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1. Introduction

The dynamic effects occurring during the diffraction of free

/1/ ).

effects also occur in the case of transient X-rays formed when ultra-

/2/

relativistic charged particles pass through crystals « FPhysically

X-rays in mono-crystals are well known (vis e.g. Similar

speaking, these effects are determined by the dynamic interaction of
the Bragg reflected and forward waves, and they mainly occur when-
ever the wave is propagated in a sufficiently ideal periodic medium
with periods similar to the wave's length. In particular, dynamic
effects may occur in the long-wave regions of electromagnetic waves,
for instance in the sub-millimetric or infrared region. A common
feature of all these cases is that the medium has a mean dielectric
constant which is substantially different from and mainly greater

than unity.

On the other hand, the irradiation of a charged particle in a

medium with a continuously and periodically varying density was

/3 -6/

a system of regularly spaced plates of irregularly varying density

considered in papers Unlike the similar problem involving
where an accurate solution may be found (vis e.g. /T - 9/), no pre-
cise answer was found in the case of a continuous periodic medium.
This is because in the latter case the physical problem is much more
general and therefore a nonhomogeneous Hill equation of the arbvitrary
type occurs for which a clear solution may be obtained approximately
only when the density of the medium changes slightly. In this case
the zero approximation of the perturbation theory is usually obtained

/3 -6/

forward wave in the medium allowing for the mean value of the die-

by using the Hill equation solution which corresponds to a

lectric constant and assuming that the other waves are weak.

However, when there is Bragg reflection, the reflected wave is
generally of the same order as the forward wave. Therefore, in this
case the perturbation theory must be modified so that both these

waves are taken into account in the zero approximation.



This report considers the radiation of a cnarge in a con-
tinuous periodic mediua using such a modified perturbation theory.
In extreme cases wnen the radiation frequency is sufficiently fTar
removed from the Bragg frequency, the formulae obtained become tne
corresponding formulae in the standard perturbation theory. lMore-
over, close to the Bragg frequencies the formulae differ consider-

ably from known formulae.

One particular result to emerge from our work is that
extrenely intense radiation occurs near the Bragg frequencies due
to the dynamic interaction of the Bragg reflected and forward waves
of coherently amplified transient radiation produced at strictly
periodic innhomogeneities., ‘‘his radiation is almost monochromatic
and is propogated both forwards in the direction of motion of the
charge and also backwards at extremely small angles to the charge
trajectory. The maximum intensity of this radiation may not only
considerably exceed the intensity of the transient radiation which
occurs in the periodic medium away from the Bragg frequencies and
which is obtained from the standard perturbation theory /3 =5/ bud
may also be higher than the intensity of Cerenkov radiation at tae

same frequencies (if this radiation occurs).

iloreover, the report also examines the case where the period-
ic medium has a finite length., In this case, in addition to the
radiation which is produced inside the periodic mediun, emerges from
it and is refracted in the normal way, transient radiation also occurs
at the limits of the boundary separating ithe periodic medium and the
vacuwa.
/10/

into the radiation from relativistic electron bunches in a wave

Report describes the first experimental investigation

guide with regularly spaced plates of irregularly varying density.

2. General equations for a finite periodic medium

Let us assume that a fast charged particle with charge e
noves uniformly along an axis 2 with a velocity v in a medium
whose dielectric constant is a periodic function of 2 witn a period

Z,

.
’

g=e(=5(1+49®) (1)
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2,
where QiE+2,)= 9@ , and quda:o y lLee. €4
is the mean dielectric constant of the medium.

If the vectors of the electromagnetic fields are represented
as Fourier integrals ‘

ﬁ (z’l W) exp (-\w‘t Ydw
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then from the Maxwell equations we obtain /5/
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The function Y (z) is related to the Fourier components of the
electromagnetic field's vectors in the following way
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where 50 and J,¢ are the Bessel functions of the zeroth and

first orders, € , P are the values of the transverse components

- —»
of wave vector K and the radius of the vector A~ respectively.
From now on calculations will be made for w >0 , so that for

W £ © the expressions for /4/ fields are obtained by complex
con jugation.

