx
= jωLI  ;    − dI

dx
= jωC  V  .

Integrating and putting γ = LC;   Z0 = L

C
 for clarity, we obtain the fundamental relations:

V x( ) = A1e
− jγx + A2e+ jγx  ;    Z0I x( ) = A1e

− jγx − A2e+ jγx

where A1 and A2 are integration constants which depend upon the boundary conditions.

Assume that the lines are terminated at the origin, x = 0, on the load ZL. Then we have:
A1 + A2 = VL;  Z0 IL = A1 -A2 and it follows that:

A1 = ZL + Z0IL( ) / 2  ;    A2 = ZL − Z0IL( ) / 2  .

Substituting:

V x( ) = VL cos γx − jZ0IL sin γx  ;    I x( ) = − j
VL

Z0
 sin γx + IL cos γx

It is common procedure to call l = -x, the distance from the origin, and so we obtain the
canonical form.

  

V x( ) = VL cos γl + jZ0IL sin γl

I x( ) = j
VL

Z0
sin γl + IL cos γl









APPENDIX 5

RESONANCE MODES OF THE ALVAREZ CAVITY

(1) (2) (3) 

a. In the three cavities the gaps are supposed to have the E fields equal and in phase.  This
means that the two internal walls do not carry any current.

(1) (2) (3) 

b. In the three cavities the gaps are supposed to have the E fields with equal amplitude but
opposed phases (the π mode).  This means that the internal walls must carry current.



APPENDIX 6

WAVEGUIDES

In addition to transmission lines, another way of transmitting electromagnetic power is
by means of waveguides.  Uniform waveguides are metallic tubes with constant cross-section
and straight axis and, in practice, they always have rectangular or circular cross-sections.
Moreover we limit ourselves here to the case of the lossless waveguides.

Let us indicate with T the coordinates of the cross-section (x,y and r,φ for the two cases).
If ψ(T) indicates any real function of the transverse coordinates then:

E

H




≡ ψ T( )e j ωt−βz( ) (A6.1)

indicates a sinusoidal field which propagates along the z axis with phase velocity vp equal to
ω/β where β is a real function of ω that for the moment is unknown (here, in order to be
consistent with the current engineering literature, the quantity β is the propagation constant
and should not be confused with the normalized speed of the particles).

If the above fields are substituted into the Maxwell equations we obtain a linear system
where the transverse fields depend upon the derivatives of the longitudinal fields.  Solving the
system we obtain:

Rectangular coordinates Cylindrical coordinates

Eφ = j

kc
2

−β
r

∂EZ

∂φ
+ ωµ ∂HZ

∂r









 Er = − j

kc
2 β ∂EZ

∂r
+ ωµ

r

∂HZ

∂φ










Ey = j

kc
2 −β ∂EZ

∂y
+ ωµ ∂HZ

∂x







 Eφ = j

kc
2

−β
r

∂EZ

∂φ
+ ωµ ∂HZ

∂r











Hx = j

kc
2 ωε ∂EZ

∂y
− β ∂HZ

∂x







 Hr = j

kc
2

ωε
r

∂EZ

∂f
− β ∂HZ

∂r









Hy = − j

kc
2 ωε ∂EZ

∂x
+ β ∂HZ

∂y







 Hφ = − j

kc
2 ωε ∂EZ

∂r
+ β

r

∂HZ

∂φ








 (A6.2)

where

kc
2 = ω 2εµ − β 2  .

From the above equations, we obtain:

ET = − jβ
kc

2 ∇tEz  ;    HT = − jβ
kc

2 ∇t Hz (A6.3)

where with ∇ t we indicate the gradient operator in the transverse plane.

It is now evident that our problem is solved when we know the longitudinal components
Ez and Hz and the value of kc.  Before proceeding with this determination we recognize that:

i) The solutions Ez and Hz are obviously independent.  From the systems (A6.2) we see
that the total field in the guide may depend upon both the Ez and Hz functions.



ii) The fields for which Hz ≡ 0 are called transverse magnetic (TM) modes (accelerating
modes), while the fields for which Ez ≡ 0 are the transverse electric (TE), deflecting,
modes.

