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1. Introduction 

The dynamic effects occurring during the diffraction of free 
X-rays in mono-crystals are well known (vis e . g . / 1 / ) . Similar 
effects also occur in the case of transient X-rays formed when ultra-
relativistic charged particles pass through crystals/2/. Physically 
speaking, these effects are determined by the dynamic interaction of 
the Bragg reflected and forward waves, and they mainly occur whenever the wave is propagated in a sufficiently ideal periodic medium 
with periods similar to the wave's length. In particular, dynamic 
effects may occur in the long-wave regions of electromagnetic waves, 
for instance in the sub-millimetric or infrared region. A common 
feature of all these cases is that the medium has a mean dielectric 
constant which is substantially different from and mainly greater 
than unity. 

On the other hand, the irradiation of a charged particle in a 
medium with a continuously and periodically varying density was 
considered in p a p e r s / 3 - 6 / . Unlike the similar problem involving 
a system of regularly spaced plates of irregularly varying density 
where an accurate solution may be found (vis e.g./7 - 9/), no precise answer was found in the case of a continuous periodic medium. 
This is because in the latter case the physical problem is much more 
general and therefore a nonhomogeneous Hill equation of the arbitrary 
type occurs for which a clear solution may be obtained approximately 
only when the density of the medium changes slightly. In this case 
the zero approximation of the perturbation theory is usually obtained 

by using the Hill equation solution which corresponds to a 
forward wave in the medium allowing for the mean value of the dielectric constant and assuming that the other waves are weak. 

However, when there is Bragg reflection, the reflected wave is 
generally of the same order as the forward wave. Therefore, in this 
case the perturbation theory must be modified so that both these 
waves are taken into account in the zero approximation. 
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This report considers the radiation of a charge in a continuous periodic medium using such a modified perturbation theory. 
In extreme cases when the radiation frequency is sufficiently far 
removed from the Bragg frequency, the formulae obtained become the 
corresponding formulae in the standard perturbation theory. Moreover, close to the Bragg frequencies the formulae differ considerably from known formulae. 

One particular result to emerge from our work is that 
extremely intense radiation occurs near the Bragg frequencies due 
to the dynamic interaction of the Bragg reflected and forward waves 
of coherently amplified transient radiation produced at strictly 
periodic inhomogeneities. This radiation is almost monochromatic 
and is propogated both forwards in the direction of motion of the 
charge and also backwards at extremely small angles to the charge 
trajectory. The maximum intensity of this radiation may not only 
considerably exceed the intensity of the transient radiation which 
occurs in the periodic medium away from the Bragg frequencies and 
which is obtained from the standard perturbation theory/3 - 6/ but 
may also be higher than the intensity of Cerenkov radiation at the 
same frequencies (if this radiation occurs). 

Moreover, the report also examines the case where the periodic medium has a finite length. In this case, in addition to the 
radiation which is produced inside the periodic medium, emerges from 
it and is refracted in the normal way, transient radiation also occurs 
at the limits of the boundary separating the periodic medium and the 
vacuum. 

Report/10/ describes the first experimental investigation 
into the radiation from relativistic electron bunches in a wave 
guide with regularly spaced plates of irregularly varying density. 

2. General equations for a finite periodic medium  
Let us assume that a fast charged particle with charge e 

moves uniformly along an axis with a velocity ν in a medium 
whose dielectric constant is a periodic function of with a period 
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where φ( + ) = φ ( ) , and 
is the mean dielectric constant of the medium. 

If the vectors of the electromagnetic fields are represented 
as Fourier integrals 

(2) 

then from the Maxwell equations we obtain/5/ 

(3) 

The function Y ( ) is related to the Fourier components of the 
electromagnetic field's vectors in the following way 

(4) 

where Jo(z) and J3(z) are the Bessel functions of the zeroth and 
first orders, are the values of the transverse components 
of wave vector and the radius of the vector . respectively. 
From now on calculations will be made for w > 0 , so that for 
w < 0 the expressions for/4/ fields are obtained by complex 
conjugation. 

Let us break down the function φ() into a Fourier series 
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(5) 

We shall assume that the series (5) may be twice differentiated term 
by term. We should point out that it is wise to distinguish between 
two cases: (A), when the number of Fourier amplitudes a2n is 
infinite but they vanish smoothly if the number |n| increases by 
at least n-3 ; (B), when the number of Fourier amplitudes a2n 
is finite and their values are arbitrary. In the case of a periodic 
medium consisting of plates, the corresponding Fourier series does 
not meet all the conditions of case (A) and the Fourier amplitudes 
vanish like I/n. Nevertheless, as will be seen later, in case 
(A) the phenomena occurring in the plates retain their main features/11/. 