Let us break down the function ‘f‘(!) into a Fourier series



R - o
(o= VA e,;-’.i: {'Z’,’?\ Eiey h , = ¢ G = 0\2;" (5)

Lo

We shall asswne that the series (5) may be twice differentiated term
by term. We should point out that it is wise to distinguish between
two cases: (A), when the number of Fourier amplitudes Qg, is
infinite but they vanish smoothly if the number \n.\ increases by
at least n =3 H (B), when the number of Fourier amplitudes Qgn

is finite and their wvalues are arbitrary. In the case of a periocdic
medium consisting of plates, the corresponding Fourier series does
not meet all the conditions of case (A) and the Fourier amplitudes
vanish 1like I/n « Nevertheless, as will be seen later, in case

(A) the phenomena occurring in the plates retain their main features

/11

By substituting (I) and (5) into eguation (3) and by in-

troducing the dimension less variable 3% = Tri'/zo s we obtain

Y L oY = F6) ()
d;l- 3 ?

where Y:Y(ao}/v) and

o

F(§)=Z: a,, exp (2in

Fr- o
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Fo)= v gomr, 27 U5 }>2.J Muneping) (7)

The PFourier coefficients 92.; and Mgnp are unambiguously
defined when equation (6) is derived. This equation is a non-
honmogeneous Hill equation. Using the general theory /12/

solution may be written out formally. However, in order to obtain

ita

the solution in a clear form, we shall assume /12/ that the medium
deviates only slightly from the homogeneous, i.e. \q,l « 1 . Ve
then obtain the following with accuracy up to terms of higher orders

wi smallness:



o ()%

0. § (L —zn)a (2#0)
‘P";

——1[ U+pe,) + i n]a,, (#0),

If the linearly independent solutions Ya (%) and 33(3)
of the homogeneous Hillequation(6) are known, then the solution of

the nonhomogeneous egquation may be written in the fornm

Y: Zi(})[A, - V;(})] + HL(})[ A, +Vzc9] ’ (9)
where
i 5
‘J"z(})z W S ’32,1 (uy F, () dx 7
W=4id - %1, (10)

In order to determine the constants Ay , and Ag , we shall
use the periodicity condition for the solution of equation (6)

/1/ )

(vis

Y(zn'.'a) Y Mr(‘ g
#e thus obtain
Votm el il - 52)]
1 epli(fm-9] (11)

A=

where 2axp(if;7) and exp(i)2¥) are the constants which appear accord-
ing to the Floguet theorem before the solutions to the homogeneous
Hill equation 34(5) and 32(5) when the arguments shift to the
period 1T .

3. Solution of the homogeneous equation

In accordance with the general system for solving the homo-

geneous Hill equation we assume that



(12)

By substituting (12) into the homogeneous equation corresponding to

equation (6), we obtain the recurrent relations

2 1
- \»_2"):{6‘ -+ e C rm :.:O .o
[9., (3" 2n ;w 2m & 2(n-m) ) (15>
where the prime on the sum sign signifies that the term with m = O
must be omitted during summation. These relations give an infinite
system of equations for determining the hitherto unknown values
an which are sourier coefficients of solution (12) of the homo-

geneous Hill equation.

The coefficients Ogm (m 110) contain the weak parameter q
and the serieslzzegﬂ, must be converging due to the assumption
concerning the Z%ofold differentiability of series (5). It may be
seen from equation (13) that weak coefficients Bgm precede all
Ca(n.m) whilst C’n is preceded by the coefficient
6, — (X‘4-2v1)2 « If the latter value is not small at any value of
the whole number h , then the system of equations (13) has only
a trivial solution. This system of equations may have a non-trivial
solution only when the value 6,—({%-3n)2 =0 for a certain whole
nunber M .« As the value r' is determined with accuracy up to an
arbitrary even number, it may be considered that M = 0 in the above
condition without violating generality. The system of equations (13)

may therefore have a non-trivial solution if Y'z t Jeo .

I the value VBo is not close to a whole number, then the
values E%-(Y;2n)2 at an arbitrary whole number n # 0 may not be
small., Tt then follows from equations (13) that in this case all
coefficients C2,|(n.#:o) are much smaller than (o o In physical
terms this corresponds to a situation where the condition for Bragg
reflection is not fulfilled and only one forward wave is important

/3 =6/

Let us now assume that the value Veo is close to a whole
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number /31 >0 , Previous papers have not discussed this case
(vis /12/). The authors of paper /5/
make a special study of this case. The expression Cgp (n #0)

also pointed out the need to

then has one coefficient, namely C..,_A s which is of the same
order as (o whilst the other coefficients remain small. In fact,

relationship (13) at n = ~A takes the form

P

. ‘ 21
18, =(r-2f)" i 0, oo 9-2{2 4o =0

v

As VBo [ x h , then B - ()’-—27\.)" is small and it thus follows
that C.gp and C, may be of the same order. In physical terms
this means that there is Bragg reflection and, besides the forward

wave (o , the reflected wave (_p, also plays an important part.

