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Abstract
The basic formulae for the damping of the energy and betatron
oscillations are derived.  The results are applied to a number of
examples of different lattice designs in which radiation damping effects
are important.  Methods of modifying and measuring the damping rates
are also discussed.

1.  INTRODUCTION

The loss of energy due to the emission of synchrotron radiation, and its replacement by
the r.f. cavities, can give rise to a damping of the oscillations in energy and transverse
displacement (synchrotron and betatron oscillations), a process known as "radiation damping".
The only feature of the synchrotron radiation emission that is involved in this process is the rate
of emission of energy, given in the previous Chapter on Synchrotron Radiation:

P = 2
3

e2c

4πε0

β 4γ 4

ρ2 (1)

From this can be obtained the total energy loss per turn, Uo, which in the case of an
isomagnetic lattice (uniform bending radius in the bending magnets) is given by:

U0 = e2

3ε0

β 3γ 4

ρ
(2)

Because of the dependence on the fourth power of the rest mass the synchrotron radiation
emission, and hence radiation damping effects, are only relevant for electrons at the energies of
present-day accelerators.  However, in the next generation of high energy proton accelerators
the effects of radiation damping may start to become significant.

The process of radiation damping is important in many areas of electron accelerator
operation:

i) it can give rise to a stable (Gaussian) distribution of transverse and longitudinal
beam dimensions due to an equilibrium between the competing forces of radiation
damping and "quantum excitation" – the growth of oscillation amplitudes due to the
    discrete    emission of radiation quanta;

ii) it permits an efficient multi-cycle injection scheme to be employed in storage rings,
by allowing the beam dimensions to damp in size between injection pulses;

iii) it allows large beam dimensions, produced in a linac for example, to be reduced in
specially designed "damping rings";

iv) it helps to counteract beam growth due to various processes such as intra-beam
scattering and collective instabilities.

In this chapter the basic formulae for the damping of the energy and betatron oscillations
are derived, following closely the treatment in earlier texts [1–3].  The main results are
illustrated by a number of examples of different lattice designs in which radiation damping
effects are important.  Methods of modifying the damping rates in a given ring are then
discussed and finally techniques for the measurement of the damping rates are considered.  The
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following Chapter deals with the related quantum excitation process and the derivation of the
equilibrium beam dimensions.

2 . ENERGY OSCILLATIONS

Figure 1 shows the accelerating voltage, and hence the energy gain, in an r.f. cavity as a
function of the time of arrival of an electron.  The particle which arrives on every turn at the
correct time (and hence phase with respect to the r.f. voltage) in order to make up the loss due
to synchrotron radiation (U0) is called the synchronous particle, and its energy is the nominal
energy of the design orbit, E0  An electron with a higher energy will in general travel on a
longer path and therefore arrive later at the cavity.  It can be seen from Fig. 1 that such a particle
will receive less energy at the cavity, which therefore compensates for the energy deviation.
Similarly, a lower energy particle travels on a shorter path, arrives earlier at the cavity and
therefore has a higher energy gain.  This describes the usual stable oscillations in energy and
time that occur about the synchronous point, which are analysed in more detail in Ref. [4].  If in
addition the energy loss due to synchrotron radiation increases with the energy of the particle,
then it can be seen that this will provide a damping of the oscillations.
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Fig. 1  Variation of accelerating voltage in an r.f. cavity as a function of electron arrival time

We now consider this damping process in more detail.  The standard terminology will be
used which refers to the time displacement of an electron with respect to the synchronous
particle, or equivalently to the centre of the bunch, as shown in Fig. 2.  In this description an
electron which is ahead of the synchronous electron by a distance ∆s has a positive time
displacement τ = ∆s/c.  An electron with a positive energy deviation ε = E-E0 has a larger orbit
length (L) and hence orbit period (T) with respect to the synchronous particle (denoted by the
subscript o) given by:
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Fig. 2  Location of the synchronous particle and an electron with a positive time
displacement in an electron bunch
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where α is the momentum compaction factor, neglecting the relativistic factor which is
negligible for electrons [4].  We assume that changes in energy and time displacement occur
slowly with respect to the orbit period, which permits use of a differential notation:

dτ
dt   = - α 

ε
E0

  (2)

Considering the energy equation, in one turn an electron loses an energy U(ε) and gains
from the r.f. cavity eV(τ);  the net change is therefore:

∆E  =  eV(τ) - U(ε)

and so on average:
dε
dt   =  

eV(τ) - U(ε)
T0

  

Taking the derivative of the above then gives:
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Inserting Eq. (2) gives:
d2ε
dt2
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dε
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α
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dV(τ)
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  ε = 0

(3)
For small oscillations it can be assumed that the accelerating voltage varies linearly with

respect to the arrival time around that of synchronous particle:

eV(τ)  =  U0 + eV
.

