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Abstract
Nowadays, the performance of most machines is limited by Coherent
Instabilities.  It is one of the most important collective effects which
prevents the current from being increased above a certain threshold
without the beam quality being spoiled.  For the transverse instabilities
we will follow a very similar approach to the longitudinal case in the
previous chapter.  Thus, a large number of basic explanations and
comments again apply and will not be repeated.  Wherever relevant we
will insist on the differences.  With regard to the scope of the lecture,
the physical mechanisms which will be considered throughout can be
applied to any type of machine :

- linear accelerators,
- circular accelerators,
- storage rings

and beam:
- bunched beams
- continuous beams.

1 . INTRODUCTION

In the longitudinal plane, the coherent motion is driven by a longitudinal modulation of
particle density which creates a longitudinal electric field along the beam axis.  When reverting
back to the example of the round pipe, this self field is associated with a return or image current
Iw flowing downstream and uniformly distributed on the inner side of the chamber wall.

In the transverse case, we will arbitrarily choose the X plane, the perturbation consists of
a slight initial transverse displacement of the beam.  Due to the focusing of the external guide
field, the beam then oscillates from side to side when progressing along the machine.

The first remark is that the total wall current Iw  has the same magnitude as before but is
no longer uniformly distributed in the wall.  When comparing the new situation with the

unperturbed one, the beam sees a differential current ± δIw which flows in the opposite
direction on either side of the pipe.

x

z

δIw
Fig. 1

This requires a longitudinal electric field, which varies linearly in strength across the
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aperture, and also a vertical and constant dipole magnetic field.  This magnetic field acts back on
the beam.

Longitudinal
electric field

Dipole
magnetic field

- δIw

δIw

Beam current

Fig. 2

This magnetic field can either:

– increase the initial displacement thus leading to an instability, or,

– reduce the initial displacement and therefore stabilize the beam.

2 . SINGLE-PARTICLE TRANSVERSE MOTION

The transverse unperturbed motion is described in the following form:

x + ϕ 2 x = 0 (1)

where ϕ = ωβ = Qxω  is the betatron advance per second, Qx the particle horizontal tune,
and ω the particle revolution frequency.

The transverse position will be expressed as:

x(t) = xcosϕ(t) =xcos[ ϕ dt +ϕ0
0

t
]

(2)

The couple ϕ , x   instead of x , x   will be used for the description of the transverse



motion in canonical variables.

ϕ = dϕ
dt

 and x = x2+(x
ϕ

)
2

1
2

(3)

are two invariants of the unperturbed motion.

Both parameters Qx and ω  depend on momentum p// and transverse betatron amplitudes

x  and z .
In the following we will restrict ourselves to:

 
ω = ω (p//)

and
Qx = Qx(p//,x) (4)

Concerning the dependence on momentum, we introduce the following complementary
definitions.

ξ = 
p//
Qx

 dQx
dp//

 and ωξ  = Qx0ω0
ξ
η

(5)

where ξ is called the machine chromaticity.

We develop ϕ  with respect to the reference

p//0 , Qx0 .

We assume an unperturbed longitudinal motion:

τ = τ0 + τt with constant τ
and obtain

ϕ = Qxω = Qx0ω0(1-τ) + ωξτ + ϕ(x)
(6)

ϕ = ϕ
0

t
dt + ϕ0 = Qx0ω0(t-τ) + ωξτ + ϕ(x)t + ϕ0

(7)

Later on, we will perturb the motion by applying the transverse beam self field in the
right-hand side of the equation of motion.

x +ϕ2x = e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(8)

In the ϕ  , x  plane, the quantity of interest will be



x = d
dt

 x2+(x
ϕ

)
2

1
2 = - sin ϕ

ϕ
 (x + ϕ2x)

(9)

Therefore, the perturbed motion will be studied by means of:

x = - sin ϕ
ϕ

 e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(10)

3 . TRANSVERSE SIGNAL OF A SINGLE PARTICLE

The transverse PU electrodes deliver a signal proportional to the local beam centre-of-
mass position and to the current.

S⊥  = S// xCM (11)

Let us analyse the transverse signal of a single particle.