Taking the above into account, we must retain the following

TN

two equations from system (13) as a zero approximation:
jcﬁ + 92;{. p—g{ = 0

f o
(6.
[0 (af ] gm0 (14)

G2k be

et

In order to provide equations (14) with a non-trivial solu-

tion, the system's determinant must equal zero i.e.

T WA e ey .
,: (“";_g g, -—.\{“—.{*ﬁ.} {, O.; (J_,zi:: o (15)

This relation is an approximated characteristic equation for
determining J° when the value V6o is close to a whole number A

which does not equal zero.

In order to solve equation (15) we shall assume

6°=‘91’+a ’ ¥=&+5, (16)

where ‘O.l « he ,H‘| « h « Then for S we obtain two values
e, N et-6,0.,

8-:. d“_z:: \J z&l’e‘ 4 ' (17)

In this case we have

C,=2hé-2 o (18)
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By replacing r in (12) with the values erz = A + d&lz
and by also taking into account (18), we obtain two linearly in-
dependent solutions for the zero approximation of the homogeneous

Hill equation

©

Yo )= %w(tﬁlgmcw Ay +
2K&L

A

e/m 1{})} (19)

In the zero approximation only two main terms C, and C_gg
were selected from all the sums in (12). In order to find the next
approximation, the contributions from the other an terms to the
solution must be taken into account. They may be determined using
relation (13) in which of the sum in terms of M it is sufficient
to keep only the two main terms m=n and n =z A corresponding to Co

and C_gq . We thus obtain

T @)= Jon )+ Coepli Ch803]

i z 0, O +(2A 2~ a)@(,,l,w(,zha) (20)
46, N(A+n)

in which the two primes by the sum sign denote that terms with n =0

and - A must be omitted from summation.

It is easy to see that away from the Bragg frequencies when
la] » legr | and |6.g8] , formula (20) is converted into the

expressions

. 1 . i’v/ Gzn ay
i)(})% (’o@gf('zﬁg){ i +%Wm —?/*C/J (4l”3)§ (21)

o

0,
W= claptipiieg. Gl )
These formulae provide the solution to the homogeneous equation of
the given problem and are obtained in a first approximation of the

standard perturbation theory.



4. Solution of nonhomogeneous equation

Having obtained the solution to the homogeneous equation, the
solution to the nonhomogeneous equation may be derived in terms of
formulae(9)- (11). By using formula (20), we obtain the following

after the appropriate calculations.

Y Y(o .

(22)
where y () is obtained by means of the zero approximation formula
(19): o

\(@': 25’ e t/:" $ 6LM2(H ) + 4'7‘1’-‘/’{ 5’,. '&)/\Azn +
Gt | (Bu= A ) -5F (BF-R*-52)- 44%8}
9,»;;1'114m2x } 4
e ex (1 onl)
oehytosy 4 10020 (23)
Here !m -93;1 + 2n . The valueaY is obtained when the first-

order corrections made in formula (20) are taken into account, and it

has the form

otle fa 5[ OaMum (R0
&Y= 84 oot} &‘Z-[ (bn- A= 8%

“6ae Matety +(2A (B 2 R)+Q)M,,) s
-+ ot £ 10m -
(gﬂ*'ﬂ)z'“a‘f' Jﬂlb( ;)

y ‘ezne 2& gnvm"&
_7;“ M(iK“J e+ (24.( )+a>9u.,¢:);v12{h_“+

(A, FY 23
e t s Iy,
N ’
—elh 02£,+(2 (é A")""'(/(z(n'
+ h gyt
(5 _'&)z_& 2({m-A)

- 9:(:»4) 9-:’» +(2£ (-g"‘v ﬂ) +a) 91" Mzm] W{)(l‘ gn-rm 5)} )

¥ (4 - Ay - F
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Let us first consider the extreme case of a homogeneous medium
when ¢ = 0 . Then according to (8) the values 8g, and My, equal

zero at NF O . We thus obtain

Vo _iwe (12 2) L-pre,
P=rgams, PV Y Gy o e e (25)

We shall substitute this expression into (4) and integrate in terms

of 2 after using the following formulae (vis e.g. /13/)
T »J, (x )0‘ :
| E = K, Cize)
* (xp)o(ar o K,( i2f)
X TT T prp 7 (26>
5 o 7,

where K"," (x) are the modified Hankel functions of the zeroth and
first orders and I"“’Z >0 . As a result of tne integration we

obtain for instance,

Tigane i el ) UK ST (27)
At high absolute values of the argument we have K»u,(“)*“\,rf?/"z; ]

When B¢, > 4 , the charge field, like the function P at large
distances, does not vanish exponentially (in the transparent medium)

and this corresponds to the production of Cerenkov radiation.

