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1 . Ι n t r o d u c t i o n 

In solving various problems encountered in elementary par­
ticle physics, and in particular in neutrino experiments, one has 
to convert a divergent beam of charged particles into a parallel 
or quasi-parallel beam over the widest possible energy and angle 
range. When these conditions are fulfilled, the neutrino flux 
produced from the decay of π- and Κ-mesons will be at a maximum. 
It is also important to carry out the conversion over as short a 
distance as possible, so that there is still a significant part 
of the decay length available for the beam. 

Up until now, the following systems have been used or 
examined for this purpose: a magnetic horn/1/, a plasma lens/2/, 
magnetio fingers/3/ and a horn with one or two additional reflee¬ 
tors/4/. With these systems, an axisymmetrio magnetic field is 
exeited by a pulsed current of several hundred kiloamp. 

The distinctive feature of devices/1,3,4/ is that they can 
only produce a parallel beam of neutrino parents (NP) in the following 
cases: a) NP momentum fixed, production angles arbitrary; b) NP 
production angle fixed, momenta arbitrary. The NP is focussed 
satisfactorily by these systems for any momentum and production 
angle by finding an acceptable compromise between the above limiting 
cases. This is done by selecting the geometry of the current¬ 
carrying shells according to the assumption concerning the shape of 
the angular and momentum speotrum of the NP. One of the main values 
defining the focussing properties of the system is the function 

F = α entr. , (1) F = 
α emiss. 

, (1) 

where αentr. is the entrance angle of the particles into the 
focussing system and αemiss. is the emission angle. 

In general the F value is a function both of the particle's 
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momentum and its production angle. To illustrate this, 
Fig. 1 shows a graph of the function F = F(αentr.,p) for one of 
the horns/5/. 

For the plasma lens/2/ the dependence of focussing on 
αentr. is negligible although, as with systems/1,3,4/, its 
dependence on the momentum of the NP is fairly great. 

We also studied the focussing properties of various sys­
tems comprising linear-focussing elements, that is lenses with a 
deflecting force directly proportional to their radius r (in a 
thin-lens approximation): 

Bz = cr, (2) 

where c = const., and z is the unit's length. Such fields may be 
set up, for example, by the following devices: 

1) a plasma lens which consists of a current-carrying 
plasma filament enclosed within an outer sheath of revolution· If 
the current is distributed uniformly across the filament, the 
deflecting force of the lens has the form (2). 

2) a parabolic lens whioh consists of two metal para­
boloids of revolution joined at the vertices/6/. A magnetic field 
is set up in the space between the paraboloids through whioh the 
pulsed current passes (fig. 2). The lens length equals: 

z = br2, b = const. (3) 

The field component in the lens: 

Βφ = Β = a 
r 

, a = const. (4) 

2. STUDY OF MULTILENS SYSTEMS IN A THIN-LENS 
APPROXIMATION 
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1. Reference equations 
Let us consider a random system comprising n thin lenses 

(Fig. 3), and take as parameters of the system the strengths of the 
lenses xj and the distances between the (j-1)-th and the j-th lenses 
ℓj. With these designations, ℓ1 is the distance from the NP source 
to the centre of the first lens. We now introduce the dimensionless 
units: 

Xj' = 
xjℓ1 

,ℓj' = 
ℓj , P' = 

Ρ , (5) Xj' = Po ,ℓj' = ℓ1 , P' = 
P o 

, (5) 

where p is the particle's momentum and po is the scale factor. 
From now on, we shall only use the (5) units in our calculations 
and therefore the dashes will be omitted. 

The matrix of the Τ system, consisting of n lenses, 
takes the form: 

T=M nL nM n - 1L n - 1 . . . MjLj ... M1L1. (6) 

Here Mj are the lens matrices and Lj the matrices of the free gaps 
preceding them. 

In a thin-lens approximation 

Mj =[ 1 0 ], Lj =[ 1 ℓj ] (7) Mj =[ -xj 1 
], Lj =[ 

0 1 
] (7) Mj =[ 

Ρ 

], Lj =[ 
0 1 

] (7) 

The focussing function in this system coincides with the 
element of the T22 matrix· From (6) and (7) it oan be seen that 
T22 is proportional to the polynomial of the nth power in terms of 
p, i.e. 

F n(P)= 
α B b l X 

= T22(P) = 
1 
n [ P n - R 1

n - 1 + R2Pn-2-...+(-1)nRn]. (8) F n(P)= 
αBX 

= T22(P) = Ρ n [ P
n - R 1

n - 1 + R2Pn-2-...+(-1)nRn]. (8) 
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The Rj coefficients depend on the parameters of the 
{x, ℓ} system· The NP beam is focussed in parallel if the con­
dition αemiss.(p) ≡ 0 is fulfilled throughout the momentum 
range, i.e. Fn (p) ≡ 0. 

In fact the polynomial in (8) only becomes zero for 
certain momentum values p1,p2,...pk', ≤ ̂  n, which are its roots: 

{ Έn (x, ℓ/P1) = 0, 

(9) { Fn (x,ℓ/Ρ2) = 0, 
(9) { ... (9) { Έn (x, ℓ/Pn) = 0. 
(9) 

If the conditions of (9) are met for momenta p1., p2,... 
pk, lying within the working range pmin ÷ Ρmax, then, by increasing 
the number of lenses and, consequently, of momenta extracted in 
parallel, focussing in that range will be improved. Fig. 4 illustrates 
the variation in focussing in a range for which 4 when the 
number of roots in it is increased. The curves correspond to 
cases where n = 1, 2, 3, 5. 

