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Abstract

The design of a detuned and damped accelerating structure implies variations in the
geometry which induce in turn a variation of the group velocity vg and of the impedance
per unit length R0, divided by the quality factor Q. The resulting di�erential equation for
the longitudinal electric �eld (fundamental mode) contains coe�cients that depend on the
distance z along the structure. This report describes a possible method to solve this nonlinear,
�rst order di�erential equation analytically and how to obtain approximate closed algebraic
forms, by using the sequence of Gauss integration methods. Analytical expressions of the
longitudinal �eld pro�le in a loaded or unloaded accelerating section is deduced for both linear
and arbitrary variations of vg and R0=Q. Simple relations between the average �eld < E >
and the �eld at the entrance of the structure E(0) make it possible to provide the dependence
of the �eld function E(z) on the design value for < E > and on the structure parameters.
The results are in good agreement with the direct numerical integration. Applications are
presented for particular structure designs.
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1 Introduction

In the design of a detuned and damped accelerating structure [1], the variations in the geometry
induce a variation of the group velocity vg and of the shunt impedance per unit length divided by
the factor of merit R0=Q [2]. As a consequence, the di�erential equation for the longitudinal elec-
trical �eld E is modi�ed into an equation with coe�cients that are depending on the coordinate
z, i.e. the distance along the structure. Though the resulting equation can be solved numerically,
it is always interesting to derive whenever possible an analytical solution in a closed algebraic
form. This can provide an insight into the dependence of the result on the input parameters as
well as the possibility to use a short symbolic program for a rapid interactive analysis of various
structure designs. A method is proposed hereafter to solve the di�erential equation for the elec-
tric �eld of a loaded or unloaded structure and to �nd accurate analytical approximations which
can be written in a closed form. A comparison with the direct numerical integration of the basic
equation (with Cauchy's method) shows a very good agreement with the analytical result in the
z-interval of interest. The present analysis provides relationships between, on the one hand, the
�eld pro�le of the fundamental mode and, on the other hand, the structure length, the average
accelerating gradient required, as well as the variations of the group velocity and of R0=Q along
the cavity for tapered or detuned damped structures. These variations serve as inputs for the
analytical solution of the problem and they are derived from numerical �eld computation pro-
grams. The presented analysis gives a very useful complement to the common relations widely
used for constant impedance or constant gradient structures and is applicable in particular to
the CLIC tapered damped structure [1]. This structure and a damped detuned structure of NLC
type [3] are used to illustrate the application of our formalism and the accuracy of the results.

2 Beam Loading Equation to be Solved

The derivation of the di�erential equation for the longitudinal electric �eld as a function of the
distance z along an accelerating structure is given in Ref. 2. An exact analytical solution is
presented for the case of constant R0=Q and linearly varying group velocity and the equation is
solved numerically for the case where both R0=Q and vg vary linearly. The present paper gives a
general class of analytical solutions valid for arbitrarily varying R0=Q and vg , and for a constant
beam-current distribution with respect to z. With the assumption that the power 
ow is constant
except for the dissipation in the wall (depending on the quality factor Q) and the power exchange
with the beam (proportional to the factor R0=Q), the basic di�erential equation writes [2],

d

dz

�
E2(z)

vg(z)

R0=Q(z)

�
+

E2(z) � !
R0=Q(z) �Q + E(z) I ! = 0 (1)

where vg(z) is the group velocity and ! the frequency of the fundamental mode.
The question arising was how to solve the di�erential equation (1) with linear variations with

respect to z of vg and R0=Q, over the length L of the structure:

vg(z) = vg(0)� �vg
z

L
R0

Q
(z) =

R0

Q
(0) + �

R0

Q
� z
L

(2)

and for a given initial value (at z = 0) of the longitudinal electric �eld de�ned by

E(z = 0) = E(0): (3)
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More generally, we are interested in trying to solve eq. (1) for any relevant functions
F1[vg(0); z=L] and F2[R0=Q(0); z=L] of z, representing possible variations of the group veloc-
ity and of the impedance factor, and this for a given average longitudinal electric �eld over the
length of the structure. This means solving (1) with

vg(z) = c F1[vg(0); z=L] = c F1(z)