In order to calculate the integrals (4) using expressions
(22)-(24), the latter must be decomposed into the most common
fractions of type (25) with denominators containing 2% . In
expressions (23) and (24) the variable %% is included only in the
values a and (5‘3‘ « The wvalue J: in its turn is expressed

via Q in terms of formula (17) whilst from (8) and (16) we have

;,,,_/flié:ep A ;elz\cl.

A (28)
Taking the above into account it may be seen that expressions (23)
and (24) are decomposed into the most common fractions with denomi-
nators of 4 types at d+(n) and o t cl...(n) where
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o 2= GR Mt AN + Oup Bus | (29)

h is the corresponding whole number. TFor Y(o) we have

(OL {goze <.:1 QZLM2(H-!-)( i - {
Y 2vws,{f_,{ o.m \ R+ ) a—o/.(n))+
+£M:,[ 1 (f\‘- Batd.tn) A £:—d-m>_
6 La.m\ aed_tm & -o(n) (30)
- (&‘-g.ha',m_ A g,ﬁoz.(n)) +
As (5} Asol+ (M) Q-dsln)
+6_“Mzmu( 1 _ i v) exolif, 5}\
Aot \ Qedatm  a-omy ) 0
Away from the Bragg frequencies when ]o.’ >» |69,‘[ and
le_ggl sy the above solution Y to the nonhomogeneous equa-
tion inevitably becomes the corresponding solution obtained using

/3/

the standard perturbation theory

It should, however, be stressed that all the formulae obtained

are used under the conditions |aj« h®? and |d|«h . If these
conditions are not fulfilled, then instead of formulae (17) and (18)
we have 01 = 2J24& v a-\427 4 44%2. 0, 3,,

and ¢, =, (55248-2a),/ 6. The appropriate changes

must also be made in the subsequent formulae.
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5. Radiation occurring inside an infinite

continuous periocdic medium

Let us first caleulate the main contribution to the value
-2
DP ('2 ) w)

in formula \4) by expression (30) and shall ignore the term con-

. In order to do this we shall replace the value Y

taining ds /dz . We should point out that expression (23) (and

nence (30) and (24) ) were obtained under the condition

Y 7530 - ‘7_ 2o (31)

When integrating into (4) in terms of % the condition (31) may
be violated. In order to determine under which conditions relation
(31) will not be violated when integrating in terms of X , we
shall find which values of 2 make a substantial contribution to
integrals (4). As the Bessel functions Jo4 (xp) oscillate and
vanish at high values of the argument, the values &< ¥,

where X o ™~ F make a considerable contribution to integrals

(4). 1If we require that %, & ewVEs /c , then formula (23) may
be used when calculating integrals (4) provided that P))C/QDJE:

It is clear that the latter condition is easily met. Condition (31)

imay then be written in the form

T id A (32)

which coincides with the Bragg condition in a medium with an

average dielectric constant €& at an angle of incidence ‘ﬂ'/z
Substituting condition (31) for (32) means in fact that we are
restricted to the study of radiation emitted at small angles to

the charge trajectory.

Taking the above into account, after integrating in terms of

% we obtain the following using formulae (26)
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e

o) . (17 , 1z
D(e)(z,w)zgﬁe—;‘_%;?_ 31;(%;-) h_Z; eXP(ignW%) .

. 40 Bt Man-ny + (4*6s- d-(M) £ M,
7 ol (n)

Q/XF(’::{,M! f) -

2 p2 RY.¥)
- gn G;AMZ{,\_/Z) ':'/2(-;: - 5,, +l. ( /)iLfA_v, g/x,l:(szn_‘ : (33)
x,° o)

+ b 626 Mycnizy = (B¥- 8.5 = s () L Mien

2% o, (n)

- gn 9-22 Mz.’a:ﬂ;‘(iz’ ‘gnt'*d-f("))g/‘/izn
98,3,/: A4 )

-&2(1.5 (1'96,,5 =‘7> -

exp (’;*’n&(’)} .

where

x:'m= Qe ok el (34)

After carrying out similar calculations using formula {(4),
(30) and (26) we obtain

o

:D(:)(;Z.,‘U)z 2*?(1’%’) we (T]’ \‘/LZ e,xp({g,v—;-;) )

2 1}".‘1‘ 2P / nEoe 5,_‘
gn QzLMzb\-A)+(A“£:'d-(">)K-M2" N
. Mf’ (i ‘:’(M.P) -
{ R oL ()
gn 94.LM2(»-£) +V(z£1' g:+d' (”))A Ml" e/xf ({xnlg) * (35)
Ry o ()
R G 0.8 Mygasty = (A= By o lrVhlian - iR D -

' ol tn)

éh 9—:2 Mz(ul) - (ﬁl— ﬁnl-*d*("»ﬂ Man e
® “ a,(n)

na

xp (iafm,(»’)} .