 0 τ

where V
.

 0 is the slope of the accelerating voltage dV(τ)/dτ at τ = 0.  Using this expression Eq.
(3) can be written as follows:

d2ε
dt2

   + 2 αε  
dε
dt   +  Ω2ε  =  0

where:

αε  =  
1

2  T0
  

dU

dε
 (4)

Ω2  =  
e
T0

  V
.

 0  
α
E0

  

This can be recognised as the usual equation of harmonic motion for the energy
oscillations [4] with an additional damping term.  Assuming that the damping rate αε is small
with respect to the oscillation frequency Ω, the solution can be written as follows:

ε (t)  =  A e-αεt cos (Ωt - φ)



τ (t)  =  
-α

E0Ω   A e-αεt sin (Ωt - φ)

where A and φ are constants determined by the initial conditions.  It can be seen that as
anticipated the damping rate depends on the change in energy loss with energy deviation
(dU(ε)/dε).
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Fig. 3  Illustration of energy oscillations with and without radiation damping

Figure 3 illustrates the above solutions.  In the absence of damping an electron executes a
harmonic oscillation in energy and time with a fixed amplitude that is represented by an ellipse
of a given size.  With positive damping the particle spirals slowly towards the fixed point,
namely the synchronous particle.  
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Fig.  4  Elements of the reference orbit and a displaced trajectory

We now consider how to calculate the damping rate (αε) from the rate of change of
energy loss with energy (dU/dε).  When the energy deviates from the nominal energy E0the
energy loss changes because of several factors.  Firstly, the energy loss is itself a function of
energy and secondly because the orbit deviates from the reference orbit there may be a change in
magnetic field and a change in the path length.  Figure 4 shows a curved element of the design
orbit in the horizontal plane for a particle of the nominal energy E0, where the radius of
curvature is ρ.  Also shown is the trajectory of another particle with transverse displacement, x .
In general the path length for the elements are related as follows:

dl
ds   =  1 + 

x(s)

ρ
  (5)

For an off-energy particle the closed orbit is defined by:



x(s)  =  D(s)  
ε
E0

  (6)

where D(s) is the dispersion function.  In this case therefore:

dl
ds   =  1 + 

D

ρ
  

ε
E0

  (7)

The energy radiated per turn is defined as the integral of the radiated power (P) around the
off-energy orbit:

U ε( ) = 1
c

Pdl∫
Using Eq. (7) for the path length this can be expressed as an integral over s:

U ε( ) = 1
c

P 1 + D

ρ
ε
E0





∫ ds

We now expand P as a function of energy and transverse displacement, given the fact that
P is proportional to E2 and B2(x), Eq. (1):

P(s)  =  P0 + 
2P0
E0

   ε  +  
2P0
B0

  
dB
dx   x (8)

where P0(s) is the power radiated on the design orbit, corresponding to the field B0.  Inserting
in the expression for U(ε) together with Eq. (6) and keeping only linear terms in ε we obtain:

U ε( ) = 1
c

P0 + 2P0

E0
ε + dB

dx
D

ε
E0

+ P0D

ρ
ε
E0





∫ ds

For the damping rate we require the derivative:

dU ε( )
dε

= 1
c

2P0

E0
− 2P0kρD

E0
+ P0D

ρE0





∫ ds

where the usual focusing parameter k for gradient fields has been introduced               
(kρ = [-dB/dx]/B0).  Since the integral of P0/c around the design orbit is U0, we obtain:

dU ε( )
dε

= 2U0

E0
+ 1

cE0
P0∫ D 1 / ρ − 2kρ( )ds

and hence the equation for the damping rate can be expressed in the following standard form:

αε  =  
1

2T0
  

dU

dε
   =  

1
2T0

  
U0
E0

  (2+D)  

where:

  
D =

1
cU0

P0∫ D 1 / ρ − 2kρ( )ds
(9)



Using the fact that P0 depends on 1/ρ2, the important parameter D can be expressed in the
following standard forms, involving only integrals over various lattice functions:

  

D  =
D / ρ 1 / ρ2 − 2k( )ds∫

1 / ρ2ds∫
=

D 1 − 2n( ) / ρ3ds∫
1 / ρ2ds∫

(10)

It is clear that D is a dimensionless number, with contributions only from the ring bending
magnets (1/ρ ≠ 0).  One term involves both bending and focusing fields (k/ρ ≠ 0) which is
present in "combined function" or "synchrotron magnets".  For these magnets it is convenient
to define a field index, n:

n  =  - 
dB
dx  

ρ
B0

   =  kρ2

which appears in the second expression above for D.

From the expression for the damping rate, Eq. (4), we recall that dU/dε must be positive
for the oscillations to be damped and hence D > -2.  In the most common case of a "separated
function" lattice (as will be seen later) D is a small positive number, in which case dU/dε is
determined only by the E2 dependence of P.  In this case we have the result that:

τε  =  
1

αε
   ≈  

T0 E0
U0

  (11)

i.e. the damping time is approximately the time it would take for an electron to radiate away all
its energy (at constant rate), a useful and easily remembered result.

We conclude this section with a table giving various parameters connected with the energy
oscillations for two widely different electron machines at CERN, the EPA [5] and LEP [6].  It
can be seen that in both cases the damping time is much longer than the synchrotron oscillation
and orbit periods, justifying the approximations used in the derivation above.  Finally, we note
that for protons even at the high energy expected at the SSC (20 TeV) the damping time is still
extremely long, about 12 hours.  

Table 1

Energy oscillation parameters for two electron storage rings

EPA [5] LEP [6]

Energy, E0(GeV) 0.6 55
Energy loss per turn, U0 (keV) 8 260 103

Orbit period, T0(µs) 0.42 89
Synchrotron oscillation period (ms) 0.27 1
Synchrotron oscillation damping time, τε (ms) 64 18

3 . BETATRON OSCILLATIONS

We consider now the damping of the betatron oscillations, starting with the more simple
case of the vertical plane.

3 . 1 Vertical plane



It is convenient to use the following approximate form for the vertical betatron
oscillations:

z  =  A cos (φ(s) + φ0) z'  =  
-A

β
   sin(φ(s) + φ0)

where A is the normalised amplitude of the oscillation:

A2  =  z2 + (βz')2 (12)

However, it is easy to show that the same result is obtained if the complete form for the
amplitude is used:

A2  =  γz2 + 2αzz' + βz'2
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Fig.  5  Effect of energy loss and energy gain processes on the electron momentum

We wish to consider the effect on the oscillation amplitude A of energy loss due to
synchrotron radiation and energy gain in the r.f. cavities.  These processes are illustrated in
Fig. 5, occurring at an arbitrary point with respect to the phase of the betatron oscillation.  It
can be seen that since photons are emitted in the direction of the motion of the electron, there is
a change in the value of the momentum, but no change in angle z'.  On the other hand, in the
r.f. cavity there is an increase in the longitudinal component of the momentum (p ) which
therefore reduces the angle.  Since z' = p⊥ /p , after the cavity we have

z' + δz'  =  
p⊥

p  + δp
   ≈  z'(1 - 

δp
p  )

and hence:

δz'  =  -z' 
δε
E0

  

Using Eq. (12) the change in oscillation amplitude is given by:

A δA  =  β2 z' δz'  =  -β2 z'2  
δε
E0

  

Averaging over all possible phases of the oscillation at the time the electron passes
through the cavity, <z'2> = A2/2β, we have:



<δA>
A    =  - 

1
2  

δε
E0

   

Since the gain in energy over one turn is small compared to the electron energy we can
average over one turn to obtain:

∆A
A    =  

-U0
2 E0

  (13)

The motion is therefore exponentially damped (exp - αzt) with a time constant αz given as
follows:

αz  =  - 
1
A  

dA
dt    =  

U0
2  E0 T0

  

which is one half of the approximate value for the energy oscillations derived in the previous
section, Eq. (11).