S// = s//(t,θ) (12)

The longitudinal signal consists of a series of periodic Dirac impulses with amplitude e and
period

T = 2π
ω (13)

The transverse amplitude is simply:
x = x cos ϕ(t) (14)

therefore,

s⊥ (t,θ) = ex 
k=+∞

∑
k=-∞

 δ(t-τ- θ+2kπ
ω ) cos ϕ(t)

(15)

The signal display is sketched below.
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Fig. 3

The wave number is written as:

Qx = nQx + δQx with nQx the integer part

and 0<δQx<1 the non integer part (16)

Beam sampling at the position of the PU turn after turn makes it impossible to identify

(modulo 1) the integer part 
nQx of the wave number.  As a consequence, the same signal is

obtained for
δQx and 1 - δQx

After development of the series of Dirac's, the signal expression becomes:

s⊥ (t,θ) = 
eω0x

4π

p=+∞
∑

p=-∞
 exp -j(pθ+ϕ0)[exp jωp

+t + exp jωp
- t]

(17)

with two series of frequencies:

 

ωp
+ = (p+Qx)ω

ωp
-  = (p-Qx)ω

Thus, in the spectrum, around every harmonic of the revolution frequency, there are two
betatron (upper and lower) sidebands.

It is interesting to look for the incoherent frequency spread induced by a momentum
spread and a betatron amplitude spread.

δωp
+ = [(p+Qx0)ω0-ωξ]τ + ϕ(x)

δωp
-  = [(p-Qx0)ω0+ωξ]τ - ϕ(x)

(18)

The spread arising from momentum via the chromaticity varies with p.  On the contrary, the
spread due to amplitude spread is constant whatever the value p of the harmonic of the



revolution frequency.

As an example, for the lower sidebands, the incoherent spread due to momentum
vanishes for

p = Qx0 - 
ωξ
ω0 (19)

ω

(p-Qx0)ω0 ≈ − ωξ

Incoherent power spectrum
ωp

-
incoherent bands

Fig. 4

As seen on the above figure, for this value of p the incoherent band is very narrow.  The

same picture would apply for the upper sidebands around 
(p+Qx0)ω0 ≈ ωξ  .

A priori, these narrow betatron frequency bands represent a potential danger since there
will be minimum Landau damping by momentum spread at this frequency.  One will have to
avoid chromaticity tunes which associate these narrow sidebands with large values of the
transverse impedance.

In the following we will arbitrarily privilege the lower sidebands whenever it is necessary
to solve the dispersion relation, or when we support our comments by figures.  However,
lower and upper sidebands are intimately linked and indissociable.  We will further develop this
fact in the following paragraphs.

4 . DISTRIBUTION FUNCTION

To study transverse instabilities, we consider the following distribution:

Ψ(ϕ,x,τ,τ,t) = Ψ0 + ∆Ψp
g0(τ)f0(x) + gp(τ)fp(ϕ,x)exp j(pω0τ+ω⊥ pct)

(20)



The first term  Ψ0 = g0(τ)f0(x) is the stationary part normalized as follows:

g0(τ)dτ
τ

 = 
ω0
2π

 and f0(x)xdx
x

 = 1
2π

(21)

The second part ∆ψp is the perturbation.  Due to the τ dependence, it consists of a sinusoidal

(exp j(pω0τ)) transverse displacement of the beam with p wavelengths around the
circumference.

2πR

xCM

Initial perturbation with p = 4
Fig. 5

It is also assumed that this perturbation will move at a coherent frequency 
ω⊥ pc apart from

pω0.  The frequency offset 
ω⊥ pc is a complex number.  For a lower sideband, we will write:

ω⊥ pc = -Qx0ω0 - ∆Qxpcω0 (22)

It is the sum of two quantities:

– the central incoherent Qx0ω0 betatron frequency and,

– the coherent ∆Qxpcω0 transverse betatron frequency shift.
The stability is evaluated from the expression

Im(ω⊥ pc) =  -ω0 Im(∆Qxpc)
(23)

5 . TOTAL BEAM SIGNAL

In order to measure the total signal induced by the beam, one has to integrate the single
particle signal over the distribution.