We note that if certain roots pn, pn-1,..., P n - k« Pmin, then the behaviour of Fn (p) in the range pmin ÷ pmax is virtually independent of these roots. In fact, in this range, the following is valid up to the value : 

Fn(p) = (1-
p1 )(1- p2 )...(1 -

= Fn-k 

pn 

)≈(1-
(p)· 

p1 )...(1- p n - k 

)= (10) Fn(p) = (1- Ρ )(1- Ρ 
)...(1 -

= Fn-k 
Ρ 

)≈(1-
(p)· 

Ρ )...(1- Ρ )= (10) 

Therefore, it is only worth increasing the number of roots and hence 
the number of lenses in the system as long as the roots can be 
placed within or close to the range pmin ÷ pmax without violating 
the conditions of (9) at real values of the parameters { x, ℓ}. 

let us obtain the conditions of (10) in an explicit form. 
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If we denote 
j 
Σℓ = sij, 
k=i+1 

then the Rj coefficients can be recorded in terme of Xj and ℓj as 
follows: 

where 

Formulae (8) and (11) enable NP focussing to be calculated 
for any system with known parameters. However, the reverse interests 
us: to find the parameters of a system comprising n lenses in terms 
of the degree of focussing required in the momentum range Pmin ÷ Ρmax· 
As Fn (p) is proportional to the multinomial of the nth power from 
P, then, according to the viète theorem, the coefficients at cor­
responding powers of the multinomial are expressed via the roots of 
this multinomial as follows: 

{ 

α 

(12) { 

R1(s, ℓ) = Σ pi.= Q 1 ( p j ) , 

(12) { 

i=1 

(12) { R 2 ( x , ℓ) = (12) { 
... 

(12) { 

n 

(12) { 

R n ( x , ℓ) = Σ P i P j . . . P k = Ρ 1 Ρ 2 . . . Ρ n = Q n ( P j ) . 

(12) { 

i < j < . . . < k 

(12) 
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This system of equations (12) is essential for the study of focus­
sing systems with differing numbers of lenses. 

We shall note some of the properties of this system: 

a) from (11) it can be seen that Rj (x, ℓ) are symmetrical 
with reference to the substitution 

{ 
x k → ℓ n + k - l ' { ℓk → x n + 1 - k ' 

(13) 

k = 1 , 2 . . . n . Consequently, it is possible to switoh from one 
set of unknowns to the other when solving system (12). 

b) If the root pn → 0, then the nth equation of the 
system takes the form: 

x1x0...xn ℓ1ℓ2...ℓn-1 ℓn = 0, (14) 

and, consequently, one of the parameters, for example ℓn, equals 
zero. By substituting ℓn = 0 into all the other equations of sys­
tem (12) and by changing the notation xn + xn-1 → xn-1, we obtain 
the same type of system for an (n-1)-lens system. This means that 
all the expressions valid for an n-lens system change at their 
limiting value when Pn → 0 to corresponding expressions for a 
system containing one lens less. 

c) The equations in (12) impose n conditions on 2n 
parameters {xj,ℓj}, j = 1,2,... n. In principle, any n values 
from this set may be taken as unknown and the remainder made to 
vary like parameters. The system's solution substantially depends 
on which parameters are taken as unknown. In cases where all 
{xj}or {ℓj} are taken as unknown, the resolvent's power 
equals n and solutions for n ≥ 3 are not expressed in radicals. 

However, it is possible to select n unknowns in such a 
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way that the system's resolvent will in any case be linear. In fact, 
system (12) is linear in relation to the following combinations of 
n values xi, ℓj, i > io, j > jo: 

{ 

n 

{ 

y1 = 

{ { 
... 

{ { 

... 

{ 

n 

y k = Σ 

{ 

... 

(15) 

f 
here io = { 

n/2, if n is even f 
here io = { 

n-1/2 if n is odd, 

jo = { n/2 if n is even jo = { 

n-1/2 if n is odd 

With these designations, the equations of (12) take the form 

n 
aikyk = b i , i = 1 , 2 , . . . , n · ( 1 6 ) Σ aikyk = b i , i = 1 , 2 , . . . , n · ( 1 6 ) 

k=1 
aikyk = b i , i = 1 , 2 , . . . , n · ( 1 6 ) 

The coefficients aik and the free terms b1, which are functions of 
the remaining parameters, can be obtained from the equations of 
system (12) in each specific case. 
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System (15) is easily solved and all the unknowns are 
unambiguously expressed in terms of yj. 

2. Two-, three- and four-lens systems 

A) Two-lens system. 

In this case, according to (15), we obtain: 

{ y1 = x2, y2 = ℓ 2x 2. 
(17) 

System (16) then takes the form: 

{ y1 + y 2 = P l + P2 - x l , { x1y2 = PlP2. 
(18) 

Prom (17) and (18) we find that 

{x2=ℓ2 = 

P 1 P 2 

{x2=ℓ2 = 
-x 1

2+ x 1 ( P 1 + P 2 ) - P 1 P 2 , 

{x2=ℓ2 = -x 1
2 + X1(P1 + p2) - P 1 p 2 {x2=ℓ2 = X1. 

The graphs illustrating the behaviour of ℓ2(x1) and 
x2 (x1) are shown in fig. 5. A typical feature is that, as ℓ2 is 
positive, the limitation p2 < x1 < p1 is imposed on the parameter 
x1. 

At the point x1 = P1 + P2 
2 

the function ℓ2 (x1), is at 
a minimum. 

ℓ2 m i n = 
4 Ρ1 Ρ2 • (19) ℓ2 m i n = (Ρ1 - Ρ 2 ) 2 • (19) 
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From expression (19) it can be seen that in two-lens 
systems of finite length, the focussing function F(p) cannot have 
multiple roots. 

If the length of the two-lens system is restricted by the 
L value, then it follows from (19) that the ratio of the roots 
P2/P1 does not exceed the value 

( P2 )makc = 1+ 
2 (1 - √1+L). ( 

P1 
)makc = 1+ L (1 - √1+L). 

B) Three-lens system. 