The scalar potentials Ez, Hz together with the corresponding values of kc, are obtained as
follows.  We indicate with V a vector which can represent either E or H and from the Maxwell
equations we obtain the familiar vector wave equation:

  
∇2V = +εµ ∂ lV

∂t2  .

For the z component we obtain (in both the coordinate systems):

∇T
2 Vz + ∂ 2Vz

∂z2 = +εµ ∂ 2Vz

∂t2

where ∇T
2

 indicates the scalar bidimensional (transverse) Laplacian operator.  Introducing the
general hypothesis (A6.1) we obtain the fundamental equation:

∇T
2 Vz + ω 2εµ − β 2( )Vz = 0

or

∇T
2 Ez

Hz









+ kc
2 Ez

Hz









= 0  . (A6.4)

We know that given the appropriate boundary conditions this equation can be solved for
an infinite number of discrete real values of kc (the eigenvalues) to which correspond an
infinite number of eigenfunctions.

With reference to the cross-sections and reference systems for rectangular and circular
waveguides, shown below we obtain:

Cartesian Cylindrical

Ez = E0 sin 
mπ
a

x sin 
nπ
b

y Ez = E0Jν kcr( ) cos νφ
sin νφ





Hz = H0 cos 
mπ
a

x cos 
nπ
b

y Hz = E0Jν kcr( ) cos νφ
sin νφ





kc
2 = mπ

a






2

+ nπ
b







2

      kc =

Pνl

a
   for   Ez

P'νl

a
   for   Hz










(A6.6)

where m,n and ν,l are couples of arbitrary integers, Jν is the Bessel function of order ν, Pνl and
P'νl are respectively the lth root of the Bessel function of order ν  and the lth root of its
derivative.
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x 
z 
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b 

r = a  

φ 

z 

r 

From Eqs. (A6.5) and (A6.6) we know the possible form for the longitudinal fields and
the corresponding values of the eigenvalues kc.  Recalling that kc is related to the phase
constant β we obtain:

β = ± 2π
λg

= ± ω 2εµ − kc
2  . (A6.7)

It is now clear that because kc is always real then the propagation in a waveguide is

always possible (i.d. β is real) above certain "cut-off" frequencies which depend upon the
chosen mode of propagation (choice between TE or TM modes and choice of the integers m,n
or ν,l according to the cross-section of the guide).  Moreover since ω2εµ must be larger than

kc
2  then λg must be larger than λ.  Consequently, phase velocity vp must be larger than

1 / εµ .



APPENDIX 7

THE LOADED QUALITY FACTOR QL

The normal definition:

Q = 2π Energy spread
Energy lost per cycle

is used under the assumption that the cavity is not coupled to any circuit.

If the cavity is coupled to an external circuit (normally the generator), then the output-
impedance of this circuit (normally real) affects all the coupled modes and the quality factor of
each mode changes.  These new quality factors are the loaded Q denoted as QL.

Consider the two examples a) and b) below.
a)

R i  

R 

I 

C L 

ω0
2 = 1 / LC

Q = ω0RC

Z = R

1 + jQ
F

F0
− F0

F







Since the output impedance of the ideal current generator is supposed to be infinite, then
the quality factor that we can measure from the band-width of the modulus of the impedance is
the normal (or unperturbed) one.

b)

i R

R 

I 

C L 

Rρ 



Rp = Rρ
R + ρ

< R

ω0
2 = 1 / LC  ;    Qp = ω0RpC

Z =
Rp

1 + jQp
F

F0
− F0

F







In this case we assumed that the output impedance of the generator is ρ and because   Qp
< Q, then the band-width of the circuit is increased.  Using the normal way of naming the
parameters with special names we replace Qp with QL.

Coming back to the cavities: the stronger is the coupling, the lower is the loaded Q.  In
other words:  the stronger the coupling the larger the band-width.  For instance when the
coupling to the generator is adjusted for maximum energy transfer, then the loaded QL is one
half of the unperturbed one.  Sometimes (not always!) the power given to the beam is
considered but this confused situation should be avoided if at all possible.