3 . 2 Horizontal plane
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Fig. 6  Effect of energy loss on the off-energy orbit and betatron motion
in the horizontal plane

The same process as above occurs in the horizontal plane also, but there is an additional
effect due to the emission of synchrotron radiation at points where there is finite dispersion
(which is usually zero in the vertical plane).  As before, there is no change in x or x' due to the
radiation emission (see Fig. 6), however the change in energy implies a change in the off-
energy orbit (xε = D(s) ε/E0) and hence an equal and opposite change in the betatron amplitude
xβ, since x = xε + xβ.  We have therefore:

δxβ  =  - δxε  =  - D 
δε
E0

  

Similarly, the change in angle of the betatron oscillation is given by:

δxβ'  =  - δxε'  =  - D' 
δε
E0

  

The change in the oscillation amplitude A where:



A2  =  xβ
2 +  β  xβ '  2

is therefore given as follows:

A δA  =  xβ δxβ + β2 x'β  δx'β = - (D xβ + β2 D' x'β)  
δε
E0

  (14)

If the rate of energy loss were constant then averaging over the betatron phase would yield
no net increase in amplitude, however, this is not the case and it is necessary to include the
variation of energy loss with xβ.  Since the energy loss in a small element is given by δε = -P/c
δl, where (Eq. (5)):

δl

δs
   =  1 + 

xβ

ρ
 

and expressing P as a function of xβ, as in Eq. (8):

P  =  P0 + 
2P0
B0

  
dB
dx   xβ  =  P0 (1 - 2kρxβ)

gives the result:

δε  =  - 
P0
c   







1  - 2kρxβ + 

xβ

ρ
   δs

Combining with Eq. (14) and averaging over the betatron phase, given that <xβ> = 0,
<x'β> = 0, <xβx'β> = 0, and <xβ2> = A2/2 gives:

<δA>
A    =  

P0
2cE0

   D ( )1/ρ - 2kρ    δs

Over one turn therefore:

  

∆A

A
= 1

2cE0
P0∫ D 1 / ρ − 2kρ( )ds = U0

E0

D
2

using the earlier definition of the quantity D, Eq. (9).

In general, since D is usually positive, this would give rise to an    increase    in oscillation
amplitude, however when the effect of the damping that occurs due to the energy gain in the r.f.
cavities is added, as in the vertical plane Eq. (13), we have:

∆A
A    =  

-U0
2E0

  (1-D)  

and hence the damping rate is as follows:

αx  =  - 
1
A  

dA
dt    =  

U0
2 E0 T0

  (1-D) (15)

3 . 3 Origin of the damping of the betatron motion

It is interesting to note that the main damping effect of the betatron motion described in
section 3.1 appears to occur due to the energy gain in the r.f. cavities, not due to the energy
loss, and as a result it has been remarked that the term "radiation damping" is somewhat



inappropriate.  However, it can be seen from Fig. 5 that in fact the opposite is true if the
canonically conjugate variables of position and      momentum      are used rather than the more usual
position and    angle    , since the transverse momentum, p⊥ , is reduced when a photon is emitted
but is unchanged in the r.f. cavity [7].  The choice of variables therefore determines the
apparent location of the damping effect, however the final result is the same.
4 . DAMPING PARTITION AND THE ROBINSON THEOREM

The results obtained in the previous two sections may be summarized as follows:

αi  =  
Ji U0

2  E0 T0
 (16)

where i represents x, z or ε and Ji are the Damping Partition Numbers:

Jx  =  1-D Jz  =  1 Jε  =  2+D

so called because the sum of the damping rates for the three planes is a constant:

Jx + Jz + Jε  =  4 (17)

a result known as the Robinson Theorem [8].  For damping in all planes simultaneously it is
required that all Ji > 0 and hence that -2 < D < 1.