In this oase 

{ 
y1 = x2 + x 3, 

(20) { y 2 = ℓ 3
X
3 , (20) { 

y3 = ℓ3x2x3. 
(20) 

y1,y2,y3 satisfy the system of equations: 
{ (1 +ℓ 2) y1 + y2 = Q1 - x1, 

(21) 

{ 

ℓ2Χ1y1 + x1y2 + (1 + ℓ2)y3 = Q2, (21) 

{ 

ℓ2x1y3 = Q3. (21) 
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From this we find 

{ 

1 a 
, ℓ2x12 ℓ2x12 
, 

1 b 

, 
ℓ2 x12 

ℓ2x12 , 

Q3 
. 

ℓ2x1 
. 

By solving system (20) with reference to x2, x3 and ℓ3, we obtain: 

{ 

x2 = y 3 / y 2 = Q3x1/b, 

, (22) 
{ X3 = y1 = X2 = 

ab- x13 ℓ2Q3 
, (22) 

{ X3 = y1 = X2 = 

bℓ 2x 1
2 , (22) 

{ 

ℓ3 = y 2 / X 3 = b2 

, (22) 
{ 

ℓ3 = y 2 / X 3 = 
ab -x1

3ℓ2Q3 

, (22) 

From the condition that the distance between the lenses is positive 
(ℓ3 > 0), it follows that 

ab - x13 2Q 3 > 0 . (23) 

Figure 6 shows the area within which condition (23) is 
met when p1 = 1, p2 = 0,35 and p3 = 0,2. The formulae in (22) 
offer a complete solution to the problem of finding parameters 
which will describe three-lens systems in terms of 
a given focussing function (F(p). Fig. 7a shows the path of beams 
in one of the systems, as calculated from these formulae when the 
focussing function (Fig. 7b) has the roots p1 = 1, p2 = 0,35 and 
P3 = 0,2. 

C) Four-lens system. 

For a four-lens system yj, j = 1,2,3,4 take the form: 
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{ 
y1 = x3 + x4, 

(24) • 
y2 = ℓ3 x3 + ℓ3 x4 + ℓ4 x 4 , (24) 
y3 = ℓ4 x3 x 4 , 

(24) 

y4 = ℓ3 ℓ4 x3 x 4 . 

(24) 

They comply with the linear system: 

{ 

(1 + ℓ2) y1 +y2 = Q1 - x1 - (1 + ℓ2) x 2 , 

(25) 

{ 

ℓ2 x1y1 + [ ( 1 + ℓ 2 ) x 2 + x 1 ]y2 +(1 + ℓ2) y3 + y 4 = Q 2 - ℓ 2 x 1 x 2 , (25) 

{ 

ℓ 2 X 1 X 2 y 2 + ℓ 2X 1y 3 + [ ( 1 + ℓ 2 ) Χ 2 + X 1 ] Y 4 = Q3, 

(25) 

{ ℓ 2 x 1 x 2 y 4 = Q4. 

(25) 

By solving system (24) with reference to x3, x4, ℓ3 and ℓ4, we 
obtain: 

ℓ3 = y 4 / y
3 , 

(26) ℓ4 = (y2y3 - y 1y 4) 2 / (y1y2y3 - y12y4 - y32) y1, (26) 

x 3 = y23 / ( y 2
y 3 - y 1 y 4 ) , 

(26) 

X 4 = ( y 1 y 2 y 3 - y 1
2 y 4 - y 3

2 ) / ( y 2 y 3 - y 1 V 4 ) . 

(26) 

We shall not write out the explicit expressions for y1, y2, y3 and 
y4 obtained from the solution of linear system (25) as they are 
too cumbersome. The requirement ℓ3 > 0, ℓ4 > 0 leads to two 
conditions imposed on the free parameters x1, x2 and ℓ2: 

{ 

y3 > 0, (27) 
{ 

y1y2y3 - y1
2 - y3

2 > 0· 
(27) 
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Fig. 8 shows the focussing function and beam path for one 
of the four-lens systems, as caloulated from the formulae in (26). 

A similar analysis can be made of systems comprising a 
larger number of lenses. 

3. Some properties of the systems examined 

The above formulae were used as a basis for the study of 
the behaviour of solutions as functions of parameters which remained 
free. Figures 9 and 10 illustrate the most characteristic depen­
dences for three- and four-lens systems· At the limits of the 
areas defined by conditions (23) and (27), the overall lengths of 
the systems sn = become infinite. Within these areas 
(viz. fig. 9b, 10b), the Sn function has a minimum value. This 
value is determined by the position of the roots of the focussing 
function. The behaviour of Sn min (p1, p2,...Ρn) was studied for 
n ≤ 4. When any of the roots pk tends towards Pk+1, the Sn min 
function increases smoothly and so 

ℓim Sn min(p1,...Pk, Pk+1,...Pn) = ∞. 
Pk → p

k + 1 

(28) 

This behaviour of the Sn min function means that, after 
specific limitations have been placed on the system's geometry, we 
cannot select roots at random in Fn (p) and also cannot 
expect to find multiple roots. This condition in turn restricts the 
focussing quality in these systems. 

Figures 11 and 12 show graphs of the behaviour of S3 
(1, p2, 1/5) and S4 min (1,2/5, 1/5, P4) respectively. The curves 
in these diagrams behave according to (28). 

We note one other consequence arising from (28). Let the 
roots P1> p2 >... >Pn-1 > Pn > 0. If, at fixed values of P1, P2, 
...pn-1, the root Pn → 0, then Sn min decreases smoothly, and. as 

follows from property (b) of system (12), Sn min → Sn-1 min. 
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Hence, the following inequality is valid 

Sn min(p1',...pn-1', Pn) > Sn min(P1',...Pn-1'). (29) 

Therefore, by increasing the number of lenses and thus improving 
focussing due to the appearance of new roots in Fn (p), the length of 

the Sn system is increased. Thus, an optimization of the system's 
length and focussing power is tied up with an optimization of the 
number of lenses in the system. In order to obtain a characteristic 
of the degree of particle focussing, we shall examine the values of 

Fn(P)at the extreme points P1ex and p 2
e x, where p k + 1 < Pkex < Pk, 

k = 1,2. We denote 

|Fn (Piex)| = Bi (P1,P2,...Pn). 
Fig. 13 includes a set of graphs illustrating the 

behaviour of S3 min (1, P2', P3), B1 (1, P2', P3) and B2 (1, p2', p3) 
for cases where p2' = 0,25 - 0,5· If we confine ourselves to systems 
for which S3 min < 20, it can be seen from these graphs that, in 
the range 0,3< p2 < 0,4, systems can be obtained in which F3 (p) 
~ 15 - 20% throughout the momentum range p3 ÷p1. 