S⊥ (t,θ) = Ψ(ϕ,x,τ,τ,t)s⊥ (t,θ)dv
v (24)

Let Σ represent the following integral:

Σ = gp(τ)fp(ϕ,x)x2cosϕ dϕdxdτ
ϕ ,x,τ (25)

Then, the transverse signal can be written:

S⊥ (t,θ) = 2πΙΣ
ω0

 exp j[(pω0 + ω⊥ pc)t-pθ]
(26)

in the time domain and,

S⊥ (Ω,θ) = 2πΙΣ
ω0

 exp (-jpθ) δ(Ω−(pω0+ω⊥ pc))
(27)

in the frequency domain.  The chosen form of our perturbation leads to a single frequency line
which will be used to probe the environment.

Spectrum analyser
signal

ω

Coherent line
Incoherent band

around
(p-Qx0)ω0

(p-Qx0)ω0
(p-Qx0-∆Qxpc)ω0

Fig. 6

6 . DEFINITION OF TRANSVERSE COUPLING IMPEDANCE

Now we introduce the transverse coupling impedance.  It relates transverse
electromagnetic field and transverse signal at a given frequency as follows:



[E+v x B]⊥ (t,θ) = 
-jβ0
2πR

 Ζ⊥ S⊥ (t,θ)
(28)

with the units:  the signal S⊥  in Am and transverse impedance Z⊥  in Ωm-1 .

The generalization to any signal is straightforward, it combines spectrum amplitude and
impedance over the entire frequency range:

[E+v x B]⊥ (t,θ) =

-jβ0
2πR

 Z⊥ (ω)S⊥ (ω,θ) exp(jωt) dω
ω=-∞

ω=+∞

(29)

In general, one cannot analytically express Z⊥ (ω).  The solution of Maxwell's equations
is never simple.  To support the above definition, we just write down the results that one would
tediously obtain for a continuous pipe of radius b through which a circular beam of constant
radius a would travel.

For frequencies below the pipe cut-off frequency:

ω « ωpipe cut-off = c
b (30)

one could write:

[E+v x B]⊥ (t,θ) = 
-jβ0
2πR

 -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
) S⊥ (t,θ)

(31)

provided the pipe wall is perfectly conducting σ = ∞ .

The quantity between brackets is the transverse space-charge impedance:

Z⊥ SC =  -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
)

(32)

is a pure imaginary quantity and constant in the low frequency domain.

For a non-perfectly-conducting wall, σ ≠ ∞, one has to add the resistive-wall
contribution.  One would find that the transverse and longitudinal resistive-wall impedances are
linked by:

Z⊥ RW =  2c

b2
 Z//RW

ω (33)



This handy formula is only valid for the resistive wall contribution of a circular pipe.  It
shows that the curves (impedance diagram)

Z⊥ RW and Z//RW
ω

will be very similar.

For completeness, let us recall that

Z//RW =  (1+j) 
Z0β0

2b
 δ0 ω

ω0

1
2

(34)

in which 
δ0 = 2

µσω0 is the skin depth at frequency ω0.

7 . TRANSVERSE COUPLING IMPEDANCE Z//(w) OF AN ACCELERATOR
RING

In qualitative terms, observations made on several machines agree with the following
description for the transverse coupling impedance of an accelerator ring.  There are four major
components.  The space-charge impedance was already introduced in a previous section under
crude assumptions.  Below the pipe cut-off frequency its expression is:

Z⊥ SC =  -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
)

(35)

ω
Space charge

negative inductance

Ζ⊥

Fig. 7

It is a negative inductance large for slow particles in a pipe of small cross section.

The resistive-wall impedance was also previously mentioned.  It will be shown later on
that this component of the impedance is the main source of transverse instabilities.  Provided the
skin depth δ

δ2
 = 2

µσω (36)



at the considered frequency and ω is thinner than the wall thickness δw, then the resistive wall
impedance can be expressed as:

Z⊥ RW =  (1+j) RZ0

b3
 δ0 

ω0
ω

1
2

(37)

At lower frequencies,

Z⊥ RW =  2cR

b3σδwω (38)

ω

Resistive wall
impedance

δ < δw thick wall

δ > δw thin wallZ⊥

Fig. 8

Due to the b3 dependence, machines with vacuum chambers of small cross section
present a large impedance to the beam.

The third contribution to the machine impedance corresponds to high-Q resonators.  As
was the case for the longitudinal impedance, the main sources of such resonant objects are RF
cavities.

