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CHROMATICITY
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Frascati National Laboratories- INFN, Frascati, Italy

Abstract

A derivation of chromaticity formulae for circular accelerators is given,
including the contribution of quadrupoles and sextupoles and with
specia attention to the general bending magnet. These are also exact for
small radii of curvature.

1. INTRODUCTION

In the design of storage rings there are many similarities with the geometry of optics. In
analogy to chromatic aberrations in optics, in particle accelerators a parameter called
chromaticity is introduced. In optics rays of different wavelength find a different refraction
index in alens and therefore experience a different focal length. Similarly in a storage ring
particles of different momentum see a different focusing strength in the quadrupoles and, as a
consequence, have a different betatron oscillation frequency.

We define the chromaticity as the variation of the betatron tune Q with the relative
momentum deviation & (0= Ap/p):
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Sometimes the relative chromaticity ¢ is used:

Let us point out the importance of the chromaticity in circular accelerators. The
chromaticity has a deleterious influence on the beam dynamics for two main reasons.

First, a momentum spread gy, is always present in a particle beam, therefore the chro-
maticity produces atune spread in tﬁe beam:

AQ = Q' op. )

Inlarge rings, with high tune values, this tune spread is so large that it is impossible to
accommodate the beam in the space between the resonance lines in the tune diagram. How
dangerous these resonances can be for beam stability has been described by E.J.N. Wilson [1].

Second, in the case of bunched beams the chromaticity produces a transverse instability
called "head-tail effect” (see Ref. [2] for adetailed treatment). Thewake field produced by the
leading part of a bunch (the head) excites an oscillation of the trailing part (thetail) of the same
bunch. In haf a synchrotron period the head and thetail of the bunch interchange their
positions and the oscillation can be anti-damped and may cause abeam loss. A complete
mathematical treatment shows that the growth rate of this instability is much faster for negative
than for positive chromaticity values and vanishes for zero chromaticity. It may be counteracted
by a transverse feedback system, but this makesmachine operation much more critical.
Therefore most of the storage rings operate with zero or slightly positive chromaticity.


https://core.ac.uk/display/25265695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The "natura” chromaticity of a storage ring isthat due only to the elements of the linear
lattice, i.e. quadrupoles and dipoles. Aswill be shown later the "natural” chromaticity of a
strong focusing storage ring is aways negative and cannot be made zero. To correct the
chromaticity nonlinear el ements, the sextupole magnets, have to be introduced into the lattice.

In strong focusing lattices the main contribution to the chromaticity is due to the
quadrupoles, in particular, in large rings with very large radius the contribution of the dipoles
can be neglected; for small rings, however, the dipole contribution is important and has to be
carefully calculated.

In Sections 2 and 3 it is shown how to calculate the chromaticity due to the quadrupoles
and sextupoles respectively. Then, in Section 4, the effects on beam dynamics due to the
chromaticity correcting sextupoles are briefly discussed. Finally, in Section 5, a detailed
derivation of the chromaticity for ageneral bending magnet is given, following the approach
given by M. Bassetti in Ref. [3], which is very ssimple and intuitive, avoiding long math-
ematical derivations.

2. QUADRUPOLE

L et us consider the motion in a quadrupole magnet of a charged particle which obeys the

betatron equation:

y'+ky=0 (y=xorz 4
with

ky = -k

kz = k.

Now we consider the dependence of k on the particle momentump:
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where 0 is the relative momentum deviation respect to the reference particle. Taking the first
order termin ditis:

k= ko (1-9) = ko - koo . (6)

The chromatic variation has awaysthe opposite sign with respect to the focusing

strength, therefore a particle with alarger energy sees a weaker focusing strength. Conversely

for light, the variation of the refraction index with the wavelength can be either positive or

negative and the chromatic effect can be corrected to first order by combining lenses of different
material.

Substituting (6) into the equation of motion for a quadrupole yields:
y'=-ky(1-9)y (7)

which is equivalent to adding to the focusing quadrupole a defocusing one with a strength -kyd
and viceversafor the defocusing quadrupole.