By substituting (I) and (5) into equation (3) and by introducing 
the dimension less variable = π/, we obtain 

(6) 

where and 

(7) 

The Fourier coefficients θ2n and M2n are unambiguously 
defined when equation (6) is derived. This equation is a non-
homogeneous Hill equation. Using the general theory/12/ ' its 
solution may be written out formally. However, in order to obtain 
the solution in a clear form, we shall assume/12/ that the medium 
deviates only slightly from the homogeneous, i.e. |q| « 1. We 
then obtain the following with accuracy up to terms of higher orders 
of smallness: 
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(8) 

If the linearly independent solutions y^() and y2( 
of the homogeneous Hill equation (6) are known, then the solution of 
the nonhomogeneous equation may be written in the form 

(9) 

where 

(10) 

In order to determine the constants A1, and A2 we shall 
use the periodicity condition for the solution of equation (6) 
(vis / 7 /) 

We thus obtain 

(11) 

where exp(i,π) and exp(iπ) are the constants which appear according to the Floquet theorem before the solutions to the homogeneous 
Hill equation y^() and y2() when the arguments shift to the 
period π. 

3. Solution of the homogeneous equation 

In accordance with the general system for solving the homogeneous Hill equation we assume that 



(12) 

By substituting (12) into the homogeneous equation corresponding to 
equation (6), we obtain the recurrent relations 

(13) 

where the prime on the sum sign signifies that the term with m = 0  
must be omitted during summation. These relations give an infinite 
system of equations for determining the hitherto unknown values 
C2n which are Fourier coefficients of solution (12) of the homogeneous Hill equation. 

The coefficients Ө2m (m ≠ 0) contain the weak parameter q 
and the series Ө2m mustbe converging due to the assumption 
concerning the twofold differentiability of series (5). It may be 
seen from equation (l3) that weak coefficients Ө2m precede all 
C2 (N _ m) whilst C2n is preceded by the coefficient 

Ө0 — (·+ 2 n ) 2 . If the latter value is not small at any value of 
the whole number n, then the system of equations (13) has only 
a trivial solution. This system of equations may have a non-trivial 
solution only when the value Ө0-(+2n)2≈0 for a certain whole 
number n. As the value is determined with accuracy up to an 
arbitrary even number, it may be considered that n = 0 in the above 
condition without violating generality. The system of equations (13) 
may therefore have a non-trivial solution if 

If the value √θ0 is not close to a whole number, then the 
values θ0 —(+2n)2 at an arbitrary whole number n ≠ 0 may not be 
small. It then follows from equations (13) that in this case all 
coefficients C2n(n ≠ 0) are much smaller than C0. In physical 
terms this corresponds to a situation where the condition for Bragg 
reflection is not fulfilled and only one forward wave is important/3 - 6/. 

Let us now assume that the value √θ0 is close to a whole 
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number h > 0. Previous papers have not discussed this case 
(vis / 1 2 /). The authors of paper/5/ also pointed out the need to 
make a special study of this case. The expression C2n (n ≠ 0)  
then has one coefficient, namely C-2h, which is of the same 
order as C0 whilst the other coefficients remain small. In fact, 
relationship (13) at n = -h takes the form 

As √θ0 ≈ ≈ h, then θ0 - (-2h)2 is small and it thus follows 
that C-2h and C0 may be of the same order. In physical terms 
this means that there is Bragg reflection and, besides the forward 
wave C0, the reflected wave C-2h also plays an important part. 

Taking the above into account, we must retain the following 
two equations from system (13) as a zero approximation: 

(14) 

In order to provide equations (14) with a non-trivial solution, the system's determinant must equal zero i.e. 

(15) 
This relation is an approximated characteristic equation for 

determining when the value √θ0 is close to a whole number h 
which does not equal zero. 