We have obtained the above result for the total damping explicitly by analysing each
oscillation mode independently, however it may be obtained in a more general and direct way
using the following method [8].  The general transverse and longitudinal motion of a particle
with respect to that of the synchronous particle on the design orbit may be described using 6x6
transfer matrices, relating particle coordinates at some initial position s1 to those at some later
position s2 as follows:

x
x '
z
z '

ε/Eo

τ s2

= M (s2, s1)

x
x '
z
z '

ε/Eo

τ s1

Since the elements of M are real then the eigenvalues of the one-turn matrix M(s + L,s)
can be written as three complex conjugate pairs exp (-α'j ± iβ'j) with j = 1,2,3.  Using the fact
that the determinant of a matrix is the product of its eigenvalues [9] we have:

det M s + L,s( ) = exp − 2α j
'

j=1

3

∑








 ≅ 1 − 2α j

'

j=1

3

∑
(18)

since α 'j <<1.  The amplitudes of the three oscillation modes vary as exp (-αjt) where            
αj = α 'j/T0 i.e. αj are the damping rates.

Considering a general infinitesimal element of orbit between s and s+ds, the matrix can be
written:

M (s+ds,s)  =  I + δM

where I is the identity matrix.  Since all elements of δM are small, it can be shown that:



det M (s+ds,s) ≈ 1 + Tr (δM)

where Tr represents the trace of the matrix.  In the absence of energy loss and gain the
determinant of M is equal to unity.  The only diagonal terms in δM therefore are those
calculated earlier representing changes in x' and z' due to gain of energy δε1:

δx'  =  - 
δε1
E0

   x'   ,   δz'  =  - 
δε1
E0

  z'

as well as that for ε/E0 due to energy loss:

δε  =  - 2 
δε2
E0

   ε

since the rate of emission is proportional to E2.  We have therefore:

det M (s+ds,s)  =  1 - 2 
δε1
E0

   - 2 
δε2
E0

 

For the one-turn matrix, since the determinant of a product of matrices is the product of
the determinants and since the total energy gain and the total energy loss are equal to U0, we
have that:

det M(s+L,s)  =  1 - 
4 U0
E0

 

irrespective of the location of the energy loss and gain.  Combining with Eq. (18) gives the final
result:

α1
j=1

3

∑ = 2
E0

U0

T0

which is identical to the one obtained earlier, Eqs. (16) and (17).  The present derivation
however shows that the result is independent of the nature of the magnetic and electric field
distributions acting on an electron, provided that they are determined a priori, i.e no beam
induced fields are included.  It is valid therefore even in the case of linear coupling between the
horizontal and vertical planes, and when there is bending in the vertical plane.  In the absence of
these factors the matrices for the (z,z') and (x,x',ε/E0,τ) motion and may be treated separately,
giving the result:

αx + αε  =  
3 U0

2  E0 T0
  

or equivalently,
                     Jx  +  Jε  =  3.

5 . RADIATION DAMPING ASPECTS IN VARIOUS LATTICE DESIGNS

5 . 1 Weak focusing lattices

Early accelerators employed "weak focusing" magnets that provided focusing in both
planes simultaneosly for which the field index must lie in the range 0 < n < 1 [10].  There is a



further constraint on the field index in order that the motion is damped in all three planes.  To
derive this we first write the expression for D in a form that is valid in the case of an
isomagnetic lattice:

  
D = 1

2πp
1 − 2n( )∫ D

ρ
ds (19)

We leave ρ inside the integral to indicate that it includes only the bending magnets and not
any straight sections.  We can simplify this by making use of the expression that defines the
dispersion function:

D" = 




k   -  

1

ρ2
  D + 

1

ρ
 

from which it follows by integration that:

 1 / ρ2 − k( )∫ Dds = 1 / ρ( )∫ ds

If the focusing is due entirely to combined function magnets, with field index n = kρ2,
then the above may be written in the isomagnetic case as follows:

1 − n( )∫ D

ρ
= 2πρ (20)

If we now include the fact that the field index is also constant in the bending magnets,
then combining Eqs. (19) and (20) gives:

D = 
1-2n
1-n  

It follows that the damping partition numbers are then given by:

Jx  =  
n

1-n Jz  =  1 Jε  =  
3-4n
1-n  

and so for damping in all three planes 0 < n < 0.75.  The fact that energy oscillations become
undamped for n > 0.75 was appreciated even before the first observation of synchrotron
radiation [11-13].

