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Abstract
A derivation of chromaticity formulae for circular accelerators is given,
including the contribution of quadrupoles and sextupoles and with
special attention to the general bending magnet.  These are also exact for
small radii of curvature.

1 . INTRODUCTION

In the design of storage rings there are many similarities with the geometry of optics.  In
analogy to chromatic aberrations in optics, in particle accelerators a parameter called
chromaticity is introduced.  In optics rays of different wavelength find a different refraction
index in a lens and therefore experience a different focal length.  Similarly in a storage ring
particles of different momentum see a different focusing strength in the quadrupoles and, as a
consequence, have a different betatron oscillation frequency.

We define the chromaticity as the variation of the betatron tune Q with the relative
momentum deviation  δ (δ = ∆p/p):

Q'= 
dQ

dδ
  . (1)

Sometimes the relative chromaticity ξ is used:

ξ = 
Q'
Q   . (2)

Let us point out the importance of the chromaticity in circular accelerators. The
chromaticity has a deleterious influence on the beam dynamics for two main reasons:

First, a momentum spread σp is always present in a particle beam, therefore the chro-
maticity produces a tune spread in the beam:

∆Q = Q' σp. (3)

In large rings, with high tune values, this tune spread is so large that it is impossible to
accommodate the beam in the space between the resonance lines in the tune diagram.  How
dangerous these resonances can be for beam stability has been described by E.J.N. Wilson [1].

Second, in the case of bunched beams the chromaticity produces a transverse instability
called "head-tail effect" (see Ref. [2] for a detailed treatment).  The wake field produced by the
leading part of a bunch (the head) excites an oscillation of the trailing part (the tail) of the same
bunch.  In half a synchrotron period the head and the tail of the bunch interchange their
positions and the oscillation can be anti-damped and may cause a beam loss.  A complete
mathematical treatment shows that the growth rate of this instability is much faster for negative
than for positive chromaticity values and vanishes for zero chromaticity.  It may be counteracted
by a transverse feedback system, but this makes machine operation much more critical.
Therefore most of the storage rings operate with zero or slightly positive chromaticity.
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The "natural" chromaticity of a storage ring is that due only to the elements of the linear
lattice, i.e. quadrupoles and dipoles.  As will be shown later the "natural"  chromaticity of a
strong focusing storage ring is always negative and cannot be made zero. To correct the
chromaticity nonlinear elements, the sextupole magnets, have to be introduced into the lattice.

In strong focusing lattices the main contribution to the chromaticity is due to the
quadrupoles, in particular, in large rings with very large radius the contribution of the dipoles
can be neglected; for small rings, however, the dipole contribution is important and has to be
carefully calculated.

In Sections 2 and 3 it is shown how to calculate the chromaticity due to the quadrupoles
and sextupoles respectively.  Then, in Section 4, the effects on beam dynamics due to the
chromaticity correcting sextupoles are briefly discussed.  Finally, in Section 5, a detailed
derivation of the chromaticity  for a general bending magnet is given, following the approach
given by M. Bassetti in Ref. [3], which is very simple and intuitive, avoiding long math-
ematical derivations.

2 . QUADRUPOLE

Let us consider the motion in a quadrupole magnet of a charged particle which obeys the
betatron equation:

y" + kyy = 0 (y = x or z) (4)
with

kx = -k
kz =  k .

Now we consider the dependence of k on the particle momentum p:

k = 
e
p 

∂Bz
∂x    =  

e

p0(1+δ)
 
∂Bz
∂x    =  

k0

(1+δ)
  ~_  k0 (1- δ + δ2 -...) (5)

where δ  is the relative momentum deviation respect to the reference particle.  Taking the first
order term in δ it is:

k ~_  k0 (1-δ) = k0 - k0δ . (6)

The chromatic variation has always the opposite sign with respect to the focusing
strength, therefore a particle with a larger energy sees a weaker focusing strength.  Conversely
for light, the variation of the refraction index with the wavelength can be either positive or
negative and the chromatic effect can be corrected to first order by combining lenses of different
material.

Substituting (6) into the equation of motion for a quadrupole yields:

y" = -ky (1-δ) y (7)

which is equivalent to adding to the focusing quadrupole a defocusing one with a strength -kyδ
and viceversa for the defocusing quadrupole.