ω

Z⊥

Im(Z⊥ )
Re(Z⊥ )

Fig. 9



With regard to the broad-band transverse impedance, up till now we have assumed a
perfectly smooth circular pipe with neither cross section changes, bellows, nor flanges, etc.
With a view to seeing the difference between an actual chamber and the circular pipe by means
of a simple impedance model, it is common practice to introduce a transverse broad-band
resonator.

A priori, there is no physical reason to believe that the parameters of this transverse
broad.band resonator are linked to the parameters of the longitudinal broad-band resonator.
However, measurements made on existing machines show that in the low frequency range the
relation

Z⊥ BB = 2c

b2
 Z//BB

ω
 = 2R

β0b2
 Z//BB

p
(39)

strictly valid for the resistive wake of a circular pipe, can lead to correct orders of magnitudes.

If one remembers that a typical range of longitudinal broad-band impedance value is:

0.2 Ω ≤ Z//BB
p

 ≤ 50 Ω
(40)

then it can be concluded that the transverse broad-band impedance is in the MΩ/m range.

The scaling factor puts large machines with small vacuum chamber cross-section at a

disadvantage.  However, it is also easier to achieve the lowest values of 

Z//BB
p  in large

machines.

The use of a transverse broad-band impedance model to roughly simulate the effect of
abrupt variations of the vacuum chamber, bellows, flanges, etc. leads to the introduction of:

– a positive inductance at low frequencies largely counterbalanced by the space-charge
negative inductance for low energy machines,

– a resistive contribution around the pipe cut-off frequency,

– a capacitance at higher frequencies.



ω
ωrBB

Ζ⊥ BB Re(Ζ⊥ BB)

Im(Ζ⊥ BB)

Fig. 10

At this stage it is necessary to point out an essential difference between transverse and
longitudinal cases.  The longitudinal motion is slow when compared to the revolution period.  It
takes many turns to perform a complete synchrotron oscillation and one can, in most cases,
ignore the fact that some of the sources of impedance (RF cavities for instance) are localized.

In the transverse case, this approximation is not valid.  A particle performs Qx0
oscillations per turn and the modulation of the amplitude function βx  cannot be ignored.  The
fact that particles are more (less) sensitive to impedance sources localised in high (low) βx  has
to be taken into account.  We can continue to assume a smooth machine with uniformly
distributed focusing and impedance provided we introduce a kind of effective impedance to
which localized objects contribute as follows:

Z⊥ effective = Qx0
R

 βxZ⊥ local
(41)

As an example, the narrow transverse modes of RF cavities would contribute less if

cavities were installed in low βx straight sections.

8 . DISPERSION RELATION FOR COHERENT MOTION

In this paragraph, we will gather all the results of previous paragraphs and then apply
Vlasov's equation to find out consistent solutions for coherent motion.  We will obtain a general
dispersion relation.  The solution of this equation will give the coherent frequency at which the
perturbation oscillates.

ω⊥ pc = -Qxpcω0 (42)

The sign of the imaginary part will tell us whether coherent motion is stable or instable.
Hereunder,the successive steps leading to the dispersion relation are summarized.



Distribution
  

Ψ(ϕ,x,τ,τ,t) = Ψ0 + ∆Ψp
g0(τ)f0(x) + gp(τ)fp(ϕ,x)exp j(pω0τ+ω⊥ pct)

(43)

Notation

  

Σ = gp(τ)fp(ϕ,x)x2cosϕ dϕdxdτ
ϕ ,x,τ

(44)

Transverse signal
 

S⊥ (t,θ) = 2πIΣ
ω0

 exp j[(pω0 + ω⊥ pc)t-pθ]
(45)

Electromagnetic field
 
[E+v x B]⊥ S⊥ (t,θ) = 

-jβ0
2πR

 Z⊥ (p)S⊥ (t,θ)
(46)

Differential equation for single-particle motion

x = - 
sin ϕ

ϕ
 e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(47)

Vlasov's equation

dΨ
dt

 = 0 = ∂Ψ
∂t

 + ∂Ψ
∂ϕ

 ϕ + ∂Ψ
∂x

 x + ∂Ψ
∂τ

 τ + ∂Ψ
∂τ

 τ

∂Ψ
∂t

 = jω⊥ pc gp(τ)fp(ϕ,x)exp j(*)