R0

Q
(z) = F2[

R0

Q
(0); z=L] = F2(z) (4)

and assuming that we can �nd an explicit relation between the initial value of the �eld and
its average < E > taken over the structure (see eq. (10) below)

E(0) = E(0)[< E >]: (5)

In this report, a method is described, that allows the solution of equation (1) in the general
case and gives an expression for the �eld E(z), containing however integrals which can not be fully
evaluated analytically for the assumed variations (2) or (4) of the coe�cients. Therefore, Gauss'
approximations of the integrals are proposed, so as to obtain in both cases explicit analytical
solutions which provide very accurate estimates in the parameter interval of interest (con�rmed
by comparison with numerical quadrature) as well as the dependence of the solutions on the
accelerating structure parameters. For any function F1 and F2, the approximate solution E(z)
obtained for the �eld is a linear function of its initial value E(0). Therefore the average �eld
< E >, obtained by further integration upon z of E(z) will also be a linear function of E(0)
which can eventually be solved for E(0) in order to provide the form (5). Again the integration
of E(z) is done using Gauss' approximations that provide a very good evaluation of the average
as shown in the applications.

3 Closed Expression of the Beam Loading Voltage

3.1 Solution for linear variations of vg and R0=Q

Solving equation (1) for the longitudinal electric �eld in the case of the linear variations de�ned by
(2) has been done according to the derivation described in Appendix A. It provides the following
expression for the beam loading voltage pro�le as a function of z, to the second order of the
Gauss' approximation

E(z) =

s
R0=Q(0) + �(R0=Q) � z=L

vg(0)��vg � z=L

 
1� �vg

vg(0)
z=L

!p "s
vg(0)

R0=Q(0)
E(0)�

I!

4
z

0
@ 1� �vg�1

vg(0)z=L

!
�ps

R0=Q(0) + �1�(R0=Q) � z=L
vg(0)� �1�vgz=L

+

 
1� �vg�2

vg(0)
z=L

!
�ps

R0=Q(0) + �2�(R0=Q) � z=L
vg(0)� �2�vgz=L

1
A
3
5 (6)

with

p =
!L

2Q�vg
(7)
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and

�1;2 =
1

2
� 1

6

p
3 (8)

remembering that z remains smaller than the structure length L

0 � z � L: (9)

The next step consists of �nding a relation between the initial value E(0) of the electric �eld
which appears in (6) and its average < E > obtained by integration over the structure length.

< E >=
1

L

Z L

0
E(z)dz: (10)

Using Gauss' approximation of this integral to second order gives the following expression,

< E >=
1

2
[E(�1L) + E(�2L)]: (11)

Since the �eld E(z) in eq. (6) is a linear function of E(0), its average < E > in (11) will
also be a linear function of E(0). This linear relation can easily be inverted, in the way shown in
Appendix A, in order to provide the necessary expression for the initial �eld which corresponds
to a given average gradient. The initial value so obtained can then be plugged into the solution
for the voltage pro�le which is eventually expressed as a function of the average < E >, the
quantity that is relevant for the structure design.

E(0) =

vuut R0

Q (0)

vg(0)

2r
R0

Q
(0)+�1�

R0

Q

vg(0)��vg�1
(1� �vg

vg(0)
�1)p +

r
R0

Q
(0)+�2�

R0

Q

vg(0)��vg�2
(1� �vg

vg(0)
�2)p2

64< E > +
L

8
I!�1

0
B@(1� �21

�vg
vg(0)

)�p

vuut R0

Q (0) + �R0

Q �1�2

vg(0)��vg�21
+

(1� �2�1
�vg
vg(0)

)�p

vuut R0

Q (0) + �R0

Q �2�1

vg(0)��vg�2�1

1
CA
vuut R0

Q (0) + �1�
R0

Q

vg(0)� �1�vg
(1� �1�vg=vg(0))

p

+
L

8
I!�2

0
B@(1� �1�2

�vg
vg(0)

)�p

vuut R0

Q (0) + �R0

Q �1�2

vg(0)��vg�1�2
+

(1� �22
�vg
vg(0)