In a thin section of a quadrupole of infinitesimal length ds the particle receives an angular
kick

dy' = y" ds = ky δ y ds (8)



described by a thin lens (defocusing for the focusing quadrupole) matrix:







1 0

kyδds 1

 (9)

To compute the effect of this kick on the betatron tune, the one-turn matrix is obtained by
multiplying the unperturbed matrix (δ = 0) by this thin lens.

M = 








cosµy βysinµy

-sinµy/βy cosµy

  








1 0

kyδds 1
   =  









cosµy+βysinµykyδds βysinµy

-sinµy/βy+cosµykyδds cosµy

  (10)

Then we compute the trace of M to get the new value of µy (µy=2πQy):

1
2   Tr  M  =  cos(µy+dµy)  = cos µy  +  

1
2  βysinµy kyδ ds (11)

since:

d(cosµy) = cos (µy+dµy) - cosµy = -sinµy dµy (12)

we get:

dµy = - 
1
2  βy ky δ ds (13)

or

dQy = - 
1

4π
  βy ky δ ds . (14)

Integrating over all the ring circumference L, we obtain the total chromaticity for the two
planes, horizontal and vertical:

∂Qx

∂δ
   = - 

1

4π
 ⌡⌠
0

L

βx(s) kx(s) ds  (15)

∂Qz

∂δ
   = - 

1

4π
 ⌡⌠
0

L

βz(s) kz(s) ds  . (16)

From these formulae we can see why, in a ring with strong focusing lattice, the
chromaticity is always negative.  A quadrupole is a focusing lens in one plane, either horizontal
or vertical, and defocusing in the other one.  The strength  kx,z  is positive in the focusing plane
(negative in the defocusing plane) and the chromaticity has the opposite sign, therefore it is
negative when the quadrupole is focusing.  In a strong focusing lattice the βx,z functions  take
the  maximum values at the focusing quadrupoles, and the minimum at the defocusing ones, for
each plane.  Therefore the total chromaticity of a ring is dominated by the contribution of the
focusing quadrupoles, negative in both planes.



3 . SEXTUPOLE
   

Special magnets, the sextupoles, are inserted in the accelerator's lattice to correct the
natural chromaticity produced by the focusing elements.  In a sextupole a charged particle
passing off-center receives a kick proportional to the square of its displacement from the center,
i.e. a sextupole acts like a quadrupole with a focusing strength proportional to the displacement
of the closed orbit from the sextupole center.  This allows the chomaticity to be corrected
because for off-momentum particles the closed orbit is displaced with respect to the reference
one by a quantity Dδ, where D is the dispersion function and δ  the momentum deviation.

The field of a sextupole is given by :

Bx = g'xz
(17)

Bz = 
1
2  g' (x2 - z2)

with

g' =  
∂B2

z

∂x2
  .

In Fig. 1 an example of the pole shape of a sextupole magnet is given.

Fig. 1  Schematic representation of a sextupole magnet cross section

The equations of motion become:

x" +  
1
2   r (x2 - z2) = 0 where r =  

e
p0

  g' (18)



z" - rxz = 0 .
and the sextupole kick is :

dx' = - 
1
2   r (x2-z2) ds

(19)
dz' = r x z ds .

Substituting the total coordinates for  the off-momentum particle
xt = Dδ + x

(20)

zt = z

it becomes:

dx' = - 




D δ x + 

1
2 (Dδ)2 + 

1
2 (  x 2   -   z2  )  r ds

(21)
dz' =  [ ]D δ  z  + xz    r ds .

The first term of Eqs. (21)  is equivalent to the kick of a quadrupole with gradient -rDδ
and, analogously to Eq. (14), gives a tune shift

∆Q = 
1
4π

  β rD δ ds (22)

 and a contribution to the chromaticity:

∂Qx

∂δ
  =  

1
4π

 ⌡⌠
0

L

βx(s) r(s)D(s) ds 

(23)

∂Qz

∂δ
  = - 

1
4π

 ⌡⌠
0

L

βz(s) r(s)D(s) ds  .

4 . CHROMATICITY CORRECTION

The most efficient way to correct chromaticity is to perform a localized correction, i.e. to
insert a sextupole just in the same position of each quadrupole, where the chromatic effect is
produced.  In this ideal case the strength required to make the chromaticity zero is minimum and
is simply related to the quadrupole strength:

r  = - 
k
D 

lQ
lS

 (24)

where lq and ls are the lengths of the magnets.  In pratical cases one tries to put the chromaticity
correcting sextupole as close as possible to each quadrupole but often, for economical reasons,
less sextupoles with higher strengths are used.