∂Ψ
∂ϕ

ϕ = ϕ gp(τ) 
∂fp(ϕ,x)

∂ϕ
 exp j(*)

∂Ψ
∂x

x =  g0(τ)∂f0(x)

∂x
 
sinϕ

ϕ
 
IΣjZ ⊥ (p)

m0γ0c
e

 exp j(*)

+ neglected second order term (48)

∂Ψ
∂t

τ = jpω0τ gp(τ)fp(ϕ,x)exp j(*)
(49)

τ = 0  no longitudinal electromagnetic field

Intermediate equation



 j(pω0τ+ω⊥ pc) gpfp +ϕgp
∂fp
∂ϕ

= - g0
∂f0
∂x

 
sinϕ

ϕ
 
IΣjZ ⊥ (p)

m0γ0c
e

 

(50)

In the perturbation gpfp we separate the ϕ dependance on one hand and the x and τ
dependences on the other.  In view of this, we introduce an intermediate function:   h(x,τ) and
write:

gp(τ)fp(ϕ,x) = h(x,τ) cosϕ -j
sinϕ

ϕ
 (pω0τ+ω⊥ pc)

(51)

Vlasov's equation reduces to:

h(x,τ) = -   IcΣjZ⊥ (p)

m0γ0c2
e

 
g0

∂f0
∂x

(pω0τ+ω⊥ pc)2 - ϕ2
(52)

However, coming back to the original definition of Σ, one can also write:

Σ = π h(x,τ) x2dxdτ
x,τ (53)

In the previous expression of Vlasov's equation, after multiplication of both sides by πx2

and integration with respect to x and τ one finally gets the dispersion relation:

  1 = 
-π(q

A
)Ic

(
m0c2

e
)γ0

 jZ⊥ (p)
g0(τ)∂f0(x)

∂x
 x2

(pω0τ+ω⊥ pc)2 - ϕ2

τ,x

 dτdx

(54)

In the next three paragraphs examples of solutions of the dispersion relation are given.

9 . BEAM WITHOUT TUNE SPREAD

First, we assume a very cool beam in the longitudinal transverse plane:  no momentum
spread.  In addition the wave number does not depend on the transverse betatron amplitude.  In
mathematical terms:



g0(τ) = 
ω0
2π

 δ(τ)
(55)

and

ϕ = Qx0ω0(1-τ) + ωξτ + ϕ(x) with ϕ(x) = 0
(56)

We use the following relation:

∂f0(x)
∂xx

x2dx = -2 f0(x) 

x
xdx = - 1

π
(57)

and obtain:

  (ω⊥ pc
2

 - Qx0
2 ω0

2) = ω0
2(Qxpc

2  - Qx0
2 )

= 
( q
A

)Ic

2π(
m0c2

e
)γ0

 jZ⊥ (p)

(58)

Qxpc
2

 is the coherent wave number.

The equation always has two roots (lower and upper sidebands):

ω⊥ pc
±

 = Q⊥ pc
±

ω0
(59)

For small perturbations they are given by:

Re(ω⊥ pc
±

) = ± Qx0ω0 - 
( q
A

)Ic Im Z⊥ ((p±Qx0)ω0

4πQx0(
m0c2

e
)γ0

 

(60)

Im(ω⊥ pc
±

) = ± 
( q
A

)Ic 

4πQx0(
m0c2

e
)γ0

 Re Z⊥ ((p±Qx0)ω0

(61)

If the impedance has a resistive part, the coherent motion is always unstable.

The two series of coherent frequencies corresponding to lower and upper sidebands are
solutions of the coherent motion:

ω+ = pω0 + ω⊥ pc
+

   and  ω- = pω0 + ω⊥ pc
-

(62)

Due to the properties of the impedance, for opposite values of the frequency ω :



Re(Z⊥ (ω)) = - Re(Z⊥ (-ω))
Im(Z⊥ (ω)) = Im(Z⊥ (-ω)) (63)

both series lead to identical results. For instance one can look for conditions for instability:

Im(ω⊥ pc) < 0
(64)

Unstable motion for the upper sidebands when

ω+ ≈  (p + Qx0)ω0   is negative

Unstable motion for the lower sidebands when

ω- ≈  (p - Qx0)ω0   is positive

This can be sketched in the impedance diagram:

ω

Re(Z⊥ )
Curve corresponding

to constant Im(ω⊥ pc

−
)

Curve corresponding

to constant Im(ω⊥ pc

+
)

(p-Qxpc)ω0 wave unstable
when combined with a positive

resistance (positive part of ωaxis)

(p+Qxpc)ω0 wave unstable
when combined with a negative

resistance (negative part of ωaxis)

Fig. 11
In this figure, it is obvious  that the transverse instability of a coasting beam is essentially

a low frequency mechanism.  This is because the beam is very sensitive to the low frequency
region where the skin resistance tends to be very large, in particular much larger than the broad-
band resistance.