A present day example of this type of lattice is the NBS 250 MeV storage ring which is
used as a synchrotron radiation facility (SURF).  Originally however the ring was operated as a
180 MeV synchrotron with a field index of 0.8; when it was converted for use as a storage ring
extra gradient coils were added to lower the field index to 0.6 in order to obtain the necessary
damping of all oscillation modes [14].  A more recent example is the compact superconducting
synchrotron radiation source AURORA whose field index varies in the range 0.3–0.7 as the
energy is varied between 150 and 650 MeV [15].

5 . 2 Strong focusing, combined function

Several early types of alternating gradient or "strong focusing", synchrotrons were
constructed using magnets with combined bending and focusing fields, for example the CEA
and DESY I electron synchrotrons, as well as the PS proton synchrotron.  If there are no
separate focusing fields (k ≠ 0 only if 1/ρ ≠ 0) then combining Eqs. (19) and (20) above, gives
in the isomagnetic case:



  
D = 2 −

D / ρ( )ds∫
2πρ

= 2 − αL

2πρ

where α is the momentum compaction factor.  Since α  is usually small it may be seen that       
D  ~ 2 and hence Jx ~ -1, Jz = 1 and Jε ~ 4.  In the case of a combined function lattice therefore
the betatron motion is    anti-damped     in the horizontal plane [16–18].  Electron synchrotrons can
however be built with a combined function lattice, provided the growth that occurs in the
horizontal beam size is acceptable.

In order to overcome the anti-damping of the combined function lattice various correction
methods have been proposed [8,16,17,19,20], some of which are discussed in Section 6.

5 . 3 Strong focusing, separated function

It has been shown that radial damping can be achieved in a combined function lattice by
using focusing and defocusing magnets of slightly different strength [8, 21].  The most
common lattice arrangement however which produces damping in all three planes, is the so-
called separated function lattice i.e.  one in which the functions of bending and focusing are
divided in separate dipole and quadrupole magnets [22,23].  One possibility may be seen
directly from Eq. (10).  It is clear that with a value of n = 0.5 in the bending magnets D = 0,
and hence Jx = Jz = 1, Jε = 2, irrespective of additional quadrupole magnets which may be
arranged to produce an alternating gradient structure.  Such an approach was taken in the design
of both the ACO and ADONE storage rings.

In the case of zero field gradient in the dipole magnets, it may be seen from Eq. (10) that
in the isomagnetic case we have:

  
D =

D / ρ( )ds∫
2πρ

= 2 − αL

2πρ

The value of D in this case results only from the path length effect in the dipole magnets,
which is usually very small.  In all of the above analysis we have assumed that the bending
magnets have a sector geometry, however, only small modifications usually result in the case of
non-zero entrance and exit angles.  In the special case of a lattice with parallel edged dipole
magnets it may be shown that the effective field gradient at the entrance and exit of the magnet
cancels the path length effect exactly, resulting in D = 0.

In separated function lattices therefore Jx ~ 1, Jz = 1 and Jε ~ 2, and so the motion is
damped in all three planes.  This type of lattice is now generally used not only for storage rings,
but also for synchrotrons since this also leads to smaller beam sizes.  The difference between
the two lattice types may be illustrated by the performance of the original DESY I synchrotron
(combined function) and the later DESY II (separated function) [24], shown in Fig. 7.  In
DESY I the increase in horizontal beam size after an initial period of adiabatic damping is due to
fact that the horizontal motion is anti-damped.  A high repetition rate of 50 Hz was necessary in
this case in order to limit the growth of the beam size.  On the other hand, in DESY II the beam
size approaches the equilibrium value even for widely different injected beam sizes and a much
slower repetition rate could be used (12.5 Hz).  

5 . 4 Damping time and injection energy

A common type of injection scheme for electron storage rings is multi-cycle injection, in
which the injected beam damps in size due to radiation damping in the interval between
injections so preventing loss on the injection septum magnet.  In this way a high current can be



accumulated without needing a very high performance injector.  The maximum possible
injection rate depends to some extent on the damping time for the plane in which the injection is
performed, usually the horizontal.  This is particularly important when a ring is being filled at a
lower energy than its final operating value since the damping time varies rapidly with energy,          
~ 1/E3.