In many cases, unfortunately,  localized correction is not possible.  For example collider
storage rings have low-β  insertions with very strong quadrupoles and zero dispersion
function.  Similarly, storage rings for synchrotron light production have many zero dispersion



straight sections for insertion devices, like wigglers and undulators, and strong focusing
quadrupoles to get low emittances.  In these cases a strong chromaticity produced in the
insertions has to be corrected in the arcs and the sextupole strengths become very high.

 If the arcs are built up by N periodic cells, two sextupoles are inserted in each cell, one in
a high βx place, to correct horizontal chromaticity, and the other in a high βz position to correct
the vertical one.  The sextupole intensities are obtained by solving the following linear system
of equations:

rH lSβx
H  DH + rVlS βx

V  DV = 
Q 'x
N  

(25)

-rH  lSβz
H  DH - rV lSβz

V  DV = 
Q 'z
N   .

where rH and rV are respectively the strengths of the horizontal and vertical chromaticity
correcting sextupoles and Q'x  , Q'z   are the values of the total chromaticity of the ring in the two
planes.  Since Q'x  and Q'z  are, usually, both negative it has to be: 

 rH  < 0      and     rV  > 0

and each sextupole corrects the chromaticity in one plane and increases it in the other.
     

In order to reduce the sextupole strengths, it is important to place them where the
dispersion is high and the β functions well separated. In fact if the horizontal sextupole is
placed where βx >> βz it is very effective in the horizontal plane and gives a negligible
contribution in the other plane (viceversa for the vertical sextupole).

Generally the vertical sextupole has a strength higher than the horizontal one because the
dispersion function D follows the behaviour of the horizontal β-function, i.e. it is higher at the
horizontal sextupole and lower at the vertical one. This is specially true for collider storage
rings, where, due to the low value of βz at the interaction region, the vertical chromaticity is
generally higher than the horizontal one.

The sextupoles necessary to correct the chromaticity introduce unwanted effects due to the
other two terms in Eqs. (21):

- the chromatic aberration term (Dδ)2

- the geometric aberration  term (x2 -  z2), xz .
                                                                                  

The  geometric aberration term introduces higher-order terms in the equations of motion.
In fact each sextupole inserted into the linear lattice, also in thin-lens approximation, doubles
the order of the polynomial which links the initial and final coordinates for one turn in the ring.
With N sextupoles in the ring the final coordinates depend on the 2N-th power of the initial one:

x(L) = a11 x(0) + a12 x'(0)+ a13 δ+...a1j x(0)2N .

When the nonlinear terms become important the stability of the particle trajectories in a
circular accelerator is no longer obtained from the one-turn matrix M (|tr M| = |2 cos µ| < 2), but
depends on the amplitude of the betatron and synchrotron oscillations so that the beam
dynamics becomes much more complicated.

In some very simplified cases an analytical calculation of the stability region is possible,
for example in the unidimensional case (x,x' or z,z' phase plane) in the vicinity of a single res-
onance.  In this case a closed curve, called the separatrix, can be found which divides the phase
plane in two regions, a stable one inside the separatrix and an unstable region outside.



In more general cases tracking is used, i.e. a computer code which, given the initial co-
ordinates for a particle in phase space, follows the evolution of a trajectory with the mathemati-
cal model chosen for the ring.  A trajectory is considered stable if it remains confined in a
certain phase space region for a given number of turns.  The initial coordinates of the particle's
tracking are changed to determine the largest region of phase space which contains all stable
trajectories. This region is called the dynamic aperture.

This procedure is limited by computer time and precision, in fact the range of initial co-
ordinates which can be explored in a six-dimensional phase space is very poor and the number
of turns is always much smaller with respect to the beam lifetime or damping time.

After the linear lattice design a dynamic aperture optimization has to be carried out by
choosing the distribution and the strengths of the sextupoles, the working point in the tune
diagram, and even modifying the linear lattice to reduce chromaticities and sextupole strengths.
A discussion of the methods for the determination and optimization of the dynamic aperture, a
very important problem in the design of new accelerators, is given by A. Ropert [4].