In the stability diagram with

Re(Z⊥ (w)) and Im(Z⊥ (-ω))

coordinates, the curves corresponding to constant growth rate are vertical lines.



Λ⊥ pcIm(Ζ⊥ )
. 5

−. 5

1. 0

0 Λ⊥ pcR

Λ⊥ =
(q
A

)Ic

Stability diagram
no tune spread

Fig. 12

The beam is always unstable except along the vertical axis.  If the impedance were a
purely imaginary number (inductance for instance), then the frequency shift would be real and
coherent motion would be stable.  In this respect, for the transverse plane we do not find the
equivalent of the negative mass instability for the longitudinal plane.

When the beam is stable, a tune measurement device (RF knock out for instance) which

necessarily detects the coherent motion only, indicates a certain value Qxpc of the coherent

wave number.  A priori, our results indicate that Qxpc is a linear function of beam intensity

and one could imagine that the experimental curve Qxpc versus current would allow the

imaginary part of Z⊥ (p) to be measured.

Unfortunately this is not the case. As a matter of fact, the space-charge contribution is not
accessible and one will measure

Im(Z⊥ -Z ⊥ SC)

This specificity of the space-charge component deserves some explanation.  Let us
assume a perfectly centered intense beam at low energy.  The actual wave number of particles
oscillating around the beam center, called incoherent wave number, is the result of two
quadrupolar fields:

– the focusing of the external guide field

– the space-charge defocusing effect.

This incoherent wave number is the quantity noted Qx0 in this report.  In other words:



Qx0 = Qx external guide field + ∆Qx space charge (65)
Obviously the tune is depressed by space-charge

∆Qx space charge < 0
 (66)

However, it must be pointed out that the space-charge field is null at the beam center.
Now we rigidly displace the beam center and look for the coherent wave number.  The beam
center motion is influenced by:

– the focusing from the external guide field,

– the coherent deflecting magnetic field due to the broad-band inductance,

– the coherent deflecting field due to space-charge.

However, the space-charge field is still null at beam center.  The coherent wave number
logically compensates the incoherent tune depression due to space-charge.

As a conclusion, with a tune measurement device one cannot have access to Z⊥ SC
simply because the beam center of mass is not influenced by this field.

A practical remark can be made concerning the choice of the wave number.  We have seen
that the resistive wall impedance is likely to be the main source of instability. It behaves like

ω-0.5

in the thick wall assumption.  It is therefore necessary to have the lowest coherent line at a
frequency as high as possible

ω ≈ (p - Qx0)ω0

In view of this, with a tune 0.1 above an integer, the first coherent frequency line is at

ω ≈ 0.9ω0



Re(Z⊥ RW)

ω

For Qx0 just below an integer

the lowest (p-Qx0)ω0 line
is associated with a large Re(Z⊥ RW)

For Qx0 just above an integer

the lowest (p-Qx0)ω0 line
is associated with a small Re(Z⊥ RW)

Fig. 13
On the contrary, with a tune of 0.9 (0.1 below the closest integer), this first coherent

frequency line is at ω ≈ 0.1ω0.  This factor 9 in frequency leads to a factor 3 in the value of
corresponding resistive-wall impedance and consequently instability growth rate.  Therefore,
preference must be given to tunes just above an integer.  As shown in this paragraph a beam
with no spread in tune is always unstable.  A spread in tune can provide the necessary Landau
damping.

There are two principal possibilities for providing a tune spread:

- chromaticity via momentum spread, or

- transverse non linearities (tune variation with amplitude).

These two cases are studied independently in the two next paragraphs.