)�p

vuut R0

Q (0) + �R0

Q �22

vg(0)��vg�22

1
CA
vuut R0

Q (0) + �2�
R0

Q

vg(0)� �2�vg
(1��vg=vg(0)�2)

p

3
75 (12)

where the exponent p is equal to

p =
!L

2Q�vg
: (13)
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3.2 Solution for arbitrary variations of vg and R0=Q

Solving equation (1) for the longitudinal electric �eld in the case of the arbitrary variations
de�ned by (4) has been done according to the derivation summarised in Appendix B. The second
order approximation used in Appendix B gives a good accuracy for the �nal result, provided that
the functions F1 and F2 have su�ciently small variations, so that they have a behaviour close
to polynomials of a degree three. For functions with larger variations, the result should be cross
checked by numerical integration before making general use of it and, if the accuracy is judged
to be inadequate, the next member in the sequence of Gauss approximations should be tried.
Taking this caveat into account, the solution (63) gives a closed expression for the beam-loaded
voltage pro�le as a function of z, which now contains second order Gauss' approximations of all
the de�nite integrals including the one giving the exponent of the solution of the homogenous
equation.

E(z) =

s
F2(z)

F1(z)
� exp

�
�! z

4Q

�
1

F1(�1z)
+

1

F1(�2z)

��
"s

F1(0)

F2(0)
�E(0) � I!

4
z

 s
F2(�1z)

F1(�1z)
� exp

�
! �1z

4Q

�
1

F1(�21z)
+

1

F1(�1�2z)

��

+

s
F2(�2z)

F1(�2z)
� exp

�
! �2z

4Q

�
1

F1(�1�2z)
+

1

F1(�
2
2z)

��!#
(14)

(15)

with

�1;2 =
1

2
� 1

6

p
3 (16)

and for

0 � z � L: (17)

As in the preceding case, it is now necessary to express the initial �eld value as a function of
the average < E > required. This has been done and is documented in Appendix B. The result,
valid for arbitrary smooth functions F1 and F2, is given here

E(0) =

r
F2(0)
F1(0)r

F2(�1L)
F1(�1L)

e�
!
2Q

G1(�1L) +

r
F2(�2L)
F1(�2L)

e�
!
2Q

G1(�2L)
�

�
"
2 < E > +

I!

4

s
F2(�1L)

F1(�1L)
e
�

!
2Q

G1(�1L)�1L

 
e
!
2Q

G1(�21L)

s
F2(�21L)

F1(�21L)
+ e

!
2Q

G1(�1�2L)

s
F2(�1�2L)

F1(�1�2L)

!
+

+
I!

4

s
F2(�2L)

F1(�2L)
e
�

!
2Q

G1(�2L)�2L

 
e
!
2Q

G1(�1�2L)

s
F2(�1�2L)

F1(�1�2L)
+ e

!
2Q

G1(�22L)

s
F2(�22L)

F1(�22L)

!#
(18)

with the following expression for G1 (Appendix B)

G1(z) =
z

2

�
1

F1(�1z)
+

1

F1(�2z)

�
(19)

and the numerical values of �1 and �2 recalled above and in both Appendices.
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All the preceding results are strictly correct for a constant Q-value. When the quality factor
Q is not constant, the results are formally the same, as shown in Appendix B, after replacing F1
by F3 (see below) and Q by its average �Q, in the three exponential functions of equation (14) as
well as in (19). The function F3 includes the variation of Q with respect to z around its average
value �Q, according to the following de�nitions

Q = �Qf(z)

F3 = f � F1 (20)

These slight modi�cations make it possible to fully include variations of the quality factor in
strongly detuned structures.

4 Applications to Accelerating Structure Designs

4.1 The CLIC tapered damped structure

The parameter values (21) retained for the application discussed in this section are those of the
CLIC design of a tapered damped structure (TDS) [1,2]. This case can be treated by considering
linear variations of the group velocity and of the shunt impedance per unit length such as the
relations given in Section 3.1 apply. The numerical values actually introduced in the equations
(2), (6) (7) and (12) and corresponding to the CLIC TDS [2] are listed hereafter;

vg(0) = 3:240� 107 m=s

�vg = 1:619� 107 m=s

R0

Q
(0) = 2:23� 104 
=m

�
R0

Q
= 0:78� 104 
=m

!