5 . GENERAL BENDING MAGNET

In rings with large radius of curvature and small dispersion function the contribution to
the chromaticity due to the bending magnets is negligible with respect to that of the
quadrupoles.  This is not the case for small rings.  In the following is presented a derivation of
the cromaticity formulae for the bending magnet valid also for small radii of curvature and
taking into account the variation of the magnetic field in the ends.

In a bending magnet the betatron motion is given by the following equations:

y" + ky(s)y = 0 (y = x or z) (27)

with
kx = -k+h2

kz = k

h = - 
e
p  Bz      ; k = 

e
p  

∂Bz
∂x   .

The solution of these equations is represented, in each plane, by the two-by-two betatron
matrix A.  This matrix can be written as the product of N matrices Ai:

A = ∏
i=1

 N

   A i 



lB

N  (28)

where lB is the length of the bending magnet. We choose N  to be large so that

∆s = 
lB
N   __>  0 .

This is equivalent  to subdividing the magnet into N thin pieces of length ∆s. To first



order in ∆s, Ai can be written as the product of a thin lens and a drift space:

Ai = 







1 0

-ky(s)∆s 1

  







1 ∆s

0 1

 (29)

Now we consider the changes that occur in the betatron motion (i.e. in the matrix Ai) for
a particle with a relative momentum deviation δ oscillating around the off-momentum closed
orbit. 

Fig. 2  Orbit lengthening

Two changes occur in the matrix Ai:

i) an orbit lengthening (see Fig. 2)

     
∆s(δ) = ∆s(1 + hDδ) (30)

ii) a change in the focusing strength of the thin lens due to:

-  momentum dependence of the focusing functions

 - variation of the length

- ky(s,δ) ∆s(δ) = - [ ky(s) +  k1y(s)δ + ky(s)hDδ] ∆s (31)

where k1y is the derivative:  k1y = ∂ky/∂δ .

As already seen, a change ∆k in the focusing function at the position s gives a tune shift :

∆Q = - (1/4π) β(s) ∆k (32)

and, similarly, a change ∆s in the length of a drift space gives:



∆Q = (1/4π ) γ (s)∆s (33)

where γ (s) is the Twiss function.
Integrating over all the circumference gives

∂Qy

∂δ
   = 

1

4π
   ⌡⌠

0

L

{ βy [ k1y + kyhD ] + γyhD }  ds . (34)

This formula is a generalization of that for a quadrupole, in fact for a quadrupole we have
h = 0 and k1y = dky/dδ = -ky and we obtain again the formulae of Eqs. (15) and (16).

In order to calculate k1y  for the general bending magnet we need to know the fields seen
by an off-momentum particle.  First we write the second-order magnetic field expansion in the
reference system of the design orbit for zero momentum deviation.  The formulation of the field
equations is that given by K. Steffen [5] with the only difference that h(s) has the opposite sign
and its dependence on s is explicitly given, i.e:

h(s) = [h + h's + 
1
2  h"s2 + 0(3)] . (35)

As it will be useful in the following to distinguish the second-order terms they have been
enclosed in square brackets:

Bz = 
p
e 









-h - h's + kx +




-

1
2 h"s2 + k'xs+ 

1
2 rx2+

1
2 (h" -  hk -  r)  z2  + 0(3)  

Bx = 
p
e { }kz + [ ]k'zs + rxz  + 0(3)  (36)

Bs = 
p
e { }-h'z + [ ](hh' + k')xz  + 0(3)   .

The previous equations are completely  general, they are only based on the assumption of
a field symmetry with respect  to the median plane (z = 0).  Therefore, if we change the mo-
mentum of the particle, the origin and the orientation of the axis in the z = 0 plane, the magnetic
field has always the same form, but different values of the coefficients.

Now we make a transformation to the reference system of the off-momentum particle, as
shown in Fig. 3:

p = p*/(1+δ)
z = z* (37)
x = d + x* cos θ + s* sin θ
s = - x* sin θ + s* cos θ

where d = Dδ and θ = D'δ.



Fig. 3  Transformation of the reference system
The field equations change in the following way:

Bz* = Bz[x
→

(x
→

*) ]

Bx* = Bx[x
→

(x
→

*) ] cosθ - Bs[x
→

(x
→

*) ] sinθ (38)

Bs* = Bx[x
→

(x
→

*) ] sinθ + Bs[x
→

(x
→

*) ] cosθ .