Fig. 14 includes a similar set of graphs for a four-lens 
system where p1' = 1, p2' = 0,35, p3' = 0,3 - 0,1 and P4 < p3'. The 
limit points at p4 → 0 correspond to the three-lens systems. It is 
clear that the introduction of another lens improves focussing some­
what, but also substantially increases the length of the system. 

4· Objectives consisting of thin lenses 

There are a number of reasons why it may be necessary to 
swap some of the strong lenses in the systems examined above for 
equivalent objectives consisting of a set of weak lenses. Let us 
examine the matrix of a symmetrical objective comprising three lenses, 
i.e. an objective with two outer lenses of the same focussing 
strength equidistant from a centre lens with a focussing strength of k2. 
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( 

1 0 )( 1 ℓ )( 1 0 

) ( 

1 ℓ 

) ( 

1 0 

)= ( -k1 1 )( 0 1 )( -k 2 1 ) ( 0 1 ) ( k1 1 )= 

=( 

1 ℓ )( 1 0 

) ( 

1-k1ℓ, ℓ 

) =( -k1 1-k1ℓ )( -K2 1 ) ( -k1 1 ) 

(30) 

Here 

k i = Xi = const · bi. (3l) k i = 
Ρ 

= const · bi. (3l) 

It is easy to show that the following relations occur: 

( 

1 ℓ )=( 
1 ℓ/(1 - k1 ℓ) 

) ( 

1/(1-k1ℓ) 0 

), ( -k1 1-k1ℓ )=( 0 1 ) ( -k1 i-k1ℓ ), 

( 1 - k1 ℓ ℓ )=( 1-k1ℓ 0 

) ( 

1 ℓ/(1-k1ℓ) 

) . ( -k
1 1 )=( -k1 1/(1-k1 ℓ ) ( 0 1 ) . 

By using these, we obtain from (30) 

where 

k = ( 1 - k 1 ℓ ) [ 2 k 1 + k2(I - k 1 ℓ ) ]. (33) 

Hence, it is clear that except for the terms k1ℓ « 1, this objective is 
similar to one lens with a focussing strength k, located in the 
centre of the objective. In order to switch from one lens to an 
equivalent objective comprising two lenses, it is sufficient to 
pose k2 = 0 in (33). In this ease 

k1 = 1 (1- √1 - kℓ). (34) k1 = ℓ 
(1- √1 - kℓ). (34) 
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Fig. 15-1 shows the focusing difference in one of the three-lens systems and in the aquivalent system con¬ 
siting of two-lens objectives. The difference in focussing to a few per cent, omly in a narrew area of low momenta, and 
for the rest of the range ∆F12 ~ 1%. 

It is interesting to study a where all the lenses in. 
the objective are the same. For a three-lens objective with 
equidistant lenses, the lens strength is then determined from the 
equation 

k13 4 k12 + 3 k1 
k = 0, (35) k13 

ℓ k1
2 + ℓ2 k1 ℓ2 = 0, (35) 

whose physical solution is the value: 

k1 = 2 [2 - √7 cos 1/3· (π-φ) ], (36) k1 = 
3ℓ 

[2 - √7 cos 1/3· (π-φ) ], (36) 

where φ = arc cos 20 + 27 k ℓ 

14 √7 
Fig. 15-2 shows the difference ∆F13 = F1 - F3 for a 

system comprising objectives of this type. The difference is ~2% 
throughout practically the entire momentum range. 

5. Effect of an extended target 

All the calculations have so far been made on the assump­
tion that the NP are produced at a point source s situated at a 
distance ℓ1 from the first lens in the focussing system. However, 
in, practice the length of the target must be taken into account. 

Let us assume that the particle was produced at a point 
situated at a distance ℓ from the first lens. The matrix T (ℓ), 
which describes the motion of this particle in the focussing system, 
equals: 

T (ℓ) = 
[ 

T11 T21 ][ 1 ℓ-ℓ1 ]=[ T11 T11(ℓ-ℓ1) + T21 
] (37) 

[ T12 T22 

][ 

0 1 ]=[ T12 T12(ℓ-ℓ1)+ T22 

] (37) 
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Particle foeussing is determined by the element T22 (ℓ): 

Fn(p,ℓ) = Τ12(p)(ℓ- ℓ1) + T22(p). (38) 

The element T12 is proportional to the multinomial of the n - 1 
power in terms of p. At points pj. where Τ12 (pj) = 0, focussing 
does not depend on the position of the production point ℓ. 

Fig. 16 shows the curves for particle focussing in one of 
the three-lens systems when Δℓ - ℓ - ℓ1 = -0,45, 0, 0,45, and 0,6 
(in units of ℓ1). It can be seen that the focussing quality for 
different target points varies only slightly. 

III. Focussing system consisting of parabolic lenses 

As a practical example, we shall 
examine a device consisting of linear-focussing units, that is of 
parabolic lenses. The investigation will be performed with reference 
to the conditions at the IHEP proton synchrotron. The focussing 
properties of this system indicate that an intense neutrino flux 
can be obtained throughout the energy range available at this 
accelerator. Our selection of a particular system was based on the 
requirement that the focussed NP beam should be obtained within a 
distance of no more than 15-20 m., that is ~ 10% of the overall 
decay length. It was also desirable that the lateral deviation of 
the beam at the output from the system should not exceed the size 
of the neutrino detector. 