In order to solve equation (15) we shall assume 
θ0=h2 + a, r=h+δ, (16) 

where |a| « h2, |δ| « h. Then for δ we obtain two values 

δ =δ1,2 =± √a2 - θθ-zh δ =δ1,2 =± zh 
(17) 

In this case we have 

C-zh= 2h - a C0 C-zh= 
θzh 

C0 
(18) 
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By replacing in (12) with the values 1,2 = h + δΛ,2 

and by also taking into account (l8), we obtain two linearly independent solutions for the zero approximation of the homogeneous 
Hill equation 

(19) 

In the zero approximation only two main terms C0 and C-2h 
were selected from all the sums in (12). In order to find the next 
approximation, the contributions from the other C2n terms to the 
solution must be taken into account. They may be determined using 
relation (13) in which of the sum in terms of m it is sufficient 
to keep only the two main terms m=n and n=h corresponding to C0 
and C-2h. We thus obtain 

(20) 

in which the two primes by the sum sign denote that terms with n =0 
and — h must be omitted from summation. 

It is easy to see that away from the Bragg frequencies when 
|a|»|Θ2H| and | θ - 2 h | , formula (20) is converted into the 
expressions 

(21) 

These formulae provide the solution to the homogeneous equation of 
the given problem and are obtained in a first approximation of the 
standard perturbation theory. 
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4 Solution of nonhomogeneous equation 
Having obtained the solution to the homogeneous equation, the 

solution to the nonhomogeneous equation may be derived in terms of 
formulae(9)-(11) By using formula (20), we obtain the following 
after the appropriate calculations. 

γ = γ(0)+∆γ, (22) 

where y(0) is obtained by means of the zero approximation formula 
(19): ., 

(23) 

Here n = wz0 + 2 n n = vπ 
+ 2 n . The value∆Y is obtained when the first-

order correctxons made in formula (20) are taken into account, and it 
has the form 
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Let us first consider the extreme case of a homogeneous medium 
when q = 0. Then according to (8) the values θ2n and M2n equal 
zero a t n ≠ 0 . We thus obtain 

(25) 
We shall substitute this expression into (4) and integrate in terms 
of after using the following formulae (vis e.g./13/) 

(26) 

where K0, ̂ (x) are the modified Hankel functions of the zeroth and 
first orders and Imη > 0. As a result of the integration we 
obtain for instance, 

(27) 
At high absolute values of the argument we have K21(k)≈√π/2k . 
When β2ε0 > 1, the charge field, like the function p at large 
distances, does not vanish exponentially (in the transparent medium) 
and this corresponds to the production of Cerenkov radiation. 

In order to calculate the integrals (4) using expressions 
(22)-(24), the latter must be decomposed into the most common 
fractions of type (25) with denominators containing x2.In 
expressions (23) and (24) the variable x2 is included only in the 
values a and δ^

2. The value δ^
2 in its turn is expressed 

via a in terms of formula (17) whilst from (8) and (16) we have 

(28) 
Taking the above into account it may be seen that expressions (23) 
and (24) are decomposed into the most common fractions with denominators of 4 types a ± α +(n) and a± α-(n) where 
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(29) 

η is the corresponding whole number. For y(0) we have 

(30) 

Away from the Bragg frequencies when |a|» |θ2h| and 
|θ-2h|, the above solution y to the nonhomogeneous equation inevitably becomes the corresponding solution obtained using 
the standard perturbation theory / 3 /. 

It should, however, be stressed that all the formulae obtained 
are used under the conditions |a|«h2 and |δ|«h. If these 
conditions are not fulfilled, then instead of formulae (17) and (18) 
we have δ1,2 = ±√2h2 +a-√4h4+4h2a+θ2hθ-2h 
and C-22 = C0 ( δ 2 + 2 h δ - a . ) / θ 2 2 . The appropriate changes 
must also be made in the subsequent formulae. 



- 12 -

5. Radiation occurring inside an infinite 
continuous periodic medium 

Let us first calculate the main contribution to the value 
Dp(,w).In order to do this we shall replace the value Y 

in formula (4) by expression (30) and shall ignore the term containing dε / d. We should point out that expression (23) (and 
hence (30) and (24) ) were obtained under the condition 

(31) 

wt0 √ε0≈h. cπ √ε0≈h. (32) 

which coincides with the Bragg condition in a medium with an 
average dielectric constant ε0 at an angle of incidence π/2 
Substituting condition (31) for (32) means in fact that.we are 
restricted to the study of radiation emitted at small angles to 
the charge trajectory. 