We are interested in the first-order field expansion, therefore we take only the first-order
terms in Eqs. (36) and make the substitution :

Bz* = 
p

e(1+δ)
 [ ]-h + kd + x*( )k cosθ +h' sinθ  -  s*( )h' cosθ  - k sinθ  

Bx* =  
p

e(1+δ)
 z[ ]k  cosθ + h'  sinθ  (39)

Bs* =  
p

e(1+δ)
 z[ ]k  sinθ  - h'  cosθ   .

As already said, the various terms in the field equations have to be the same as in
Eqs. (36), therefore equating the corresponding first-order terms we get the new coefficients:

h* = 
h-kd

1+δ
 

k* = 
k cosθ + h' sinθ

1 + δ
 (40)

h'* = 
h' cosθ - k sinθ

1 + δ
   .

Using

sinθ ~ D'δ ; cosθ ~ 1

and keeping only first-order terms in δ we get:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D')
(41)

kz* =  k* = k +  δ (-k + h'D') .



We obtain the values of k1y(s) as:

k1x = 
∂kx*

∂δ
   = k - 2h2 - 2hkD - h'D'

(42)

k1z = 
∂kz*

∂δ
   = -k + h'D' .

Inserting these values into Eq. (34) we obtain the final formulae:

∂Qx

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (k -2h2 - 2hkD  - h'D') + βhD (h2-k) + γhD}ds 

(43)

∂Qz

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (- k + hkD + h'D') + γhD}ds  .

As we used only first-order terms in this derivation the contribution of the sextupole term
βrD, calculated in Section 3, does not appear  in Eqs. (43). In Appendix I a similar derivation
using the second-order field expansion is given.  The final formulae contain the same terms as
Eqs. (43) plus the sextupolar terms coming from the second-order terms in the field expansion
which are linear in x and, applying the translation x = x* + Dδ  of Eqs. (37), produce linear
terms.

5. END-FIELD EFFECTS

From Eqs. (43) it is possible to calculate the contribution of the fringing fields to the
chromaticity, once an expression for h'(s) is known.  In a paper by W. Hardt, J. Jä ger and D.
Mö hl [6] the same formulae are obtained with a different derivation, moreover a detailed
calculation of the fringing field effects is given.  For completeness we report the final formula
obtained there.  In Fig. 4 is reproduced the illustration of Ref. [6] which shows the
schematization used for the end fields, the corresponding parameter definitions are listed below.

s1 beginning of the central part

s2 end of the central part

"1" entrance of the fringing region

"2" exit of the fringing region

θ entrance or exit angle of the trajectory
1

τ  cos3θ
 radius of curvature of the end faces

h = 
1

ρ
  curvature of the reference orbit

k = - 
1

Bρ
 
∂Bz(0,0,s)

∂x  quadrupole component



r = - 
1

Bρ
 
∂2Bz(0,0,s)

∂x2
 sextupole component

D, D' dispersion function and its derivative

α, β, γ Twiss functions.

Fig. 4  Field boundaries for a bending magnet

The formulae to calculate the chromaticity of a  magnet  in terms of the lattice functions at
the reference orbit are:

∂Qx

∂δ
   = - 1

4π
  ⌡⌠

s1

s2

[ ( h2-k )β + rDβ  + h (2kDβ  + 2D'α  - Dγ)]ds 

+[ ]-tgθ (hβ + 2Dkβ) + htg2θ (βD' - 2αD + hDβtgθ) +τhβD  "1"

+[ ]-tgθ (hβ + 2Dkβ) - htg2θ (βD' - 2α D - hDβtgθ) + τhβD  "2"
(44)

∂Qz

∂δ
   = - 1

4π
  ⌡⌠

s1

s2

[ kβ - rDβ  - h (kDβ + Dγ)]ds 

+[ ]tgθ (hβ + 2Dkβ) - htg2θ (βD' - 2α D - hDβtgθ) - βhD'-τhβD  "1"

+[ ]tgθ (hβ + 2Dkβ) + htg2θ (βD' - 2α D + hDβtgθ) + βhD' - τhβD  "2"
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APPENDIX 1

CHROMATICITY FOR A BENDING MAGNET TAKING INTO ACCOUNT
SECOND-ORDER TERMS

A1.1 DERIVATION OF THE CHROMATICITY FORMULAE

The chromaticity formulae in Section 5 are obtained using the first-order expansion of the
magnetic field.  To obtain an expression for the chromaticity which contains also the sextupolar
terms, the same derivation is repeated here using also the second-order terms in the field
expansion given by Eqs. (36).  To get the new expressions for the magnetic field we apply the
reference system transformation described in Section 5 to the second-order field expansion of
Eqs. (36).