As is well-known, one half of the neutrinos obtained from 
meson decay remain within the emission angle θ = where mo is 
the meson's rest mass and Ε its energy. The main part of the neutrino 
spectrum up to Εv = 10 GeV consists of neutrinos from the decay of 
π- mesons of Ε π ≤ 25 GeV, for which θ ≥ 1/200. For K-mesons of 
60 GeV ≥ 1/120. Therefore, NP should only be focussed up to 
angles of 5-10 mrad. 
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One of the main characteristics of a focussing system is 
its acceptance. By equipping systems with wide-aperture units, it 
is possible to capture the particle flux in a large angular range. 
However, in practice the lens apertures are restricted by specific 
values. The length of a parabolic lens is a square-law function of 
its radius and,, using the system of units selected, equals 

z = 500 Poxr2 , z = 
3 Iℓ1 

, 

where I is the current in ka, r is the radius in cm., ℓ1 is the 
distance scale in m., po is the scaling momentum in G-eV/c and x 
is the lens strength, a dimensionless value, (If the parabolic 
lenses are made from aluminium, pulsed currents of up to 700-900 ka 
can be passed through the lens, due to the strength properties of 
this material). By widening the aparture, the length and number of 
lenses in the objectives can be increased. The angular and momentum 
distribution of the mesons was taken into account when setting the 
aperture. 

Fig. 17 includes curves which indicate the dependence on 
momentum of an angle which contains a given percentage of mesons*· 
The lens radii were selected so that 80-90% NP capture was ensured 
in the given momentum range. 

The focussing system selected includes three lenses 
ensuring a high percentage of capture and good NP focussing in the 
range 5-50 GeV/c with comparatively small apertures. The scaling 
factors used are ℓ = 1,15 m and po = 15 GeV/c. The first and 
third lenses are 1 - 1,5 m long. For reasons of manufacture and 
power supply, it is advisable to change these lenses for objectives 
consisting of shorter lenses of equivalent effect (formulae 30, 36). 
Therefore, the first and third lenses are replaced by three-lens 
and two-lens objectives respectively (table 1b). By using objec­
tives instead of single lenses, particle absorption in the lens 
material is not considerably increased. In fact, the actual path of a 
particle in the lens wall is mainly determined by the factor 

*The curves were calculated by V.N· Folomeshkin. 



18 

dz_ = 2br, (39) 
d r 

= 2br, (39) 

and particles traversing the lens at large radii have a bigger path 
in it than those which pass close to the axis. When the strong lens 
is divided up into weaker lenses, as can be seen from expressions 
(31) and (33), the following relationship occurs correct to within 
K1ℓ« 1: 

b = Σbi. (40) 

Therefore, the overall length of a particle's path in the lens 
material remains virtually the same. 

The main characteristics of the system are given in 
table 1(a). 

Table 1 

I = 800 ka Po = 15 GeV/c 

A 

Lens no. X ℓ (M) z (CM) z (cm) 

A 

1 0.490 1.15 10.0 132.0 
A 2 0.126 2.87 13.0 58.0 A 

3 0.057 8.52 25.0 96.0 

Β 

1 0.186 0.69 8.0 32.0 

Β 
2 0.186 0.46 10.0 50.5 

Β 3 0.186 0.57 10.5 55.5 Β 

4 0.126 2.30 13.0 58.0 

Β 

5 0.029 8.13 25.0 49.0 

Β 

6 0.029 0.57 25.0 49.0 

A. Parameters of the optimal three-lens system 
B. Parameters of the system after the switch from lenses to objectives. 
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In order to reduce the dependence of particle absorption 
on the radius of traversal through the lens, the thickness of the 
lens walls may be varied and made thinner as the radius increases. 

We studied the effect of an extended target on She focus­
sing and acceptance of the system, the characteristics of which are 
given in table 1(B). The quality of focussing of the whole NP beam 
at various target lengths remains virtually the same. The 
curves in Fig. 16, corresponding to this system at po = 15 GeV/c 
and ℓ1. = 1.15 m, illustrate this fact· Fig. 18 shows the dependence 
of the angle of capture on momentum at various positions of the meson 
production point. It can be seen that the system's acceptance only 
changes significantly in the region 5-10 GeV/c. A system with this 
level of acceptance ensures that a large percentage of the mesons 
produced on an extended target are captured (Fig. 19)· 

The properties of the focussing system were studied in a 
thin-lens approximation. In order to check the accuracy of the 
results, we wrote a program to compute particle trajectories for a 
given surface profile according to formulae (P.4) and (P.5). The 
respective focussing curves are shown in Fig. 20 and it can be seen 
that they coincide satisfactorily. The difference between the 
results from the "thin" and "thick" approximations for this system 
does not exceed 5%. There is virtually no focussing dependence on 
the particle's angle of entrance into the system· 

One of the peculiarities of a parabolic lens is the neck 
linking the vertices of the paraboloids· The field has no effect on 
the particles within the diameter of the neck. Using the optimal 
system as an example, the effect of a neck 3 cm in diameter leads to 
a considerable angular dependence when focussing NP emitted from the 
target in an angular oone of less than 15-20 mrad. Typical curves 
are shown in Fig. 21. We should point out that the presence of the 
neck has a relatively strong effect on the lenses of the first 
objective. 

In order to allow for geometric aberrations, the trajectory 
should be calculated from the more precise formulae (P.1) and (P.2). 
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IV. Calculation of neutrino spectra 

1. Program 

Fig. 22 is a block diagram of the device used for producing 
the neutrino beam. Primary protons of 76 GeV energy are extracted from 
the accelerator and focussed on a target several millimetres in 
diameter. Secondary charged particles ( π - and K-mesons) escape from 
the target, pass through the focussing system, decay and form fluxes 
of µ-mesons, neutrinos and antoneutrinos: 

π + → μ + ν 

Κ+ → μ + ν 

π- → µ- 

Κ- → μ- 

(41) 

The neutrino flux is cleared of any μ-meson impurxty by 
iron shielding ( = -1,35 GeV/cm) located at the end of the decay 
channel. 