The value P*y(?,ug is expressed by the formula obtained from (33)
if the factor Zow/TTC 3n is included under the sum sign.

If Cerenkov radiation is likely to occur in the medium, i.e.
when p’-g. >4 , and we are not near the threshold, the radiation
described by formula (33) must be supplemented by the conventional
Cerenkov radiation in a medium with an average dielectric constant.

This radiation is determined in the zero approximation by formula
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(25). This is because the transverse component of the wave vector
of Cerenkov radiation wVﬁz £o -1 /'U' away from the threshold is
large and therefore conventional Cerenkov radiation is not covered

by formula (%3) which is obtained when condition (32) is met.

It may be seen from formula (33) that mly those terms for
which the (34) values are positive contribute to the field at large
P distances. Moreover, it may also be seen from (33) that
these terms will increase as the (34) values decrease. As we are
considering a case where the Bragg condition (32) is met, the (34)

values will be small only if dl+(n) &« 2\8 « It may be seen
from the expressions for «%(n) and bn that this may be achieved

. [ ) '
if en/vrsare i f

With this in view, we shall require that

o (36)

2%

O

E_

~

¥
an

»

where ,d]« '8 and h' is a positive whole number of the same
parity as h . Then, by substituting (36) into (29) and assuning

nN=No + N4 , where N, meets the conditions
2ro=opdo B (37)

for d:’:(n) we obtain

Halr)y= [4&¥ (d+an)? + 6,2 G—J,L ) (38)

The order of magnitude below the root in formula (38) is
determined by the first term. Let us compare the values o(:‘:(no>
odx (Mo %4) y ot (N, £2)  , eeceeens . If k' is a
small number, then the two values o\:’.‘(no) are always much smaller
than the remaining values. If 21'» 1 s then these values are
small and of one order at )m)« /?1‘ .

It follows from conditions (36) and (32), under which radia-
tion is intensified, that the difference between the time of flight
of the charge and the average time for the propagation of radiation
through the medium's inhomogeneity period must equal & whole multi-

ple period of oscillation of the radiation.

b
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e should point out that if the value |d].7 %%
in condition (36), then it follows from formula (38) that
df(“)"‘"‘gk }d’fﬁnal and formula (33) becomes the corresponding

formula obtained from the standard perturbation theory.

Thus, if R (and consequently ) is a small number,

i.e. if the radiation wave-length is comparable to the medium's

period of inhomogeneity, then the main contribution to formulsa
(33) comes from terms with M = M, . We thus obtain for instance,
RS

\Z,o)‘- =

. sy Ad x 1»
eeliZ+ 507 we < £, V%

=, ) 2o vre \zew
| 3 I ~(z;2d+oé);’\;€-/f *GaMopep exp(ixi0)+
+" (zxd-a),»ﬂ,‘:f;/: %ot M-t exp (i) exp ﬁﬁf)”
{ e-zLMg.w:éi-@M-*-" 2xp (iaey) = o )
:

’ I3 M_g_ g . 1 “'tomz“ﬁ)
O.a Mg+ (2Ad+ )M _p g axp (i )] Mf’( s )J,

32
'e-Z.

where

0[:-‘ Jéﬂld1+ 92‘ e—ZL

xis e £, (40)
We should point out that in the particular case of the ultra-
relativistic particle, i.e. 4-f3% <1 , and in the frequency
region where £5-1 = 30 £0 and ]%o] « 4 , expression (39) must
coincide with the expression Era,,(?,w) for the case of almost
exactly backward Bragg reflection obtained in /2/. In faect, if the
appropriate integration in terms of the wave vector E’ is made

/2/

ing with expression (39) considered in the above particular case.

using formula (29) from s We then obtain an expression coincid-

Let us now find the intensity of radiation occurring per
unit length of the charged particle's trajectory. In order to do
this we shall calculate the flux of the Pointing vector passing
through the circular region p, & P& Ps in the plane perpendicular
to the 2 axis (vis Fig. 1),
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" D
‘2
W= C ¢ E {7
A= fw/ur‘o dp B, (£,6) H, (£.1), (41)
)
In this case {:,ri/éj , ;.)l.;<2,,¢(})f?-f7 , Where -8“:ww%<:,éé:%‘#b.ﬁ;)

is the radiation angle. The values Ef,({’,t) and Hy(i’,t)
are :acily obtained from (39) and (2). When calculating integral
(41) interference terms containing multiples of the type &xp 1(x,-
x5 ) P or exp .Qiﬂ'rrz/z-aoccur and must be omitted.