Following the derivation given in Section 5 and using :

sinθ ~ D'δ ; cosθ ~ 1

we get the expressions for the magnetic field in the new reference system:

Bz* = 
p

e(1+δ)
  [-h -h'(-x*D'δ + s*) + k(Dδ+x*+s*D'δ)+ k'(Dδ + x*+s*D'δ)(-

x*D'δ+s*)

                      + 
1
2  r (Dδ + x* + s*D'δ)2 + 

1
2 (h"-hk-r)  z2]

Bx* =  
p

e(1+δ)
  z{k+k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ) - [-h'-h"(-x*D'δ + s*)

                       + (hh' + k') (Dδ + x*+s*D'δ)] D'δ} (45)

Bs* =  
p

e(1+δ)
  z{[k + k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ)] D'δ -h' - h"(-x*D'δ + s*) 

                       + (hh'+k')(Dδ + x* + s*D'δ)} .

Neglecting the second-order terms, except for the chromatic ones, i.e. the terms xδ, zδ
and sδ, we obtain:

Bz* = 
p

e(1+δ)
  [-h + kDδ + x*(h'D'δ + k + rDδ) + s*(-h' + kD'δ + k'Dδ) ]

Bx* = 
p

e(1+δ)
  z[k +rDδ +h'D'δ] (46)



Bs* = 
p

e(1+δ)
  z[-h'+ kD'δ  + (hh'+k')Dδ] .

Comparing these equations with Eqs. (36) and equating the corresponding first-order
terms, we get the new coefficients:

h* = 
h-kDδ
1+δ

 

k* = 
k + h'D'δ + rDδ

1 + δ
 (47)

h'* = 
h' + kD'δ + (hh'+k')Dδ

1  + δ
   .

Now, following the same procedure as in Section 5, we use the coefficients h* and k*
given by Eqs. (47) to obtain the values of the focusing strength for the off-momentum particle:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D' - rD)
(48)

kz* =  k* = k +  δ (-k + h'D' + rD).

Then, we get the variation of the focusing strength with momentum, k1y(s) :

k1x = 
∂kx*

∂δ
   = k - 2h2 - 2hkD - h'D' -rD

(49)

k1z = 
∂kz*

∂δ
   = -k + h'D' +rD .

The variation of the orbit length with momentum has been already taken into account in
Eq. (34), therefore inserting Eqs. (49) into (34) we obtain the final formulae for the
chromaticity, which are more complete than those of Eqs. (43) because they contain also the
sextupolar terms.

∂Qx

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (k - 2h2 - 2hkD  - h'D' -rD) + βhD (h2-k) + γhD}ds 

(50)

∂Qz

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (- k + hkD  + h'D' +rD) + γhD}ds  .

A1.1.1 An observation on Eqs. (47)

Let us notice that the  coefficient h'* given by Eqs. (47) is obtained as the coefficient of
the variable z in the equation (46) for Bs, and that it is different from the coefficient of s which
appears in the expression for Bz.  This ambiguity comes from the fact that, while for Eqs. (36)
the relation:



∂Bz
∂s    = 

∂Bs
∂z    (51)

is valid, this is not true for Eqs. (46), for which it is:

 
∂Bs*
∂z    ≠ 

∂Bz*
∂s*   . (52)

Equations (46) are anyway correct, but the new variable s* has to be modified. In
cylindrical coordinates (z,x,φ), the radial component of the Maxwell equation is written:

1

ρ
 
∂Bz

∂φ
   = 

∂Bφ
∂z    . (53)

When making the transformation given by Eqs. (37), which is essentially a translation
in the radial direction, in Eqs. (53) ρ has to be replaced by ρ + Dδ.  As a consequence, the
Maxwell equation is  written:

1

ρ+Dδ
  
∂Bz*

∂φ
   = 1

1+hDδ
  
∂Bz*
∂s*    =  f(∂Bs*,∂z) ;        h = 

1

ρ
   . (54)

This relation is in effect verified by Eqs. (46) to first order in δ.