The probability of the production of secondary particles 
in the target in the range x ÷ x + Δ x equals: 

ω1 = Δ Χ exp (- x ), (42) ω1 = 
λ 1 

exp (-
λ1 

), (42) 

where λ1 is the length of the nuclear interaction. For aluminium 
and beryllium λ1 = 41 cm. and for copper λ1 = 16.7 cm. The probability 
of the absorption of a meson produced at point x equals: 

ω2 = exp (- L - x ) (43) ω2 = exp (-
λ 2 

) (43) 

for escape through the target's end face and 

ω2 = exp (- r ) (44) ω2 = exp (-
θ λ2 

) (44) 

for escape through the target's lateral face. 

In formulae (43) and (44) L is the target length, r is the 
target radius and λ2 as 2λ1 is the length of the xaeson interaction. 
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Scattering in the target material is disregarded in the 
calculations. 

In order to describe the angular and momentum distribution of the secondary particles, we use the Ranft formula/7/: 

∂2N = A1PA2po
A3exp(-B1PB2po=B C1Pc2po

c3 Θ c 4 ) , (45) 
∂P ∂ Ω 

= A1PA2po
A3exp(-B1PB2po=B C1Pc2po

c3 Θ c 4 ) , (45) 

where p (GeV/c) is the secondary particle's momentum, po(GeV/c) the 
primary proton's momentum and θ (rad) the secondary particle's 
production angle. 

Table II shows the values of parameters A1, A2.... O4 in 
relation (45) for various particles. 

The differential spectra, of the π+-and Κ+ mesons, 
calculated from this formula are shown in figures 23 and 24. 

Table II 

A1 A 2 A 3 B1 B 2 B 3 C1 C 2 C 3 C 4 

0,036 0,86 1,08 2,83 1,81 -1,47 3,31 1,18 0,20 1,38 
1,744.10-3 0,9627 1,1369 2,0195 1,7814 -1,5238 3,3291 1,3251 0,1046 1,4725 
0,021 0,71 1,24 3,13 1,65 -1,29 2,99 1,20 0,22 1,42 
8,078,10-3 0,7865 1,2994 3.1509 1,1696 -1,2712 2,9912 1,2617 0,1500 1,4357 

The probability of the escape of a meson with a momentum 
within the range p ÷ Ρ + Δp and within the angular aperture 
Θ ÷ Θ + Δ Θ equals 
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ωM = 
∂2Ν 2 π sin Θ Δp ΔΘ· (46) ωM = ∂p ∂ ω 

2 π sin Θ Δp ΔΘ· (46) 

Mesons which have escaped from the target decay with the 
probability 

ω3 = 
∆Z exp (- z ) , (47) ω3 = λ 3 

exp (-
λ3 

) , (47) 

where z is the distance from the production point to the decay point 
(m) and λ3 is the decay length of the meson (m). For π-mesons, 
λ3 = 55p (GeV/c) and for Κ mesons λ3 = 7p (GeV/c). The momentum 
of a neutrino produced from the decay of a meson equals 

Pν = 
2γpν* , (48) Pν = 

(1 + γ2tg2αν) 
, (48) 

where γ = Ε mc2 , Ε is the meson's energy, m is the meson's mass, 
αν is the neutrino's escape angle and pν* is the neutrino's 
energy in the meson's rest frame. 

For π-meson decay pν* = 0,0298 GeV/c and for 
Κ meson decay pν* = 0,2356 GeV/c. 

Neutrino momenta are distributed uniformly in the range 
from 0 to 2γpν* and therefore the probability of the production of 
a neutrino with a momentum of pν equals 1 

· 2γpν* · 

Due to the finite dimensions of the detector, only a part 
of the neutrino hits it. The hit probability (viz. Fig.25) equals: 

ω
4 = { 

0, if |s - R | < Rd 

(49) ω
4 = { 1, if s + R < Kd (49) ω
4 = { 

1/π arc cos R 2+s 2-R 2
d in other cases. 

ω
4 = { 

1/π arc cos 
2SR in other cases. 

The energy spectrum of the neutrino flux passing through 
the detector is calculated by integration in term of the target 
length, decay path, escape angles and momenta of the mesons; the form 
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of the decay Κ → equalling 63.5%, is also taken into account. 

dN 
= 2 π 

P m a x θ m a x L D ω1 ω2 ω3 ω4 sin Θ , ∂2K 
, (50) 

dN 
= 2 π ∫dp ∫dΘ ∫dx ∫dz 

ω1 ω2 ω3 ω4 sin Θ , ∂2K 
, (50) 

dpν 

= 2 π ∫dp ∫dΘ ∫dx ∫dz 
2 Υ Ρ * λ 1 λ 3 

, 

∂p ∂ Ω , (50) 
dpν 

= 2 π 

Pmin 0 0 0 
2 Υ Ρ * λ 1 λ 3 

, 

∂p ∂ Ω , (50) 

Ρmin = mpν [1 + ( 
pν* 

)2]· (51) Ρmin = 
2P* 

[1 + ( 
Pν 

)2]· (51) 

Two programs were written for this purpose: 

a) a program to calculate the paths of secondary charged 
particles inside and outside the focussing device. 

b) a program to calculate integral (50) and using program 
(a) as a sub-program. 

The first program determines the co-ordinates of the points 
of entry of the particles into the units of the focussing system and, 
using the solution of the motion equations for a particle in a 
magnetic field (P.4 and P.5), it calculates the point co-ordinates 
and emission angles by the iteration method. The program can work 
out the trajectories for focussing systems whatever the arrangement 
of their units' inner surfaces. 

The main program calculates the quadruple integral (50) 
by the "imbedded integrals" method. Each imbedded integral is 
considered to be an integrand function and the outer integral relating 
to it is calculated as a single integral. Each single integral is 
found by the trapezoid method with a fixed integration step. When 
integrating in terms of meson momenta, it is essential to take into 
account the strong dependence of the neutrino's emission angle on 
p in the p value range close to pmin Therefore, the integration 
step Δp is selected so that the variation of the angle αν does not 
exceed a certain value Δαν. The value Δαν is fixed so that the 
detector is not 'missed' during integration. The integration step in 
terms of the mesons' emission angles Δ Θ is selected in the same way. 