Q
= 5:118� 107 s�1

I! = 1:811� 1011 A=s

E(0) = 1:866� 108 V=m

L = 0:5m (21)

The decimal values of the coe�cients �1 and �2 are

�1 = 0:211325

�2 = 0:788675 (22)

This application allows the comparison of the results of a direct numerical integration with the
analytical approximation of the solution (6), in the case of a linear variation of vg and R0=Q. The
curves of Fig. 1 indicate that the analytic expressions (6) depict extremely well the voltage pro�le
in the structures either unloaded (I = 0) or loaded with the assumed beam current (I = 0:96A).
The actual deviation never exceeds 0.2 % in this particular case. In addition, the average value
given by (11) and equal to 163.50 MV/m agrees very well with the one obtained by numerical
integration, i.e. 163.47 MV/m.
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Fig. 1 Voltage pro�le for the CLIC structure with a �eld of 186.6 MV/m at the entrance.
The full curves are given by the formulae of Section 3.1 for linear variations of vg and R0=Q,
while crosses and diamonds result from numerical integration of the di�erential equation.

In practice, one would rather start from an average �eld value, e.g. 150 MV/m, compute the
corresponding initial value E(0) with (12), and then deduce the voltage pro�le with and without
beam loading as illustrated in Fig. 2. This provides a very direct and precise way to obtain the
electric �eld along the structure for a wanted average accelerating gradient.
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Fig. 2 Voltage pro�le for the CLIC structure with an average accelerating �eld of 150 MV/m.
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4.2 Damped detuned structure of the NLC type

In order to check the analytical expressions of Section 3.2, which are valid for non-linear variations
of the group velocity and of the shunt impedance, we would like to now consider a structure of
the type studied at SLAC and known under the name of RDDS [3]. In such a structure, the
variation of vg can be large and strongly non-linear while the shunt impedance equally varies
non-linearly. In the selected example, vg decreases from about 0:11c to 0:03c and the impedance
increases from 7:7�107 to 1:03�108 
=m. For getting the functions vg(z) and R

0=Q(z) generally
de�ned by the equations (4), polynomial �ts of the curves vg(z) and R0(z) provided to us [4] were
made and the factor of quality Q was assumed to be constant and equal to 7875. Retaining the
average of Q represents at this stage a good approximation (in fact Q may vary from about 8250
to 7500). This approximation can however be removed at any time by applying the relations (20)
and using the actual function Q(z) = �Qf(z) to generate R0=Q(z) before doing the �t.

The results of the �ts give the following functions F1 and F2.

F1(z) =
h
2:325� 0:5z + 0:345(1:111z� 1:0)2 � 0:78(1:111z� 1:0)3

i
107 (23)

F2(z) =
h
10:857 + 0:705z � 0:222(1:111z� 1:0)2+ 0:857(1:111z� 1:0)3

i
1000 (24)

Figures 3 and 4 illustrate the quality of the �ts (23) and (24) made for the relative group
velocity and the shunt impedance per unit length, respectively. In these graphs, the full lines
correspond to the polynomial �ts of degree three while the diamonds correspond to the initial
data.
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Fig. 3 Group velocity of the RDDS structure of the NLC type.
The full curve is the �t obtained through the initial data points.
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Fig. 4 Shunt impedance per unit length of the RDDS of NLC type in units of 107
=m.
The full curve is the �t obtained through the initial data points.

For the other necessary parameters of the structure, the following values [4] were taken

!

Q
= 0:9096� 107 s�1

I! = 0:7163� 1011 A=s

< E >= 50� 106 V=m

L = 1:8 m (25)

It is �rst necessary to use the relation (18) for deducing the initial �eld value from its average,
using the particular functions (23) and (24) and the parameters (25). The value so obtained is
55.62 MV/m. Equation (14) then gives the electric �eld pro�le (to second order in the Gauss
approximation) with and without beam loading along the structure (Fig. 5). Comparison with
numerical integration of the di�erential equation indicates a very good agreement (Fig. 5). In this
nonlinear example, the maximum deviation which takes place at the end of the strongly loaded
structure reaches 4.5 % approximately. If necessary, this deviation could be further reduced to a
level comparable to the one of the �rst application by working to the third order.
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Fig. 5 Voltage pro�les of an NLC type cavity.
Full curves result from the formulae of Section 3.2 for non-linear variations of vg and R0=Q,
while crosses and diamonds come from numerical integration of the di�erential equation.