1 0 . LANDAU DAMPING BY MOMENTUM SPREAD

We will assume a parabolic stationary distribution in momentum:

g0(τ) = 
3ω0
8πτL

 1- τ
2

τL
2

(67)
and solve the dispersion relation.

The denominator of the quantity in the integral can be written as the product of two terms

(ω⊥ pc-Qx0ω0+((p+Qx0)ω0-wξ)τ)

(ω⊥ pc+Qx0ω0+((p-Qx0)ω0+wξ)τ)
(68)



They are associated with the upper (for the first one) and lower (for the second one) sidebands.
We know from the previous paragraph that both waves lead to the same result.  We will
therefore concentrate on the slow wave (second term above) and look for the solution

ω⊥ pc ≈ -Qx0ω0.  In this case, the first term above can be approximated by -2Qx0ω0.

The then simplified dispersion relation can be written as follows:

1 = 
-( q

A
)Ic

2Qx0ω0(
m0c2

e
)γ0

 jZ⊥ (p)
g0(τ) dτ

τ+ 
ω⊥ pc+Qx0ω0

(p-Qx0)ω0+ωξτ (69)

To simplify the writing we use the following definitions:

∆ωp = (p-Qx0)ω0+ωξ  η(δp
p

)
L (70)

This quantity represents half the full width band (measured at the foot) of incoherent spread of

frequency around the considered lower sideband line (p-Qx0)ω0.

Λ⊥ pc = 
3( q

A
)Ic

16πQx0(
m0c2

e
)γ0∆ωp

(71)

x1 = - 
ω⊥ pc+Qx0ω0

∆ωp
 = 

(Qxpc-Qx0)ω0
∆ωp

 = 
∆Qxpcω0

∆ωp (72)

x1 is the coherent betatron frequency shift normalized to the incoherent spread defined above.

We also use:



J⊥  = 1-x2
x-x1 

 dx
-1

+1

(73)

With these notations the dispersion relation can be finally written:
1

J⊥
 = Λ⊥ pc jZ⊥ (p)

(74)
The stability diagram with:

Λ⊥ pc Re(Z⊥ (p)) and Λ⊥ pc Im(Z⊥ (p))

along the axes is shown in Fig. 14.
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Fig. 14
The imaginary part of the coherent frequency is positive and the movement is damped for

small values of the transverse impedance.  When compared to the previous example of a
monochromatic beam, provided the impedance is reasonably small, the incoherent frequency
spread arising from momentum can stabilize the coherent motion.  On the contrary, for large
Z⊥ (p) Landau damping is not strong enough and coherent motion is instable.  The curve
Im(x1) = 0 defines the stability limit. Its contour can be approximated by a circle:

Λ⊥ pcZ⊥ (p) < 3 2
4π

 F
(75)

with F ≈ 1 for the assumed parabolic distribution.



Although the detailed form of the stability limit curve depends on the exact momentum
distribution function, very similar results would be obtained for other realistic distribution

functions with the same 
(δp

p
)
FWHH.   The criterion can be rewritten in terms of the incoherent

spread. We will use the FWHH as a reference:

∆ωp FWHH = 2∆ωp (76)
Then stability requires:

∆ωp FWHH > 
( q
A

)IcZ⊥ (p)

4Qx0(
m0c2

e
)γ0 (77)

It is interesting to note that the quantity on the right hand side of the above relation can be
very simply linked with the coherent betatron frequency shift one would obtain with a
monochromatic beam (cf previous paragraph).

∆ωp FWHH > π ω0 Qxpc-Qx0monochromatic
beam (78)
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stable band ±
∆ωp FWHH

π

Spectrum of
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The coherent motion
is Landau damped
if the coherent shift

∆ω⊥ pc
remains

within the stable band

Fig. 15

For standard uncorrected optics, ξ ≈ -1 and 
ωξ = 

Qx0ω0
η  are negative above



transition.  This corresponds to the worst situation because

∆ωp FWHH = (p-Qx0)ω0+ωξ  η(δp
p

)
FWHH

vanishes around 
p ≈ Qx0(1 - 

ξ
η

)
.

To improve the situation, one has to change the sign of the chromaticity by introducing
sextupoles in the dispersive sections of the lattice.  Correction of chromaticity in both planes is
not always simple in particular in large machines.  The non-linearities generated by the
sextupoles can severely limit the single particle dynamic acceptance of the machine.  The
optimization of the sextupolar correction scheme is often very challenging. It can largely
influence the choice of the basic linear optics.