Variations in the protons' flight distance in the target (ℓ) and in the 
mesons' 
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flight distance to the decay point (z) are determined from the condi­
tions: 

Δℓ « λ1 
Δz « λ3. 

The lay-out of the main program is shown in Fig. 26. The 
values of the integration steps and limits used in the calculations 
are given below. The accuracy with which the neutrino spectrum is 
calculated under these conditions is ~10%. 

Table III 

Ρ m a x 
U 

Δαν (ΔΡ)o Θmin Θmax ΔΘ Δℓ Δz 
(p + 20) GeV/c 0,002 rad. 0.5 GeV/c 0,0 0,1 rad. 0,002 5 cm(Cu) 15m. 

2. Neutrino spectra 

For the given focussing system (table 1B) a study was made 
of the dependence of the neutrino spectrum on the decay length 

Rdecay and the detector's radius R∂. The meson shielding was 60 m. 
thick and the radius of the decay tunnel was 1.25 m. The detector 
was placed 10 m. from the shielding. 

When the target-detector distance is increased, the 
probability of meson decay also increases but the probability of 
neutrinos hitting the detector drops. The variation in the spectrum 
according to the path length is shown in Fig. 27. For a detector 
with R ∂ = 0.5 m, the best spectrum is obtained at a target-detector 
distance of ~ 200 m. Fig. 28 shows the absolute value of this 
spectrum. For comparison, it also shows the spectra for ideal 
focussing and for NP focussing using the horn + reflector system/5/. 
The neck of the parabolic lenses has no substantial effect on the 
neutrino spectrum. 
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Figs. 29 and 30 show the neutrino spectra for a detector of 
1 m. diameter. An increase in the detector's radius produces on 
average a 3-fold increase in neutrino intensity. Under these 
conditions, the real spectrum differs from the ideal spectrum by a 
factor of 1,5. For the given detector, the total length of 200 m. 
is also one of the best. 

The authors are extremely grateful to S.S. Gershtejn, 
G.I. Sil'vestrov, L.L. Danilov, E.P. Kuznetsov, A.I, Mukhin, 
V.N. Folomeshkin and A.M. Frolov for many useful discussions, and 
also to A.A. Logunov, R.M. Sulyaev, A.A. Naumov and V.I. Kotov for 
their unfailing interest and support. 
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V. Appendix 

The magnetic field set up by current I in an axisymmetric 
system equals H= , where)µ = 4π.10-7 
(we shall use the MKSA system). 

The motion equations for mesons in this field take the 
fοrm: 

{ d2r - r ( dØ ) 2 = 
k dz 
, { dt2 

- r ( 
dt 

) 2 = 
r dt , { d2z = k 1 dr , { dt2 

= k 
r dt , { d (r2 dØ ) = 0, 

{ 
dt 

(r2 

dt ) = 0, 
{ 

k( 
M ) = 

ec2 μ01 = 1,8 · 104 I (ka) 

{ 
k( 

ceκ 
) = 

2πE 
= 1,8 · 104 

Ε ( Γ Β ) 
By integrating the last two equations, we obtain: 

= + k ℓn 
r , r 2 = r02 = const, = + k ℓn 
r0 

, r 2 = r02 = const, 

r0, z0 and Ø0 are the particles' initial co-ordinates. By 
substituting these expressions into the first equation, we obtain: 

= - f (r), f (r) = - r Ø2 + κ ( + k ℓn r ) . = - f (r), f (r) = - r Ø2 + 
r 
( + k ℓn 

r0 
) . 

By rewriting this equation in the form 

and considering that d 2 

= - 2 f (r) and considering that 
dt 

= - 2 f (r) 

we obtain 1 ℓn r dr = 1 ℓn2 r = dr 
, 

f -r r0 
dr = 

2 
ℓn2 

r0 
= 

dz , 

dr = + 

√v2 - - ( + k ℓn ) 2 (A.1) 

dz 
= + 

+ k ℓn r/r0 
Ο ' Ο 

(A.1) 

Here v2 = 2+2 +r2 2 is the particle velocity, a motion 
invariant. Consequently, the mesons' trajectory in a parabolic lens 
is generally determined by the formula: 
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rΒblx ( 0 + k ℓn ) dr 
, (Α.2) ∫ ( 0 + k ℓn ) dr 
, (Α.2) ∫ √v2-0

2r04 - ( 0 + k ℓn 
r 

)2 

, (Α.2) 

1ο √v2- Γ 2 
- ( 0 + k ℓn r0 )

2 

, (Α.2) 

where r and remiss and zemiss are the particles' co-ordinates when they 
emerge from the lens. 

The trajectory equation may be simplified somewhat by 
omitting the velocity' s azimuthal component vφ = and 
introducing the particle's dip angle α as a variable: 

{ ΖBblx = Ζ0 ± 
r o v e x p ( - 0 / k ) 

k 

αBX 

∫ dα cos α e 
sin(αBblx cosαBblx) 

v cos α 
k 

Z B b l X = r0e 
v 
k (cos αBblX - cos α0) 

(A.3) 

If, moreover, is taken to be « 1, formula (A.I) takes the form: V 
k 

dr = ± √ αBX2 - 2k 
ℓn 

r • (A.4) 
dz = ± √ αBX2 -

ℓn 
r0 

• (A.4) 

By integrating (a.4), we obtain an explicit form for the particle 
trajectory in the field of the parabolic lens for a random emission 
angle 

z =z o ± √ π r0e [Φ( α B x ) - Φ(√ αBX - ℓn 
rBblx 

)], (A.5) z =z o ± √ 2 k r0e [Φ( 2 k α B x ) - Φ(√ 2k αBX - ℓn 
r0 

)], (A.5) 

where Φ(x)= 2 X - ξ2 
∫e dξ -is the error function. 
0 

where Φ(x)= 
√π 

X - ξ2 
∫e dξ -is the error function. 
0 



Fig. 1. Focussing curves of the horn + reflector system for 
different particle entrance angles into the system: 
1 - αentr. = 20 mrad; 2 - α e n t r . = 30 mrad;  
5 - α e n t r . = 40 mrad. 