We thus obtain for forward radiation,

1%

dw e [ & §l~(2ﬂd+d)NM;r+%1“Lam¢Rem )
» SR

d? gy jlaits, ! |2, 12 ) (42)
. ks
N |(28d -2 )Mz.2r =B Mg/l 0oz, [
e, 12 - ’
and for backward radiation,

dw e* w? (| GuMpy *(ZM-“’Q""V‘\-R—&'..L? %
dr T 4yt jalte | 2, 1? =TT

o : (43)

|6, Mg + (28 +a )M _p oo [*
- e 1?

Resfzz} dew

It may be seen from formulae (42) and (43) that the radiation
intensities are determined by the Fourier amplitudes Qgg, O.Q(ﬂ_,ﬂ\')
and Qg (K,Jﬂ) regardless of the presence of other amplitudes. As
we are considering the small numbers 91 and 91’ , cases A and B
mentioned in section 2 do not differ greatly from one another. Ve
should emphasize that these formulae are correct only in the neigh-
bourhood of the Bragg frequencies (g = hre /Zor-g;—
and at @ > 0 .

Let us now examine these expressions when the value is
arbitrary in two separate cases, when the value‘bgfo differs
considerably from unity (away from the Cerenkov radiation threshold)
and whenpiE° 2 4 (near the threshold). This separation is made
because in the first case, as was pointed out above, Cerenkov radia-

tion is not covered by formula (39) whereas in the second case the
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Cerenkov radiation is propagated at small angles and is automatically

taken into account in formula (39).

Let us introduce a slight deviation into the frequency V =
,(w-wa) / (AT . Then d :p\'(al;, +V) where

>

= (44)
do 65,

NCo

and, moreover, we obtain from (40)

- z" ". ' rd .) -
x:z:?.‘:}ﬁ %Q;Z\]ﬁl(dc'f‘b)x-p.&%%m . (45)

Let us examine the first case where P2 &, # 4 . It may be
seen from (32) and (36) that in this case A + A’ ana h > A’
corresponds to B2€, > 4 whilst Ach corresponds to p2E&, <1 .
Taking into account the medium's abgorbent properties, i.e. if we
assume that & = €o +'|.E."(l€,“] « ls..-', ,) sy we then obtain from
expression (40) for 72

Ro50. = L JZﬁw;oc+J(z£‘vw>*+&‘(s;"/e; )*
e =5

2, 2 (46)
Ton 2= ToAME
YRR 2le]
The denominators I'xi|3 in formula (42) and (43) take the form

2] (2870 ¢ {48%d% = 9,005 )4 £Y0e /6] /%

It may be seen that the radiation intensities (42) and (43) reach

maximum values at

—

28 7 [487d + 0,0, ~o0.
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By expressing d in terms of V and d,, , we find that

the maximum occurs at

£ sr .2 Y s
3,y teh £ v/[i" Mo + (AP= 2% 8 D p /507
Y Ty T T e -
. -k

When the radiation intensities (42) and (43) are at a maximum, they

are inversely proportional to ,OIQE,,”/EO' .

Let us estimate the ratio of the maximum forward radiation
intensity to the intensity of Cerenkov radiation at the same frequency

(when the latter occurs). This ratio is of the order

U Qg TE e 2] e g2l f1680 20 0lo e o

s

(in this case we consider that \a_g(p,‘ p.')l«lo.g(h -4) ) When
the absorption is sufficiently low, i.e. the value €o" is suffici-

ently low, this ratioc may be of the order of unity or greater.

The band-width of the maximum may be estimated as the devia-

tion 4V =9V ~ Vo at which Rese; ~ I, 2 . It is easy to
find that AV~ A2ES/ChA_Q'2) €% . The radiation angle
is of the order MVIE /€, , i.e. extremely small for media of

low absorptivity.

At sufficiently high |V| » d, and Vg4 62 /82
values, the value I’Z(\Q may increase in proportion to }\’l and
therefore the radiation intensity defined by formulae (42) and (43)

will be low.

A similar situation occurs close to the Cerenkov threshold
when PQS., x4 y iee. h - K. 1he only difference is that in
this case close to each Bragg frequency Wg only one maximum occurs

at
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The width of the maximum is of the order & / €., . Away from the
Bragg frequency backward radiation, as in the case “ 3 /A' , vanishes
rapidly. As for forward radiation, above the threshold it becomes

nornal Cerenkov radiation and below the threshold it becomes weak.