In athin section of a quadrupole of infinitesmal lengthds the particle recelves an angular
kick

dy' = y" ds=ky Sy ds (8)



described by athin lens (defocusing for the focusing quadrupole) matrix:
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To compute the effect of thiskick on the betatron tune, the one-turn matrix is obtained by
multiplying the unperturbed matrix (6= 0) by thisthin lens.

"= % cosily  Bysinuy E% 1 0 % _ % cospy+ Bysinpykydds — Bysinpy E(lO)
%-si Niy/By  COSLly %%kyéds 1 E %a Nity/By+ cospiykydds  costly E

Then we compute the trace of M to get the new value of iy (Ly=271Qy):

1 1.
> Tr M = cos(uy+duy) = cospy + > Bysinpy kyd ds (11)
since:
d(costty) = cos (uy+duy) - costly = -Sintly dily (12)
we get:
_ 1
duy = "5 By ky dds (13)
or
1
dQy=-— By ky dds. 14
Q= By (14)

Integrating over al the ring circumferencel., we obtain the total chromaticity for the two
planes, horizontal and vertical:

L
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From these formulae we can see why, in a ring with strong focusing lattice, the
chromaticity is always negative. A quadrupoleisafocusing lensin one plane, either horizonta
or vertical, and defocusing in the other one. Thestrength ky ; is positive in the focusing plane
(negative in the defocusing plane) and the chromaticity has the opposite sign, therefore it is
negative when the quadrupole isfocusing. In a strong focusing lattice the By > functions take
the maximum values at the focusing quadrupoles, and the minimum at the defocusing ones, for
each plane. Therefore the total chromaticity of aring is dominated by the contribution of the
focusing quadrupoles, negative in both planes.



3. SEXTUPOLE

Specia magnets, the sextupoles, are inserted in the accelerator's lattice to correct the
natural chromaticity produced by the focusing elements. In a sextupole a charged particle
passing off-center receives akick proportional to the square of its displacement from thecenter,
I.e. asextupole acts like a quadrupol e with afocusing strength proportional to the displacement
of the closed orbit from the sextupolecenter. This alows the chomaticity to be corrected
because for off-momentumparticles the closed orbit is displaced with respect to the reference
one by aquantity DJ, where D is the dispersion function and  the momentum deviation.

Thefield of asextupoleisgiven by :
Bx = g'xz
(17)
B,=3 9 (02~ 2)
with

N

97 %

In Fig. 1 an example of the pole shape of a sextupole magnet is given.
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Fig. 1 Schematic representation of a sextupole magnet cross section

The equations of motion become:

e L 2.2y = - &g
x+§r(x-z)—0 Wherer—pog (18)



Z'-rxz=0.
and the sextupolekick is:

dx' = - % r (x2-z2) ds

(19)
dZ =rxzds.
Substituting the total coordinatesfor the off-momentum particle
x= Do+ x (20)
4=z
it becomes:
: 1 1
dx' = -@)5“ 5(D)2+ 5 (x2- 22 )grds
(21)

dz=[Ddoz+ xz] rds.

Thefirst term of Egs. (21) is equivalent to the kick of a quadrupolewith gradient -rDd
and, analogoudly to Eq. (14), gives atune shift

AQ:i BrD dds (22)
47

and a contribution to the chromaticity:
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4. CHROMATICITY CORRECTION

The most efficient way to correct chromaticity is to perform alocalized correction, i.e. to
insert a sextupole just in the same position of each quadrupole, where the chromatic effect is
produced. Inthisideal case the strength required to make the chromaticity zero is minimum and
issmply related to the quadrupol e strength:

| (24)
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where |l and |s are the lengths of the magnets. In pratical cases onetries to put the chromaticity
correcting sextupole as close as possible to each quadrupole but often, for economical reasons,
less sextupoles with higher strengths are used.