Taking the above into account, after integrating in terms of 
x we obtain the following using formulae (26) 
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(33) 

where 

(34) 

(35) 

The value Hφ(,w) is expressed by the formula obtained from (33) 
if the factor 0w / π c n is included under the sum sign· 

If Cerenkov radiation is likely to occur in the medium, i.e. 
when β2ε0 > 1, and we are not near the threshold, the radiation 
described by formula (33) must be supplemented by the conventional 
Cerenkov radiation in a medium with an average dielectric constant. 
This radiation is determined in the zero approximation by formula 
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(25). This is because the transverse component of the wave vector 
of Cerenkov radiation w√β2ε0-1/v away from the threshold is 
large and therefore conventional Cerenkov radiation is not covered 
by formula (33) which is obtained when condition (32) is met. 

It may be seen from formula (33) that only those terms for 
which the (34) values are positive contribute to the field at large 
ρ distances. Moreover, it may also be seen from (33) that 
these terms will increase as the (34) values decrease. As we are 
considering a case where the Bragg condition (32) is met, the (34) 
values will be small only if α ± (n) « . It may be seen 
from the expressions for α±(n) and bn that this may be achieved 
if |wt0/. 

With this in view, we shall require that 

(36) 

where |d|<<h' and h' i s a p o s i t i v e whole number of the same 
p a r i t y as h. Then, by s u b s t i t u t i n g (36) i n t o (29) and assuming 
n=n0 +n1, where n0 meets the cond i t ions 

(37) 

fo r α± (n) we ob ta in 

α=(r)=√4h2(d+2n1)2+θ22θ-2h. (38) 

The order of magnitude below the root in formula (38) is 
determined by the first term. Let us compare the values α±(n0), 

α± (n0 ± ^), α±(n0±2), If h' is a 
small number, then the two values α±(n0) are always much smaller 
than the remaining values. If h' >> 1, then these values are 
small and of one order at |n1|<<h'. 
It follows from conditions (36) and (32), under which radiation is intensified, that the difference between the time of flight 
of the charge and the average time for the propagation of radiation 
through the medium's inhomogeneity period must equal a whole multiple period of oscillation of the radiation. 
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We should point out that if the value 
in condition (36), then it follows from formula (38) that 
α±(n)≈2h/d+2n^| and formula (33) becomes the corresponding 
formula obtained from the standard perturbation theory. 

Thus, if h' (and consequently h) is a small number, 
i.e. if the radiation wave-length is comparable to the medium's 
period of inhomogeneity, then the main contribution to formula 
(33) comes from terms with n = n0. We thus obtain for instance, 

(39) 

where 

(40) 

We should point out that in the particular case of the ultrarelativistic particle, i.e. 1 -β2<<1, and in the frequency 
region where ε0-1=g0<0 and |g0| « 1, expression (39) must 
coincide with the expression Epac(,w) for the case of almost 
exactly backward Bragg reflection obtained in/2/. In fact, if the 
appropriate integration in terms of the wave vector is made 
using formula (29) from / 2 /, we then obtain an expression coinciding with expression (39) considered in the above particular case. 

Let us now find the intensity of radiation occurring per 
unit length of the charged particle's trajectory. In order to do 
this we shall calculate the flux of the Pointing vector passing 
through the circular region p1 ≤ p≤ p2 in the plane perpendicular 
to the axis (vis Fig. 1), 
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(41) 

In this case where 

is the radiation angle. The values Ep(,t) and Hφ(,t) 
are easily obtained from (39) and (2). When calculating integral 
(41) interference terms containing multiples of the type expi(x1 - x2) p or exp2ihπ/ occur and must be omitted. 

We thus obtain for forward radiation, 

(42) 

and for backward radiation, 

(43) 

It may be seen from formulae (42) and (43) that the radiation 
intensities are determined by the Fourier amplitudes a2h, a2(h-h')  
and a-2(h+h') regardless of the presence of other amplitudes. As 
we are considering the small numbers h and h', cases A and Β 
mentioned in section 2 do not differ greatly from one another. We 
should emphasize that these formulae are correct only in the neighbourhood of the Bragg frequencies wB 
and at w > 0. 