It must be pointed out that transverse stability of coherent motion is not necessarily the

only reason to correct chromaticity.  When the uncorrected ξ is large, the incoherent tune
spread due to momentum is also large.  In a tune diagram, space between dangerous betatron
resonances is always limited.

For machines working below transition, the natural chromaticity is in general positive and
has therefore the right sign to always provide some Landau damping.  In the impedance

diagram, one can draw the line which represents the incoherent frequency band 
∆ωp FWHH

as a function of ω. .

It can be seen that the low frequency region is the most dangerous and for two reasons.
The resistive wall impedance is large and the frequency band is narrow.

ω

Re(Z⊥ )

−ωξ

∆ωp FWHH

RW

BB

Fig. 16

This is the reason why transverse instability is currently a low-frequency mechanism.  If
Landau damping is insufficient, coherent motion can also be stabilized by a feedback system.
Fortunately, the conception of such a system is easier at low frequency.
1 . LANDAU DAMPING BY AMPLITUDE DEPENDENT TUNE



Now we separately consider the influence of a tune spread arising from a betatron
amplitude spread in the beam.  In order to write down the corresponding dispersion relation, we
assume a monochromatic beam:

g0(τ) = 
ω0
2π

 δ(τ)
(80)

and for instance a parabolic distribution of betatron amplitudes:

f0(x) = 2

πxL
2

 1 - ( x
xL

)
2

 for 0 < x < xL

and
f0(x) = 0 for x > xL (81)

Under these assumptions, the dispersion relation takes the following form:

1 = 
-( q

A
)Ic

2πQx0ω0(
m0c2

e
)γ0∆QL

 jZ⊥ (p) x dx

x - 
∆Qxpc

∆QL0

1

(82)

The following definition:

∆QL = ∂Qx

∂x2
 xL

2

(83)

is used to measure the total incoherent tune spread due to amplitude in the beam.  We then note:

x1 = 
∆Qxpc

∆QL (84)

This complex number measures the coherent tune shift in total incoherent tune spread units.
The integral can then be written:

J⊥  = x dx
x - x10

1

(85)
We also note

Λ⊥ pc = 
-( q

A
)Ic

2πQx0ω0(
m0c2

e
)γ0∆QL

 

(86)
and are left with



1
J⊥

 = Λ⊥ pcjZ⊥ (p)
(87)

As was already done in the previous examples, the solutions can be worked out by

drawing the curves corresponding to a given value of Im(x1) in the stability diagram.

Λ⊥ pcRe(Z⊥ (p)) = Im( 1
J⊥

)

Λ⊥ pcIm(Z⊥ (p)) = -Re( 1
J⊥

)
(88)

The results are shown in Fig. 17.
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As already mentioned, the details of the stability contour depend on the tails of the

distribution.  The transverse distribution enters the integral via its derivative 

∂f0
∂x  which for the

specific suggested example presents a discontinuity at the edges.  This explains the heart shape
of the stability contour which would be much less pronounced, and even not exist, for a
smoother distribution.  In view of this, we suggest using

Λ⊥ pcZ⊥ (p) < 0.5 (89)
as an approximation of the stability criterion.  The interpretation is very similar to that



given in the previous paragraph for a momentum spread.  When the incoherent tune spread due
to amplitude spread is large enough,

∆QLω0 = ∆ωp L > 
( q
A

)IcZ⊥ (p)

πQx0(
m0c2

e
)γ0 (90)

coherent motion is Landau damped.

If one compares the above result with that previously obtained for a momentum spread,

 ∆ ωp FWHH > 
( q
A

)IcZ⊥ (p)

4Qx0(
m0c2

e
)γ0 (91)

with ∆ωp FWHH = 
p-Qx0 ω0+ ωξ  η δp

p
 FWHH

(92)

apart from the distinction between the definitions used for FWHH and total (L), the main
difference is that the width of the incoherent band due to amplitude spread is now independent
of p.  Another way to summarize the results is to express the necessary incoherent spread in
terms of the coherent betatron frequency shift one would obtain with a monochromatic beam.

∆ωp L > 4 ω0 Qxpc-Qx0monochromatic
beam (93)
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