In many cases, unfortunately, localized correction is not possible. For example collider
storage rings have low-B insertions with very strong quadrupoles and zero dispersion
function. Similarly, storage rings for synchrotron light production have many zero dispersion



straight sections for insertion devices, like wigglers and undulators, and strong focusing
guadrupoles to get low emittances. In these cases a strongchromaticity produced in the
insertions has to be corrected in the arcs and the sextupol e strengths become very high.

If the arcs are built up by N periodic cells, two sextupoles are inserted in each cell, one in
ahigh B place, to correct horizontal chromaticity, and the other in a high 3, position to correct
the vertical one. The sextupole intensities are obtained by solving the following linear system
of equations:

rngﬂ; DH + rvlSB)/( DV :QT;(
(25)

N -
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where ry and ry are respectively the strengths of the horizontal and vertical chromaticity
correcting sextupolesand Q; , Q, arethe values of the total chromaticity of thering in the two
planes. Since Q and Q, are, usually, both negative it has to be:

rh<0 and ry>0
and each sextupole corrects the chromaticity in one plane and increases it in the other.

In order to reduce the sextupolestrengths, it is important to place them where the
dispersion is high and the 8 functions well separated. In fact if the horizontal sextupole is
placed where By >> 3, it is very effective in the horizontal plane and gives a negligible
contribution in the other plane (viceversafor the vertical sextupole).

Generally the vertical sextupole has a strength higher than the horizontal one because the
dispersion function D follows the behaviour of the horizontal S-function, i.e. it is higher a the
horizontal sextupole and lower a the vertical one. This is specially true for collider storage
rings, where, due to thelow value of 3; at the interaction region, the vertica chromaticity is
generally higher than the horizontal one.

The sextupoles necessary to correct the chromaticity introduce unwanted effects due to the
other two termsin Egs. (21):

- the chromatic aberration term (DJ)2
- the geometric aberration term (x2- 72), xz.

The geometric aberration term introduces higher-order terms in the equations of motion.
In fact each sextupole inserted into the linear lattice, dso in thin-lens approximation, doubles
the order of the polynomia which linkstheinitial and final coordinates for one turn inthe ring.
With N sextupoles in the ring the final coordinates depend on the 2N-th power of theinitial one:

x(L) = ag1 X(0) + a12 X(0)+ ay3 &+...aqj x(0)2".

When the nonlinear terms become important the stability of the particle trgjectories in a
circular accelerator is no longer obtained from the one-turn matrixM (Jtr M| = |2 cos y| < 2), but
depends on the amplitude of the betatron and synchrotron oscillations so that the beam
dynamics becomes much more complicated.

In some very simplified cases an analytical calculation of the stability region is possible,
for example in the unidimensional case (x,x' or z,Z phase plane) in the vicinity of a singleres-
onance. In thiscase aclosed curve, called the separatrix, can be found which dividesthe phase
plane in two regions, a stable one inside the separatrix and an unstable region outside.



In more general cases tracking is used, i.e. a computer code which, given the initia co-
ordinates for a particle in phase space, follows the evolution of a trgjectory withthe mathemati-
ca mode chosen for the ring. A trgectory is considered stable if it remains confined in a
certain phase space region for agiven number of turns. The initial coordinates of the particle's
tracking are changed to determine the largest region of phase space which contains al stable
trgjectories. Thisregion is called the dynamic aperture.

This procedure is limited by computer time and precision, infact the range of initial co-
ordinates which can be explored in a six-dimensional phase space is very poor and the number
of turnsis aways much smaller with respect to the beam lifetime or damping time.

After the linear lattice design a dynamic aperture optimization has to be carried out by
choosing the distribution and the strengths of the sextupoles, the working point in the tune
diagram, and even modifying the linear lattice to reduce chromaticities and sextupole strengths.
A discussion of the methods for the determination and optimization of the dynamicaperture, a
very important problem in the design of new accelerators, is given by A. Ropert [4].