Fig. 2. Parabolic lens. 1 - paraboloid of revolution, 
2 - current supply, 3 - neck. 



Fig. 3. System comprising n thin lenses. 



Fig. 4. Variation in focussing when the number of roots in a given 
momentum range is increased. 



Fig. 5. Two-lens system. Behaviour of ℓ2(x1) and x2(x1) for 
P1 = 1, P2 = 1/3. 



Fig. 6. Three-lens systems P1 = 1; P2 = 0,35; P3 = 0,2. 
The region within which ℓ 3 ( x 1 , ℓ 2 ) > 0 is marked by dots. 



Fig. 7. a) Path of beams in one of the three-lens systems. 
The parameters of the system are: ℓ2 = 3,0; 
ℓ3 - 9,6; x1 = 0,4; x2 = 0,14; x3 = 0,043. 

b) Focussing in this system. The following momenta 
emerge in parallel: P1 = 1, P2 = 0,35, P3 = 0,2. 



Fig. 8. a) Path of beams in one of the four-lens systems. 
The parameters of the system are: ℓ2 = 2,0; 
ℓ3 = 3,1; ℓ4 = 15,4; x1 = 0,40; x2 0,13; 

x3 = 0,07; x4 = 0,02. 

b) Focussing in this system. The following momenta 
emerge in parallel: P1 = 1; P2 = 0,35; P3, = 0,2; 
P4 =0,1. 



Fig. 9. Three-lens system: P1. = 1; P2 = 0,35; P3, = 0,2. 
a) Dependence of x2, x3, ℓ3 on x1 at ℓ2 = 3. 
b) Behaviour of S3 as a function of ℓ2. 



Fig. 10. Pour-lens system: P1 = 1; P2. = 0,35; P3, = 0,2; P4 = 0,1. 
Dependences: 
a) of lens strength x3, x4 and 
b) of geometry ℓ3, ℓ4 on x2. 
In the graphs ℓ2 = 2,0 and x1 = 0,35. 



Fig. 11. Behaviour of S3 min (1; P2; 0,2). At P2 → 0,2 and P2 → 1, 
S3 m i n (1; P2; 0,2) → ∞. 



Fig. 12. Behaviour of S4 min (1; 0,35; 0,2; p4) when p4 → 0,2, 
S4 min → ∞, when P4 → 0, S4 min → S3 min 
(1; 0,35; 0,2). 



Fig. 13. Three-lens system. Set of curves S3 min (1; p2'; p 3 ) . 
Β1 (1; p2'; p3), B2 (1; p2'; p3) when p2' = 0,5 - 0,25. 

The regions where S3 min ≤ 20 lie to the left of the 
vertical hatched lines· 



Fig. 14. Pour-lens system. Set of curves S4 min 
(1; 0,35; p3'; p 4), Β1 (1; 0,35; p3'; p 4), 
B2 (1; 0,35; p3' P4) when p3' = 0,25 - 0,10. 



Fig. 15. Focussing variation in a system when single lenses are 
replaced by objectives. 1 - two-lens objectives, 
2 - three-lens objectives. 



Fig. 16. Effect of an extended target on particle focuasings: 
1 - Δℓ = -0,45; 2 - Δℓ = O; 3 - Δℓ = 0,45; 4 -Δℓ = 0,6. 



Fig. 17. Dependence of the emission angle θ ( y ) on momentum for π -mesons. 
The cases shown represent 90%, 75% and 50% particle emission. 



Fig. 18. Effect of an extended target on the angle of capture: 
1 - Δℓ = -50 cm; 2 - Δ = 0; 3 - Δℓ = 50 cm. 



Fig. 19. Effect of an extended target on the percentage of 
mesons captured: 1 - Δℓ = -50 cm; 2 - Δℓ = 0; 
3 - Δℓ = 50 cm. 



Fig. 20. Focussing curves in a: (1) thin and (2) thick lens 
approximation. 



Fig. 21. Effect of the neck on the focussing - entrance angle 
dependence. 



Fig. 22. Block diagram of the device used for producing the neutrino beam. 



Fig. 23. Differential spectrum of π+-mesons calculated 
by the Ranft formula. 



Fig. 24. Differential spectrum of Κ mesons, calculated 
by the Ranft formula. 



Fig. 25. Probability of a neutrino hitting the detector. 
Yemiss. and Ζemiss. are the co-ordinates of the point at which 
the meson leaves the focussing system, θemiss. is the angle at 
which the meson leaves the system, Ζν is the distance between 
the meson production and decay points and αν is the neutrino's 
escape angle. 



Fig. 26. Lay-out of the program for calculating the neutrino 
spectrum. 

Key: 2 - Decay point after focussing system 
3 - Reduction of number of focussing units 
4 - "Trajectories" - Ζ e n i s s ., Y e n i s s ., θeniss. 



Fig. 27. Relative values of a neutrino spectrum in unite of 
spectrum II. Detector radius 0,5 m. 



Fig. 28. Neutrino spectra at R∂ = 0,5 m; RM-∂ = 200m. 
1 - ideal meson focussing; 2 - focussing by 
parabolic lenses; 3 - focussing by the horn + 
reflector system (Italian project). 



Fig. 29. Relative values of neutrino spectra in units of spectrum 1. 
RM-∂ = 200 m. Curve I - actual focussing. Curve II -
ideal focussing for R ∂ = 0.5 m. Curve III, IV - similar 
curves for R∂ = 1.0 m. 



Fig. 30. Neutrino spectra at R∂ = 1,0 m; RM-∂ = 200 m. 
1 - ideal focussing; 2 - focussing by parabolic 
lenses; 3 - focussing by horn + reflector system. 