Thus, by analysing formulae (42) and (43) we see that when a
charged particle passes through a periodic medium of low absorptivity,
the most noteworthy feature is the appearance close to the Bragg
frequencies of extremely intense and almost monochromatic radiation
which is propagated both forwards and backwards in relation tc the
direction of motion of the charge. Of course, there is also Cerenkov
radiation (if BQE, > A1 ) and the usual weak transient radiation
away from the Bragg frequencies which is formed on the inhomogeneities
of the medium and may be described by formulae obtained not only from
the standard perturbation theory /3 -6/ but also from formula (33)
in this paper. The intense and almost monochromatic radiation near
the Bragg frequencies is by nature the result of the dynamic interac-
tion between the Bragg reflected and the forward waves of coherently
amplified transient radiation which is formed at strictly periodic
inhomogeneities of the medium. As the medium's inhomogeneities are
continuously distributed along all the paths of motion of the charge,
the intensity of the transient radiation both near to and away from the
Bragg frequencies is proportional to the path length.

In order to illusirate this, Figs. 2 and % show the curves
of the spectral dependence of the number of quanta dN [dV
emitted from a path equal to one radiation wave-length. Figs. 2 and
3 relate to forward and backward radiation respectively. These
curves are calculated using formulae (42) and (43) in which only the
Fourier amplitudes Qg (_R-R’) and Qg at }\ =5 and A':=3
are considered to be non~-zero. Moreover, €o = 2.778, €5 /€,
- 3.107% , (1-P1) /2 = 1-107% , and q= 0.15. Pigures 1, 2 and 3
denote that Q. and 4Qa,, respectively equal 0.25 and 0.25; 0.45
and 0.05; 0.4995 and 0.0005. The hatched line in Fig. 2 relates

to Cerenkov radiation.
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Let us now assume that ﬂ\ and }L' are much greater than
unity, i.e. the radiation wave-length is much smaller than the in-

homogeneity period of the medium.

Let us first examine case A mentioned in section 2. Besides
the term (39), terms with Nn= n, +n4 , where N, = tly 42y eeceee
and ’h" « b also made a considerable contribution in formula
(33). Let us write out these terms in a clear form for the parti-
cular case of the ultra-relativistic particle (4. p% « 1 ) and
in the frequency region where |€o -1 |= ’?.,l « 41 . In this case,
as can be seen from conditions (32) and (36) h=zR' . as A »4 ,
the term ©gp O-2#% compared with the term 4R? (d + 2n4)?
may be ignored in formula (38), except for certain V values for
which A+2&ny =0 ., as d= K (4-8+Y —90/-‘?) y we have

22 ng
ae.:",-z—-—-—zif %D?\FF'—% +9"‘2T”- ) (47)
where n =N, +n, , and the signs + correspond to L = 1.3

and L = 2.4,

From the expression for ,5'“ it is easy to find that
%n = h +d +9ny , for the first two terms in formula (33)
and bn=-R4+d +2my |, for the last two terms. This means that
the first two terms correspond to waves which are propagated forwards
in relation to the direction of motion of the charge whereas the last

two terms relate to the opposite direction.

Bearing in mind that at 4 % n, , the value M_gp 4 Qn, , is
much smaller than the value Mg,, , we find from formula (33) that
the part of the wave .D? (‘7.’, w) which is propagated forwards takes
the form

exp(iF8)  we [T\ L
2 iz, ( 2p ) Zn; @Kr[(ﬂmd .-x,m)%-]. (48)
(RA Man,
963/3.

ny
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where 4» = 1 or 2 depending on whether the value d +2n,4 , is
positive or negative and summation is done in terms of the whole
numbers nh, , so that z,fl >0 « It may easily be seen fron
formula (47) that whatever the sign of the value d+2n, we obtain

4

— trt _at L 4ny
wy= =g (- e+ 7)) (49)

If the angle of radiation J = Re 2,-,1: c /w is introduced, then
it is easy to obtain from formula (49)

§a- e (e, (50)
The radiation defined by formula (48) is the normal transient

radiation formed at the periodic inhomogeneities of the medium when

the wave-length is much smaller than the inhomogeneity period. As

la) » |egqu) in the case in question, then, as was stated at

the end of section 3, this radiation may be calculated using the

"gingle-wave" perturbation theory /3 =6/ « In particular, the angles

of radiation (50) coincide with the corresponding angles obtained in
/4/ (vise also /14/ )e

As can be seen from (33) waves propagated backwards are
extremely weak in this case due to the smallness of values 9_2,,’
and M_QA +2 ny .