5. GENERAL BENDING MAGNET

In rings with large radius of curvature and small dispersion function the contribution to
the chromaticity due to the bending magnets is negligible with respect to that of the
quadrupoles. Thisis not the case for small rings. In the following is presented aderivation of
the cromaticity formulae for the bending magnet validalso for smal radii of curvature and
taking into account the variation of the magnetic field in the ends.

In abending magnet the betatron motion is given by the following equations:

y' +ky(s)y=0 (y=xor2) (27)
with
kx=-k+h2
kZ: k
e _e 0Bz
h—'E BZ ' k—ﬁ W .

The solution of these equations is represented, in each plane, by the two-by-two betatron
matrix A. This matrix can be written as the product of N matrices A;:

N
_ B
A= |_| Al NG (28)
i=1

where Ig is the length of the bending magnet. We chooseN to be large so that

B _> 0.

AS:W

Thisis equivalent to subdividing the magnet into N thin pieces of length As. To first



order in As, A can be written as the product of athin lens and a drift space:

0 1 O o1 oas g
Ai=[] o [ (29)
D-ky(s)As 1 o 1 [0

Now we consider the changes that occur in the betatron motion (i.e. in the matrix A;j) for
a particle with a relative momentum deviation d oscillating around the off-momentum closed
orbit.

AS(1+XIP)

l . X=DS§

h=1/p

Fig. 2 Orbit lengthening

Two changes occur in the matrix A;:
i) an orbit lengthening (see Fig. 2)
A9(0) = AS(1 + hDJ) (30)

il) achange in the focusing strength of the thin lens due to:
- momentum dependence of the focusing functions

- variation of the length
-ky(5,0) 45(8) = - [ ky(9) + k()5 + ky(9)hDY] As (31)
where kyy isthe derivative: kyy = dky/dd.

As already seen, a change Ak in the focusing function at the positions gives a tune shift :

AQ = - (/4n) B(s) Ak (32

and, similarly, achange Asin the length of adrift space gives:



= (U41) y(9)4s (33)

where y (s) isthe Twiss function.
Integrating over al the circumference gives

L
:4i [{By [ kiy + kyhD] + yhD } ds . (34)

05 0

Thisformulais ageneralization of that for a quadrupole, in fact for a quadrupole we have
h =0 and k1y = dky/dd = -ky and we obtain again the formulae of Egs. (15) and (16).

In order to calculatekyy for the general bending magnet we need to know the fields seen
by an off-momentum partlcle First we write the second-order magnetic field expansion in the
reference system of the design orbit for zero momentum deviation. The formulation of thefield
equationsisthat given by K. Steffen [5] with the only difference that h(s) has the opposite sign
and its dependence on sis explicitly given, i.e:

h(9) = [h+ his+ 5 h's2+ 0(3)] . (35)

Asit will be useful in the following to distinguish the second-order terms they have been
enclosed in square brackets:

POy A2 4 kst Lrx2+t (h - hk - r) 2200 o
Bz—egh h's + kx+Dzhs+kxs+ 2rx+2(h hk r)zD+0(3)g
BX:E{ kz + [K'zs + rxz]+ O(3) (36)

Bs= B¢ -hz+ [(hh' + k)xz]+ 0(3),

The previous equations are completely general, they are only based on the assumption of
afield symmetry with respect to the median plane (z = 0). Therefore, if we change the mo-
mentum of the particle, the origin and the orientation of the axisin thez = 0 plane, the magnetic
field has aways the same form, but different values of the coefficients.

Now we make atransformation to the reference system of the off-momentum particle, as
shown in Fig. 3:

p=p*/(1+9)
z=7 (37
Xx=d+ x*cosf+ s*snf

S=-Xx*sn@+ s* cosf

whered=Ddand 8=D'0.



Fig. 3 Transformation of the reference system
The field equations change in the following way:
Bz* = BX(X*)]
By* = By[X(X*)] cosf- BX(X*)] sino (38)
Bs* = By X(X*)] sin6+ B X(X*) ] cosé .