Fig. 7  Variation of horizontal beam size with time during the acceleration cycle in the DESY I
(left) and DESY II (right) synchrotrons [24]

The importance of injection energy is illustrated by the unique system of beam storage that
was employed at the CEA when it was operated as an electron storage ring with a low injection
energy of 260 MeV [25].  In order to increase the current that could be accumulated the energy
was cycled repeatedly between injection energy and 2.1 GeV, so that sufficient radiation
damping could occur at the higher energy between successive injections.

The topic of injection energy is particularly relevant in the field of modern compact
sources of synchrotron radiation [26].  Since the critical wavelength of the radiation at the
operating energy varies as ρ/E0

3, it follows that the same value can be obtained with a lower
operating energy using superconducting magnets with a smaller bending radius than
conventional magnets.  This tends to reduce the overall circumference and so make the ring
more compact.  In addition, since the damping time at the injection energy varies as T0ρ/Ei

3 it
follows that a lower injection energy may be used while maintaining the same damping time,
which permits a more compact and cheaper injector to be used.

Table 2

Damping times and injection rates in some electron storage rings
with low energy multi-cycle injection

COSY [29] MAX [27] ALADDIN [30]
Injection energy (MeV) 50 100 100
Damping time (s) 2.5 2.5 13.6



Injection rate (Hz) 10 10 1.25

Many other factors, however, affect the injection process at low energy, such as trapped
ions, intra-beam scattering, instabilities etc., as well as complex beam dynamics [26,27], and
the connection between damping time and injection rate is not well established.  Table 2 gives
data for three storage rings with a low energy injection, showing that multi-cycle injection can
be achieved with a period as short as 1/25th of a damping time.  At even lower energies a multi-
cycle injection becomes impossible, however, it may be possible to inject sufficient current in a
single shot.  For example, the 600 MeV Super-ALIS ring in Japan can be injected in this way at
only 15 MeV, where the radiation damping time is very long indeed (~ 4 min) [28].

6 . MODIFICATION OF DAMPING RATES

In the following sections we consider various ways in which the damping rates can be
modified in an existing lattice.

6 . 1 Gradient wiggler magnet

s 

x

-B/2 +B -B/2
dB
dx- +dB

dx+dB
dx

Fig. 8  Schematic diagram of a gradient wiggler magnet.

In order to modify the damping partition between the three planes a wiggler magnet with a
gradient field may be used.  This was first proposed by Robinson in 1958 as a means of
overcoming the radial anti-damping of the CEA electron synchrotron, which has a combined
function lattice [8,17].  For this reason it is often referred to as a "Robinson wiggler".  

The method is to reduce the damping of the energy oscillation, thereby increasing the
damping of the radial motion, by using a magnet in which higher energy electrons radiate    less   
than lower energy electrons i.e. dU/dε is reduced.  From Eq.(10) it can be seen that D reduces
if 2kD/ρ > 0 i.e. DB(dB/dx) < 0.  A series of magnet poles with alternating polarity of dipole
and gradient fields as shown in Fig. 8 will therefore achieve this.  Such magnets were installed
at CEA in order to permit operation as a storage ring [25,31] and also in the PS to permit
operation with electrons [5].  The magnets used in the latter case are shown in Fig. 9.

Gradient wigglers have also been proposed as a means of decreasing the beam emittance
in various synchrotron radiation sources, as will be discussed in the following Chapter.

6.2 Variation of r.f. frequency

Another technique that can be employed in large rings for modifying the damping partition
numbers is variation of the r.f. frequency [20].  The effect of a change in frequency (f) is to
cause the orbit length (L) to vary, so forcing the electrons to move onto an off-energy orbit:
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L    =  - α 

ε
E0

 

Fig. 9  Cross-section of the gradient wiggler magnet used in the PS [5]

where α  is the momentum compaction factor.  The shift in the orbit where there is finite
dispersion, xε = D(s) ε/E0, has various effects, the largest of which results from the dipole field
seen by the particle in the quadrupole magnets, (1/ρ)quads = -kDε/E0 [32].  It follows from
Eq. (10) that there is a change in D given by:

  

∆D ≅
2D2k2ε / E0ds∫

1 / ρ2ds∫
Table 3 shows the magnitude of the effect for three rings of different size, expressed as

the change in the horizontal damping partition number with energy deviation and with mean
orbit radius (R = L/2π).  It can be seen that in order to change Jx by unity the mean orbit
position needs to be shifted by only 0.5 mm in LEP, with a corresponding energy deviation of
only 0.13%, whereas in the EPA this change would require a movement of 30 mm, with an
energy deviation of 5.6%.  The method is effective therefore only in large rings; for example it
was used regularly in PETRA [33] for luminosity optimization.