In case B, as the Fourier amplitudes Qg . are arbitrary, the

radiation must be calculated by the "two-wave'" theory method described
above if the value 929, e-2$ is sufficiently large (vis. formulae

(33) - (35) ).



- 20 -

5. Radiation in the case of a limited periodic medium

Let the periodic medium be limited and situated, for instance,
between the planes ¥ =© and X =4 - Nz, , where N is a whole
number and assume that the medium is surrounded by a vacuum. The
radiation outside the periodic medium may be obtained by using the
results from the previous section and also the condition for the
continuity of fields at the limits of the boundary between the medium

and the vacuum.

The transverse component of the field Ef" (Tz’,w) outside

the periodic medium may be written in the form

. (o R2rexp (1

E(F0)=)i
g Ty W Wt
U c* + (51)

T 2 - Wi .
E Li’,w):j{ £ —f—%’}(‘———} G e (A )] T eprse
’ E

T )
2

+ G, e,xf(-mﬂec)}.}i(a’p)d;e

for regions 2<O and 2 > 0 respectively. Gq , and Ga are ar-
bitrary constants and )tg’ = w? /c,’z - 22 . Inside the periodic
medium, in addition to the waves found in the previous section,

there are free fields which are due to the presence of boundaries
and which are conditioned by the solution to the homogeneous Hill
equation. Taking into account relations (16) - (18), these fields

may be represented in the form

(>

=) fo] gl R ] - EEZR [

+ G‘r% exr{\'(fv&)% ] +3_~K%§-?i-exr[-i(i+ L)%]}}Ji(xp) dae._ ( 52 )
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The arbitrary constants G4 9 soee 4. G-q may be determined from

the conditions for the matching of corresponding fields at the
boundaries X=0 and X-= ! .

G, +h Gy thG, =9,
NEC IR
exl"!i(lo' %‘::)H Gu+h “"r(‘"zg‘) Gy + qur (~i3g’) a, = {Zii)r LW gy ‘J (53)

IR

-2 e

a0 G- & gl e epl788)G, = 9, ey

2o

the following notations are introduced here

,P - exg'l’iax +a f’ : O, +288, +a

T 94 ’ - NS

?3= ezg "’ZLSA = a R qu._z_‘_'_z,’ub\!. ‘g-__ (54)
94‘ 91&,

with regard to the values O“ and 9¢ on the right-hand side of

equations (53), we shall write them out clearly only for the most
interesting case when the radiation wave-length is of the order of
the medium's inhomogeneity period :

.."(d‘-&‘)*Mn-r('lU-&-9-;:)+M-z—4'(’1id+a+9¢4);1

TJ-’-.C_,; +n? 4£o(dt"é\:)
(55)
ol wl
__gg_{ KNG Mi.p(-2hd-a+8 )+ M 4 - (28d-a+8,z) }
iy B . 4(4*-87)

By solving the sgystem of equations (53), the following constants may
be expresaged clearly
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God (e 20N+ e w52
(8 B2 gah o e (L)
*ﬁ(‘u g - pp e[ B A
Ao, 22, n p)mo[h%-@: _nfiy ;
v Chtop, 22290, p+ 0, ) op [ (- B0 X)L

+E C?qu P”h)(ii A.E, 1/2.)} .y Mr[ (,\ --—-)(}

G { - 2 o ) op (1788

“(fe 42 g pr e 22y o [i - By T 4

G’lﬁ{‘(ﬁ,i i ‘h)(f’{ hgon )’ip)""f’("we&)*

o2 . (56)
+(Cli Mo B 7/ )(fﬁgah {v),,,,f{ (____ ) ]}AL)
where
= (e e g e o) o L) (57)
Gty 2 ) o (7).

By analysing formula (56) it may be seen that the radiation in
the vacuum is a superposition, firstly of the transient radiation
occurring at the limits of the boundary between the medium and the
vacuum, secondly of the transient radiation occurring at the medium's
periodic inhomogeneities throughout the length of the charged part-
icle's trajectory and thirdly of the Cerenkov radiation (if it occurs)
When the latter two types of radiation emerge from the periodic
medium, they naturally undergo reflection and refraction if the mean

dielectric constant &, of the medium is not close to unity.

/2/

An analysis of the formulae has shown that, as occurred in ’
the radiation maxima close to the Bragg frequencies which were found
in the previous section occur only if the medium is sufficiently
extended, when lq\’ Qgp O_9b A /1,] 21 « In this case the
given maxima will also occur in the vacuum both behind and infront

of the periodic medium.
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