We areinterested in the first-order field expansion, therefore we take only the first-order
termsin Egs. (36) and make the substitution :

B = P [-h + kd + x*(k cos@ +h' sinf) - s*(h' cosf - ksinf)]
&1+9)
r= P k cosf + h' sin6 39
= g ] (39)
Bs* = P 7k sinf - h' cosO] .
&(1+9)

As dready said, the various terms in the field equations have to be the same as in
Egs. (36), therefore equating the corresponding first-order terms we get the new coefficients:

W:hm
1+9

_ kcos@ + h'sind
1+90

k*

(40)

_h'cosf - ksinf
1+90

h'*

Using
sn6~D'd; cosf~1
and keeping only first-order termsin d we get:
ket = h*2-k* = (h2-K) + O(-2h2-2hkD + k- h'D")

(41)
k* = k* = k + 5(k+ hD).



We obtain the values of kyy(s) as:

kix = M k- 2h2- 20kD - hD
(42)
okz*
kiz = =-k+ hD'.
1z 0
Inserting these values into Eq. (34) we obtain the final formulae:
L
1 [{B (k-2n2- 2nkD - h'D') + BhD (h2-k) + yhD}ds
20 41T 0 (43)
0 L
, _ 1
—— = -k + hkD + h'D") + yhD}ds .
2= £ {B( ) + yhD}

Aswe used only first-order termsin this derivation the contribution of the sextupole term
pBrD, calculated in Section 3, does not appear in Egs. (43). In Appendix | a similar derivation
using the second-order field expansionisgiven. The final formulae contain the same terms as
Egs. (43) plus the sextupolar terms coming from the second-order terms in the field expansion
which are linear inx and, applying the trandation x = x* + DJ of Egs. (37), produce linear
terms.

5. END-FIELD EFFECTS

From Egs. (43) it is possible to caculate the contribution of the fringing fields to the
chromaticity, once an expression for h'(s) is known. In apaper by W. Hardt, J. Jager and D.
Mo hl [6] the same formulae are obtainedwith a different derivation, moreover a detaled
calculation of the fringing field effects isgiven. For completeness we report the final formula
obtained there. In Fig. 4 is reproduced the illustration of Ref. [6] which shows the
schematization used for the end fields, the corresponding parameter definitions are listed below.

S1 beginning of the central part

S end of the central part

"1 entrance of the fringing region

"2" exit of the fringing region

6 entrance or exit angle of the trgjectory
L radius of curvature of the end faces

T cos30

h= i curvature of the reference orbit
P

k=- i% guadrupole component

Bp



_ 1 ?B4(0,0,9)

= 5—@@
D, D' dispersion function and its derivative
a, B,y Twiss functions.

sextupol e component

6,

1
T;(asﬂ 2

Fig. 4 Field boundariesfor a bending magnet

The formulae to cal culate the chromaticity of a magnet interms of thelattice functions a
the reference orbit are:

)

% - -%Tsjl[ (h2-k)B + rDB + h (2kDB + 2D'a - Dy)]ds

+[-tg8 (hB + 2Dkp) + htg26 (BD' - 2aD + hDBtg6) + thBD] g

+[-tgf (hB + 2DKP) - htg26 (BD" - 2aD - hDBtgl) + ThBD] wm

a4

o . (44)
Nz _ 1 ] ]
— e [{kB-rDB - h (kDB + Dy)]ds

s1
+[tg6 (hB + 2DkP) - htg26 (BD' - 2aD - hDBtg6) - BhD'-ThBD] yn

+[tg0 (hB + 2Dkp) + htg26 (BD' - 2aD + hDptgb) + BhD' - ThBD] wo
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APPENDIX 1

CHROMATICITY FOR A BENDING MAGNET TAKING INTO ACCOUNT
SECOND-ORDER TERMS

Al.1 DERIVATION OF THE CHROMATICITY FORMULAE

The chromaticity formulae in Section 5 are obtained using the first-order expansion of the
magnetic field. To obtain an expression for the chromaticity which contains alsothe sextupolar
terms, the same derivation is repeated hereusing also the second-order terms in the field
expansion given by Egs. (36). To get the new expressions for the magnetic field we apply the
reference system transformation described in Section 5 to the second-order field expansion of
Egs. (36).