5 Conclusions

This paper describes the method proposed by the authors to solve analytically the di�erential
equation for the longitudinal electric �eld as a function of the coordinate z along an accelerating
structure and to extend the range of solutions. The method provides a closed expression of the
�eld pro�le for arbitrary but smooth variations of the group velocity vg and of the impedance per
unit length, divided by the quality factor, R0=Q. This expression results from an approximation
that is required to achieve the �nal quadrature explicitly, but can be made as accurate as desired
by raising the order of this approximation. When dealing with the electric �eld pro�le in an RF
cavity, it is shown that a second order approximation is already very good.

The �rst step consists of changing variables in order to write the equation of the �eld in
the form of Bernouilli's equation, which can then be transformed into a linear, inhomogeneous
equation by a standard substitution. The latter equation is solved in the usual manner (Green's
method) and the result is an expression for the �eld which contains a double quadrature. This last
quadrature can only be evaluated in a closed form with some approximation. For linear variations
of vg and R0=Q, one integral can be resolved and the double quadrature replaced by a single one,
while for non-linear variations this is not possible. In all cases, the remaining single or double
quadrature is achieved by using the Gauss integration sequence most frequently introduced in
numerical applications. Provided the integrand-function shows a su�ciently smooth variation
with the independent variable numerical integration formulae can be applied for an analytical
description of a quadrature operation by just using one discretization step. The remarkable
result is that the second member of the Gaussian sequence of approximations applied over the
entire interval of integration not only gives excellent estimations in the single quadrature case
(within 0.2 %) but also provides very good evaluations of the double quadrature (within better
than 5 %). This accuracy can of course always be improved by going to the next order of the
Gauss approximation though at the expense of a more complex expression for the solution.
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The closed, analytical expressions of the �eld obtained have been applied �rstly to the tapered,
damped structure of CLIC (30 GHz) where linear variations of the key quantities can be assumed
and secondly to a damped, detuned structure of NLC type, with strong non-linear variations
of these same quantities. In both cases, checking with a direct numerical integration of the
di�erential equation proves the noteworthy validity of the proposed solution. Furthermore, this
solution is by nature of the problem a linear function of the �eld at the entrance of the cavity.
Therefore, an additional integration over the cavity length, which is again done following the same
method, provides an explicit relation between this initial �eld and the �eld average in the cavity.
This allows the direct expression of the voltage pro�le as a function of the average accelerating
�eld, which is one of the main characteristics of the design.

It is important to underline that all the obtained �eld-pro�le expressions valid for a wide range
of detuned accelerating structures can be introduced, in their symbolic form, into executable �les
of mathematical computation applications such as MapleV, Mathcad and Excel. This makes pos-
sible a rapid, interactive evaluation and optimisation of the characteristics of speci�c structures
for various design parameters, without resorting to any numerical integration.

The method described here for analytically solving the nonlinear, �rst-order di�erential equa-
tion associated with the �eld distribution in an RF structure is su�ciently general to be applied
to other problems of physics or engineering provided the coe�cients appearing in the di�erential
equation of the phenomenon vary smoothly enough with the independent variable. It has proven
to be very successful in predicting the longitudinal �eld pro�les of di�erent structures, with and
without beam loading.
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A Analytical Solution with linear variation of vg and R0=Q

For the authors' convenience, the nonlinear �rst-order ordinary di�erential equation (1) has �rst
been re-written by using the following de�nitions and changes of variables:

a0 = vg(0) a1 = �vg

b0 = R0

Q (0) b1 = �
R0

Q

C1 = !=Q C2 = I !

x = z y = E(z): (26)