Table 3

Variation of horizontal damping partition number in various electron storage rings



EPA [5] PEP [34] LEP [6]
dJx/d(ε/E0) -18 -100 -764
dJx/dR        (mm-1) -0.03 -0.26 -0.47

6 . 3 Betatron coupling

The techniques discussed in the above two sections both involve changing the damping
partition between the horizontal betatron motion and the energy oscillations.  Another possibility
is to vary the partition between the horizontal and vertical planes by means of skew-quadrupole
or solenoidal fields, without affecting the energy oscillations.  This was one of the additional
techniques originally proposed as a means of overcoming the radial anti-damping in combined
function lattices [8,20].

6 . 4 Dipole wiggler magnet

It follows from Eq. (16) that an increase in the energy loss per turn U0 will bring about an
increase in all three damping rates.  This can be achieved using a series of magnets with
alternating polarity, arranged so that there is no net deflection of the electron beam as shown in
Fig. 8, but in this case without the gradient field.  Such a device is known as a dipole wiggler,
or alternatively as a damping wiggler.  A dipole wiggler also affects the equilibrium between the
radiation damping and quantum excitation processes and so modifies the emittance in a
complicated way, depending on the ring energy, wiggler parameters and the dispersion
function, and will be discussed further in the following Chapter.  Dipole wigglers are in
operation in LEP and Fig. 10 shows the design of the magnets that are used [35].  

Fig. 10  The dipole wiggler magnet design for LEP [35]

7 . MEASUREMENT OF DAMPING RATES

In general, the damping rates are of less interest as compared with other parameters, such
as for example beam sizes and bunch lengths, and for this reason there are few published
reports about such measurements.  Several measurements have however been made at the SLC
damping rings, whose performance depends very much on the damping rate.  In one
experiment the sum of the three damping rates was inferred indirectly by measuring the energy
loss per turn U0 (Eq. (16)) [36].  This was done by using the relation U0 = Vrf sin (φ), by
measuring the peak accelerating voltage (Vrf) and the phase angle (φ), extrapolated to zero



current.  The damping time was also obtained by measuring the variation of the extracted beam
size as a function of storage time.  More recently a synchrotron light monitor was used with a
fast gated camera to directly measure the beam size as a function of time after injection.  Figure
11 shows a typical result [37].

Fig. 11  Variation of the beam size in the SLC electron damping ring as a function of
time after injection [37]

By fitting the data with an expession of the form:

σβ2  =  σβi
2 exp 
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where σβ0 is the r.m.s. equilibrium beam size and σβi is the inital value after injection, the
damping times in both horizontal and vertical planes (τx and τz)were obtained.

A similar method was used also in the EPA to measure the horizontal and vertical damping
rates.  In this case a stored beam was excited with a fast kicker magnet and the changing beam
profile observed with a synchrotron radiation beam profile monitor [38].  Figure 12 shows a
sample result, from which the damping time may be extracted using the expression above, with
σβi equal to the inital value after the blow-up using the kicker magnet (assuming zero dispersion
at the measurement point).  

For the longitudinal damping rate there is the possibility of making the same observations
as above in the horizontal plane but at a point with large dispersion.  This is because the total
beam size contains contributions from the betatron motion and the energy spread, σ2

total = σ2β
+ D2(σ2ε/E0

2) with different damping rates, τx and τε respectively.  Alternatively, some form of
r.f. excitation could be applied and the resulting changes in the bunch length could be measured
directly using an appropriate electron beam pick-up or synchrotron light monitor system.  



Fig.  12  Variation of the transverse profile of the beam in EPA after excitation
with a fast kicker magnet [38]
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