Let us now examine these expressions when the value is 
arbitrary in two separate cases, when the value β2ε0 differs 
considerably from unity (away from the Cerenkov radiation threshold) 
and when β2ε0≈1 (near the threshold). This separation is made 
because in the first case, as was pointed out above, Cerenkov radiation is not covered by formula (39) whereas in the second case the 
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Gerenkov radiation is propagated at small angles and is automatically 
taken into account in formula (39)· 

Let us introduce a slight deviation into the frequency = 
(ω-ωB)/ωB. Then d=h'(d0+v) where 

d0= h -1 d0= h'β√ε0 
-1 (44) 

and, moreover, we obtain from (40) 

(45) 

Let us examine the first case where β2ε0≠1.·It may be 
seen from (32) and (36) that in this case h≠h' and h > h ' 

corresponds to β2ε0 >1 whilst h <h' corresponds to β2ε0 <1. 
Taking into account the medium's absorbent properties, i.e. if we 
assume that ε0 = ε0'+ iε0"(|ε0"|<<|ε0'|), we then obtain from 
expression (40) for xi2 

(46) 

The denominators |xi|3 in formula (42) and (43) take the form 
It may be seen that the radiation intensities (42) and (43) reach 
maximum values at 
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By expressing d in terms of v and d0, we find that 
the maximum occurs at 

When the radiation intensities (42) and (43) are at a maximum, they 
are inversely proportional to h2ε0"/ε0' 

Let us estimate the ratio of the maximum forward radiation 
intensity to the intensity of Cerenkov radiation at the same frequency 
(when the latter occurs). This ratio is of the order 

(in this case we consider that |a-2(h + h')|<<|a2(h - h') ). When 
the absorption is sufficiently low, i.e. the value ε0" is sufficiently low, this ratio may be of the order of unity or greater. 
The band-width of the maximum may be estimated as the deviation ∆v = v -v0 at which Rexi~Imxi. It is easy to 
find that ∆v~h2ε0"/(h2-h'2)ε'0. The radiation angle 
is of the order h√|ε0"/ε0', i.e. extremely small for media of 
low absorptivity. 

At sufficiently high |v|>>d0 and √θ2hθ-2h/h2 

values, the value |xi|2 may increase in proportion to |v| and 
therefore the radiation intensity defined by formulae (42) and (43) 
will be low. 

A similar situation occurs close to the Cerenkov threshold 
when β2ε0≈1, i.e.h=h'. The only difference is that in 
this case close to each Bragg frequency wB only one maximum occurs 
at 



- 19 -

The width of the maximum is of the order ε0"/ε'0. Away from the 
Bragg frequency backward radiation, as in the case h≠h', vanishes 
rapidly. As for forward radiation, above the threshold it becomes 
normal Cerenkov radiation and below the threshold it becomes weak. 

Thus, by analysing formulae (42) and (43) we see that when a 
charged particle passes through a periodic medium of low absorptivity, 
the most noteworthy feature is the appearance close to the Bragg 
frequencies of extremely intense and almost monochromatic radiation 
which is propagated both forwards and backwards in relation to the 
direction of motion of the charge. Of course, there is also Cerenkov 
radiation (if β2ε0 >1) and the usual weak transient radiation 
away from the Bragg frequencies which is formed on the inhomogeneities 
of the medium and may be described by formulae obtained not only from 
the standard perturbation theory/3-6/ but also from formula (33) 
in this paper. The intense and almost monochromatic radiation near 
the Bragg frequencies is by nature the result of the dynamic interaction between the Bragg reflected and the forward waves of coherently 
amplified transient radiation which is formed at strictly periodic 
inhomogeneities of the medium. As the medium's inhomogeneities are 
continuously distributed along all the paths of motion of the charge, 
the intensity of the transient radiation both near to and away from the 
Bragg frequencies is proportional to the path length. 

In order to illustrate this, Figs. 2 and 3 show the curves 
of the spectral dependence of the number of quanta dN/dv 
emitted from a path equal to one radiation wave-length. Figs. 2 and 
3 relate to forward and backward radiation respectively. These 
curves are calculated using formulae (42) and (43) in which only the 
Fourier amplitudes a2(h-h') and a2h at h=5 and h'=3 
are considered to be non-zero. Moreover, ε0' = 2.778, ε0"/ε0' 
= 3·10-4, (1-β2)/2=1.10-4, and q= 0.15. Figures 1, 2 and 3 
denote that a4 and a10 respectively equal 0.25 and 0.25; 0.45 
and 0.05; 0.4995 and 0.0005. The hatched line in Fig. 2 relates 
to Cerenkov radiation. 
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Let us now assume that h and h' are much greater than 
unity, i.e. the radiation wave-length is much smaller than the inhomogeneity period of the medium. 