These variable de�nitions (26) will be used, in the limited interval 0 < x < L, to express the
solution y(x) of the di�erential equation

d

dx

�
y2
F1
F2

�
+ C1y

2 1

F2
+ C2y = 0 (27)

for the given initial condition
y(0) = y0: (28)

The quantities C1 and C2 are constant (if Q is not constant, its average value has to be
introduced into C1, as an approximation) and the functions F1 and F2 vary linearly with x, in
agreement with (2)

F1 = a0 �
a1
L
x (29)

F2 = b0 +
b1
L
x: (30)

In a �rst step a simpli�cation of the equation can be obtained by performing a substitution
of the dependent variable y:

y2
F1
F2

= z: (31)

This leads to the new equation:

dz

dx
+
C1

F1
z + C2

s
F2
F1

z1=2 = 0 (32)

which can be identi�ed as Bernoulli' equation [5] with exponent 1=2 in the new variable z = z(x).
As usual for the analytic solution of this type of equation, we now apply a second substitution
of polynomial type which is de�ned by:

z = u1�q (33)

where q is yet to be determined. The multiplication of the equation thus obtained by uq gives:

(1� q)
du

dx
+

C1

F1
u+ C2

s
F2
F1

u
1+q

2 = 0: (34)

The resulting equation becomes linear and inhomogeneous if q = �1 and can be written as:

du

dx
+

C1

2F1
u = �1

2
C2

s
F2
F1

(35)
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with the solution

u(x) = e
�

R x
0

C1
2F1

dx

"
u0 � C2

1

2

Z x

0
e

R x
0

C1
2F1

dx

s
F2
F1

dx

#
: (36)

Using the de�nitions for F2 and F1 as listed above, two of the three integrals are:

�
Z x

0

C1

2F1
dx = ln

�
1� a1x

a0L

�C1L

2a1

(37)

Z x

0

C1

2F1
dx = ln

�
1� a1x

a0L

�
�
C1L

2a1

(38)

and using the notation � = x=L and p = C1L=(2a1), u(x) becomes

u(x) =

�
1� a1

a0�

�p "
u0 �

L

2
C2

Z �

0

�
1� a1

a0�

�
�p
s

b0 + b1�

a0 � a1�
d�

#
: (39)

Since the remaining quadrature cannot be evaluated in closed form, the function (39) provides
the most general expression for the solution of (35). Having in mind an interest in a simpli�ed,
closed analytical expression giving an accurate estimate of the function (39), we use the following
two approximations of a general integral:Z x

0
f(t)dt � xf(

x

2
) (40)

and Z x

0
f(t)dt � x

2
[f(�1x) + f(�2x)] (41)

where

�1;2 =
1

2
� 1

6

p
3: (42)

While Eq. (40) represents the well known "mean value approximation" of an integral, Eq.
(40) and (41) are generally known as the �rst two members of the sequence of Gauss integration
approximations [6]. While (40) is the exact integral of linear functions, the approximation (41)
turns out to be exact up to third-order polynomials. The constants �1;2 are the zeros of the
second order Legendre polynomial [4]. In this way and after transforming back the dependent
variable from u to y, we �nally obtain two approximations for the actual solution of eq. (27):

� Using the �rst-order Gauss approximation (40):

y1(�) =

s
b0 + b1�

a0 � a1�

�
1� a1

a0
�

�p 24ra0
b0
y0 �

L

2
C2�

�
1� a1

2a0
�

�
�p
vuut b0 + b1

�
2

a0 � a1
�
2

3
5 (43)

� Using the second-order Gauss approximation (41):

y2(�) =

s
b0 + b1�

a0 � a1�

�
1� a1

a0
�

�p �ra0
b0
y0�

�L

4
C2�

 �
1� a1�1

a0
�

�
�p
s

b0 + b1�1�

a0 � a1�1�
+

�
1� a1�2

a0
�

�
�p
s

b0 + b1�2�

a0 � a2�2�

!#
(44)
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where

�1;2 =
1

2
� 1

6

p
3 (45)

� =
x

L
0 < � < 1 (46)

p =
C1L

2a1
: (47)