Following the derivation givenin Section 5 and using :

sin6~D'd : cosf~1

we get the expressions for the magnetic field in the new reference system:

Bf = —P— [-h -h'(-x*D'6 + s*) + k(DS+x*+s*D'd)+ K(DS + x*+s*D'O)(-
&(1+9)
x*D'3+s*)
1 ermn2 . L
+5 1 (D3+ x* + s*D'9)2 + 5 (h'-hk-r) 22
Bt = —— Ak+K(-x*D'3+ &) + 1 (D3+ X* + D) - [-N-h"(-x* D'+ )
&(1+9)

+ (hh' + K) (DO + x*+s*D'd)] D'&) (45)

Be = e(lp 5 ALK+ KEDG+ )+ 1(D5+ x + SDG| D3N - D8+ =)
+

+ (hh'+K)(Do+ x* + s*D'J)} .

Neglecting the second-order terms, except for the chromatic ones, i.e. the terms x9d, zd
and so, we obtain:

B = e(1p 3 [-h+ kDd+ x*(h'D'd+ k+ rD9J) + s*(-h' + kD'd+ kDJ) |
+

By*

__Db .
i Zk+rD5+h'D'¢] (46)



— p 1 1 1 1
Bs* = -h'+ kD'6 + (hh'+k’)DJ] .
<= g A (hh'+K)DE]
Comparing these equations with Egs. (36) and equating the corresponding first-order
terms, we get the new coefficients:

b = h-kDd
1+9
k*:k+hD5+rD5 (47)
1+ 0
h* = h'+ kD'd + (hh'+k')Dd

1+90

Now, following the same procedure as in Section 5, weuse the coefficientsh* and k*
given by Egs. (47) to obtain the values of the focusing strength for the off-momentum particle:

ket = h*2-k* = (h2-K) + &(-2h2-2hkD + k- h'D' - D)

(48)
k* = k* =k + O0(-k+ h'D' + rD).
Then, we get the variation of the focusing strength with momentum, kyy(s) :
Kix = K - 2h2- 2hkD - WD -rD
(49)

kiz=2Z = k4D +D.
5

The variation of the orbit length with momentum has been already taken into account in
Eq. (34), therefore inserting Egs. (49) into (34) we obtain the fina formulae for the
chromaticity, which are more complete thanthose of Egs. (43) because they contain also the
sextupolar terms.

L
&:L - 2. -h'D' - 2.
~ 4n(j){ﬁ(k 2h2- 2hkD - h'D' -rD) + BhD (h2-k) + yhD}ds
(50)
L
%:ﬁé{ﬁ(-m hkD + h'D' +rD) + yhD}ds .

Al.1.1 An observation on Eqs. (47)

Let us notice that the coefficient h'* given by Egs. (47) is obtained as the coefficient of
the variable zin the equation (46) for Bs, and that it is different from the coefficient of swhich
appearsin the expression for B;. This ambiguity comes from the fact that, while for Egs. (36)
the relation:



oB; _ 0Bs
x "oz (51)

isvalid, thisis not true for Egs. (46), for whichitis:
0Bs*  0B*
Z ToF (52)

Equations (46) are anyway correct, but the new variable s* has to be modified. In
cylindrical coordinates (zx,¢), the radial component of the Maxwell equation is written:
1Bz _ 0B
=== ==L (53)
p ¢

When making the transformation given by Egs. (37), which is essentially a trandation
in the radia direction, in Egs. (53) p has to be replaced by p + Dd. As a consequence, the
Maxwell equation is written:

1 B 1 0B
p+tDd dp  1+hDg 95"

- f(dBe.d): h=i . (54)

Thisrelation isin effect verified by Egs. (46) to first order ino.