Let us first examine case A mentioned in section 2. Besides 
the term (39), terms with n=n0+n1, where n1 = ±1, ±2, 
and |n1|<<h' also made a considerable contribution in formula 
(33). Let us write out these terms in a clear form for the particular case of the ultra-relativistic particle ( 1 - β2 « 1 ) and 
in the frequency region where |ε0-1|=|g0| << 1. In this case, 
as can be seen from conditions (32) and (36) h=h'. As h>> 1, 
the term θ2h θ-2h compared with the term 4h2(d+2n1)2 
may be ignored in formula (38), except for certain v values for 
which d+2n1=0. As d=h(1-β+v-g0/2), we have 

(47) 

where n = n0+n1, and the signs ± correspond to i=1.3 
and i = 2.4. 

From the expression for fn it is easy to find that 
fn = h + d +2n1, for the first two terms in formula (33) 
and fn=-h+d+2n1, for the last two terms. This means that 
the first two terms correspond to waves which are propagated forwards 
in relation to the direction of motion of the charge whereas the last 
two terms relate to the opposite direction. 

Bearing in mind that at h » n1, the value M-2h+2n1, is 
much smaller than the value M2n1, we find from formula (33) that 
the part of the wave Dp(,w) which is propagated forwards takes 
the form 

(48) 
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where j = 1 or 2 depending on whether the value d+2n1, is 
positive or negative and summation is done in terms of the whole 
numbers n1, so that xnj2 > 0. It may easily be seen from 
formula (47) that whatever the sign of the value d+2n1 we obtain 

(49) 

If the angle of radiation θ=Rexnjc/w is introduced, then 
it is easy to obtain from formula (49) 

(50) 

The radiation defined by formula (48) is the normal transient 
radiation formed at the periodic inhomogeneities of the medium when 
the wave-length is much smaller than the inhomogeneity period. As 
|a| » |θ2h| in the case in questio, then, as was stated at 
the end of section 3, this radiation may be calculated using the 
"single-wave" perturbation t h e o r y / 3 - 6 / . In particular, the angles 
of radiation (50) coincide with the corresponding angles obtained in/4/ 
(vis. also/14/). 

As can be seen from (33) waves propagated backwards are 
extremely weak in this case due to the smallness of values θ-2h 
and M-2h+2n1. 

In case B, as the Fourier amplitudes a2n are arbitrary, the 
radiation must be calculated by the "two-wave" theory method described 
above if the value θ2h θ-2h is sufficiently large (vis. formulae 
(33) - (35) ). 
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5. Radiation in the case of a limited periodic medium 

Let the periodic medium be limited and situated, for instance, 
between the planes = 0 and = l = N, where N is a whole 
number and assume that the medium is surrounded by a vacuum. The 
radiation outside the periodic medium may be obtained by using the 
results from the previous section and also the condition for the 
continuity of fields at the limits of the boundary between the medium 
and the vacuum. 

The transverse component of the field Ep(,w) outside 
the periodic medium may be written in the form 

(51) 

for regions <0 and > l respectively. G1, and G2 are arbitrary constants and λ0
2 = w2/c2-x2. Inside the periodic 

medium, in addition to the waves found in the previous section, 
there are free fields which are due to the presence of boundaries 
and which are conditioned by the solution to the homogeneous Hill 
equation. Taking into account relations (16) - (18), these fields 
may be represented in the form 

(52) 
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The arbitrary constants G1 , . . . , Gu may be determined from 
the conditions for the matching of corresponding fields at the 
boundaries = 0 and = l : 

(53) 

the following notations are introduced here 

(54) 

with regard to the values q1 and q2 on the right-hand side of 
equations (53), we shall write them out clearly only for the most 
interesting case when the radiation wave-length is of the order of 
the medium's inhomogeneity period : 

(55) 

By solving the system of equations (53), the following constants may 
be expressed clearly 
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(56) 

where 

(57) 

By analysing formula (56) it may be seen that the radiation in 
the vacuum is a superposition, firstly of the transient radiation 
occurring at the limits of the boundary between the medium and the 
vacuum, secondly of the transient radiation occurring at the medium's 
periodic inhomogeneities throughout the length of the charged particle's trajectory and thirdly of the Cerenkov radiation (if it occurs). 
When the latter two types of radiation emerge from the periodic 
medium, they naturally undergo reflection and refraction if the mean 
dielectric constant ε0 of the medium is not close to unity. 

An analysis of the formulae has shown that, as occurred i n / 2 / , 
the radiation maxima close to the Bragg frequencies which were found 
in the previous section occur only if the medium is sufficiently 
extended, when |q√a2ha-2hlh/|≥1.In this case the 
given maxima will also occur in the vacuum both behind and infront 
of the periodic medium. 
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