In Fig. 1, a comparison is presented of the two analytic approximations y1(x) and y2(x) given
in Eqs. (43) and (44) with a direct numerical integration of Eq. (27), using the numerical values
listed in (21). The upper full line corresponds to y1(x) and the lower one to y2(x). As can be seen
the numerical solution represented by the diamonds is indistinguishable from the approximation
y2(x) within the entire interval of integration. However, even y1(x) only di�ers from the numerical
integration results by an amount which never exceeds about 3 % (value reached at the end of the
interval, when x = L)

As mentioned in the Section 2, it is then necessary to express the �eld y2(�) as a function of
the average �eld < y > instead of its initial value y0 as in (44). The average is simply given by
the following integral

< y >=
Z 1

0
y2(�)d�: (48)

Considering the curve shown in Fig. 1 for the voltage pro�le, it is evident that the function y2
is smooth with no zeros in the interval [0,1]. As a consequence, the Gauss appromation described
above applies to the integral (48). Using it to second order, with the special value x = 1 according
to (48), we obtain

< y2 >=
1

2
[y2(�1) + y2(�2)] : (49)

Since the di�erential equation for the dependent variable u is linear, the solution is always a
linear function of the initial condition. This is obviously satis�ed by the approximate solution
which takes the form

y2(�) = g(�)y0 � h(�): (50)

The last equation gives the de�nition of the functions g(�) and h(�), by direct comparison
with (44). Introducing (50) into (49), the result for the average estimate becomes

< y2 >=
1

2
[(g(�1) + g(�2))y0 � (h(�1) + h(�2))] : (51)

This relation can of course easily be solved for the initial condition y0

y0 =
2 < y > +(h(�1) + h(�2))

g(�1) + g(�2)
(52)

where the notation < y2 >, valid for the second order approximation, is replaced by the more
general notation < y >. Hence, when designing a structure for a given average �eld, the relation
(52) can be used to calculate the initial value corresponding to the design characteristics. Once
the initial value y0 is known, then the general expression (44) is applicable to �nd out the voltage
pro�le related to the speci�c linear variations assumed for vg and R0=Q.

14



Inserting the explicit form of the functions g(�) and h(�) into the relation (52) gives the
full expression for the initial value associated with a particular average. In the case of linear
variations treated in this appendix, this expression is

y0 =

s
b0
a0

2q
b0+�1b1
a0�a1�1

(1� a1
a0
�1)p +

q
b0+�2b1
a0�a1�2

(1� a1
a0
�2)p"

< y > +
L

8
C2�1

 
(1� �21

a1
a0
)�p
s
(b0 + b1�1�2)

(a0 � a1�
2
1)

+

(1� �2�1
a1
a0
)�p
s

(b0 + b1�2�1)

(a0 � a1�2�1)

! p
b0 + �1b1p
a0 � a1�1

(1� �1a1=a0)
p

+
L

8
C2�2

 
(1� �1�2

a1
a0
)�p
s

(b0 + b1�1�2)

(a0 � a1�1�2)
+

(1� �22
a1
a0
)�p

s
(b0 + b1�22)

(a0 � a1�
2
2)

! p
b0 + �2b1p
a0 � a1�2

(1� a1=a0�2)
p

#
(53)

where the coe�cients are de�ned in (26), the parameters �1 and �2 in (45) and the exponent
p in (47).
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B Analytical Solution with arbitrary variation of vg and R0=Q

Let us start again from the general form (36) of the solution obtained in Appendix A.

u(x) = e
�

R x
0

C1
2F1

dx

"
u0 � C2

1

2

Z x

0
e

R x
0

C1
2F1

dx

s
F2
F1

dx

#
: (54)

The functions F1 and F2 are now arbitrary and not explicitely de�ned, though assumed to
have small enough variations for using Gauss' approximations of the integrals. The last condition
means that the functions F1 and F2 must not have too many oscillations and zeros in the interval
of interest. More precisely, the use of the second order Gauss' approximation gives exact results
for polynomials of up to degree 3. For the integral, which appears in the exponential functions
of (54), we can write for constant Q

G1(x) =
Z x

0

1

F1
dx =

x

2

�
1

F1(�1x=L)
+

1

F1(�2x=L)

�
(55)

applying the second-order approximation de�ned in eq. (41). This form of G1 strictly applies
for a constant Q. When Q varies, it is su�cient to modify (55) according to the following
description. Let us �rst de�ne the variation of Q around its average value �Q by

Q = �Qf(z) (56)

and the corresponding constant C1 by

C1 =
!
�Q

(57)

With these de�nitions and the introduction of the function f(z) in the development of Ap-
pendix A leading to the equation (36), the function G1 is mo��ed as follows

G1(x) =

Z x

0

1

fF1
dx =

Z x

0

1

F3
dx (58)

and (58) de�nes F3 as the product fF1. The form of G1 remains unchanged with simply F3
replacing F1, i.e. for varying Q

G1(x) =
x

2

�
1

F3(�1x=L)
+

1

F3(�2x=L)

�
(59)

and the whole subsequent treatment applies with either (55) or (59).
The next step consists of �nding an approximation of the second integral in (54) which

represents a particular solution of the inhomogenous di�erential equation and contains the de�nite
integral G1

G2(x) =

Z x

0
e

R x
0

C1
2F1

dx

s
F2
F1

dx =

Z x

0
e
C1
2
G1(x)

s
F2(x)

F1(x)
dx: (60)

Having included the approximation (55) into (60), the expression of G2 has been reduced to
a single integral containing the three functions G1(x), F1(x) and F2(x). At this point it is once
more possible to apply the second order Gauss' approximation (41) to the last form of G2 in(60)
and get

G2(x) =
x

2

"
e
C1
2
G1(�1x)

s
F2(�1x)

F1(�1x)
+ e

C1
2
G1(�2x)

s
F2(�2x)

F1(�2x)

#
: (61)
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The solution (54) now becomes

u(x) = e�
C1
2
G1(x)

�
u0 �

C2

2
G2(x)

�
=

= e�
C1
2
G1(x)

"s
F1(0)

F2(0)
y(0)� C2

2
G2(x)

#
: (62)

Introducing (55) and (61) into (62) and back transforming the variable u into y provides the
approximate expression sought for the solution of (27) in the case of a general variation of vg and
R0=Q

y(x) =

s
F2(x)

F1(x)
e�

!
2Q

G1(x)

"s
F1(0)

F2(0)
y0 �

I!

4
x

 
e
!
2Q

G1(�1x)

s
F2(�1x)

F1(�1x)
+ e

!
2Q

G1(�2x)

s
F2(�2x)

F1(�2x)

!#
:

(63)
As expected, the solution is again a linear function of the initial condition y0 and the functions
g(x) and h(x) de�ned in equation (50) take the following forms

g(x) =

s
F2(x)

F1(x)
e
�

!
2Q

G1(x)

s
F1(0)

F2(0)

h(x) =

s
F2(x)

F1(x)
e
�

!
2Q

G1(x) I!

4
x

 
e
!
2Q

G1(�1x)

s
F2(�1x)

F1(�1x)
+ e

!
2Q

G1(�2x)

s
F2(�2x)

F1(�2x)

!
: (64)

Having these two functions and following the deduction made in Appendix A, the application
of the equation (52) gives the explicit relation between the initial value y0 and the average value
< y >, required for designing a structure.

y0 =

r
F2(0)
F1(0)r

F2(�1L)
F1(�1L)

e
�

!
2Q

G1(�1L) +

r
F2(�2)
F1(�2)

e
�

!
2Q

G1(�2)
�

�
"
2 < y > +

s
F2(�1L)

F1(�1L)
e
�

!
2Q

G1(�1L) I!

4
�1L

 
e
!
2Q

G1(�
2
1
L)

s
F2(�

2
1L)

F1(�21L)
+ e

!
2Q

G1(�1�2L)

s
F2(�1�2L)

F1(�1�2L)

!
+

+

s
F2(�2L)

F1(�2L)
e�

!
2Q

G1(�2)I!

4
�2L

 
e
!
2Q

G1(�1�2L)

s
F2(�1�2L)

F1(�1�2L)
+ e

!
2Q

G1(�
2
2
L)

s
F2(�22L)

F1(�22L)

!#
: (65)
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