
CERN LIBRARIES, GENEVA

CM-P00100671

HAHN-MEITNER INSTITUTE FOR NUCLEAR RESEARCH, BERLIN
ELECTRONICS AND NUCLEAR PHYSICS SECTIONS

Report HMI-B 96

A MODULAR PROGRAMING SYSTEM FOR
PROGRAMMING EXPERIMENTS ON THE PDP-9

K.H. Degenhardt, L. Frevert and W. Woletz

Berlin 1970

Translated at CERN by J. Nicholls
(Original: German)
Not revised by the Translation Service

(CERN Trans. 71-18)

Geneva
March 1971

HAHN-MEITNER INSTITUTE FOR NUCLEAR RESEARCH, BERLIN
Electronics and Nuclear Physics Sections

B-NDV5
Nuclear Data Processing

HMI - Β 96
July, 1970

K.H. Degenhardt

L. Frevert

W. Woletz

A modular experiment programming system for the PDP-9

The research work described in this report was carried out, with the

support of the BMBW, within the compass of research programme NDV1 --

"The structural analysis of experiments made with the aid of a computer".

BERLIN-WANNSEE

- iii -

Summary

The report contains a description, arranged in the same format

as a manual, of the fundamental considerations upon which our modular

system for programming computer controlled nuclear physics experiments

is based. A program written with this system consists of subroutine calls

interconnected by standard routines (macro-instructions), some of which

may also consist of standard routines. Calls and standard routines are

put into their actual form by a preassembler which assembles parameters

given in dialogue by the user into prefabricated code units. One unit

of a formalized language and a special flow-chart symbol represents each

standard part, and hence the programs can be represented in both language

and flow-chart form. Both representations can easily be derived from the

parameters to be communicated to the preassembler.

The description of the programming system is supplemented by

descriptions and instructions for the use of important service routines.

- v -

Contents
1. Introduction 1
2. "Modular system" problem analysis 2

2.1 Modular systems 2
2.2 The size of the modules 3
2.3 Interconnection of modules 4
2.4 Representation of modular interconnections 5
2.5 Modular programming systems 6

3. Program structures 8
3.1 Interrupt-controlled programs 8
3.2 The strategy of the allocation of priorities 11
3.3 The structure of nuclear physics data reduction 14
3.4 The structure of steps in data processing 16
3.5 The structure of programs for the operation of devices 18

3.6 Synchronization problems 19
3.7 Program interconnections and their representation 21

3.8 Summary of part 3 23
4. A modular programming system for the PDP-9 23

4.1 The form of the interrupt handling routines 23
4.2 Preparing for interrupt handling 26
4.3 Advantages and drawbacks of nesting the sub-routines 28

4.4 "Waiting" 30

4.5 The construction of a modular programming complex 31

4.6 Representation of the program complexes 33

- vi -

4.7 Description of the standard subroutines (SSR) 34
4.7.1 General 34

4.7.1.1 Indirect parameter transfer; global parameters 36

4.7·1·2 Declaration of data fields 37
4.7.1.3 Instruction input 38

4.7.2 Program serialization Ρ 39
4.7.3 Indirect jump-out J 40
4.7.4 Parameter transfer Ν 41
4.7.5 Print M 41
4.7.6 Lower priority (request level) R 42
4.7.7 Raise priority L 42
4.7.8 Gate G 43
4.7.9 Switch S 43
4.7.10 Decode instruction D 44

4.7.11 Declaration of program label M 45
4.7.12 Declare global parameter GLOBL 46
4.7.13 Declare internal buffers BUF 46
4.7.14 Save and restore parameters SAV 47
4.7.15 And-interconnection A 48
4.7.16 SSR's for coordinating sequential processes 49
4.7.16.1 Declaration of a semaphore variable SEM 50
4.7.16.2 Sequence declaration SEQ 50
4.7.16.3 Activate call ACT 51
4.7.16.4 Assign statement ASS 52
4.7.16.5 Dyke call DYK 52
4.7.16.6 Undyke call UDY 53
4.7·16.7 Activating cyclic processes 54

- vii -

4.7.17 Input of any texts TEXT 55

4.7.18 Call C... 55

4.7.19 END of a sequence EX 56

4.7.20 Jump to external address Ε 57

4.8 Example: multi-channel program 58

4.9 Reduction of programs consisting of SSR's 65

5. Appendix: Program description and instructions for use 67

5.1 Preassembler and program generator 67

5.1.1 The preassembler 67

5.1.1.1 Purpose 67

5.1.1.2 Method of operation 68

5.1.1.3 Separator 68

5.1.1.4 Completion of parameter input 69

5.1.1.5 Input and output devices 69

5.1.1.6 Program file 70

5.1.1.7 Operation 71

5.1.1.8 Names of parameter lists 73

5.1.1.9 Error correction 73

5.1.1.10 Phase errors 74

5.1.1.11 Erroneous SSR type designation 75

5.1.2 Writing the SSR library 75

5.1.2.1 Library name 75

5.1.2.2 The configuration of the SSR library 75

5.1.2.3 Check codes 77

5.1.2.4 The use of macro-instructions 78

5.1.2.5 The indication of errors in the SSR library 78

5.1.3 The program generator 79

- viii -

5.2 Executive 80

5.2.1 Instruction decoding ERSTnn 80

5.2.2 Supervisor ORG 81

5.2.3 Queue handler SORQnn and SORAnn 82

5.2.4 Synchronization program DIJKST 83

5.2.4.1 DYKER 83

5.2.4.2 UNDYKER 87
5.2.4.3 ACTIV 88

5.2.4.4 ASSIGN 90

5.3 Reducing program CUSORT 91

5.4 Parameter handler PARHAN 93

5.5 Standardization of the names of program labels 98

Bibliography 100

Figures 101

1. Introduction

The spur to the programme of research on "The Structural

Analysis of Nuclear Physics Experiments" was given by the fact that

it was recognized as impossible to control nuclear physics experiments

satisfactorily by means of process computers if the language of the

assembler is to be used as the sole basis for programming. Assembler

programming is too time-consuming and liable to error to make a usable

tool for experiment programming. Attempts therefore had to be made to

create a system of sub-programs allowing flexible programming with

existing units. The intended aim of the structural analysis was to give

clear indications as to which units were needed for a modular system and

also, if possible, to develop the basic features of such asystem.

One essential factor which had to be borne in mind when the

exercise was begun was that there is no problem-oriented language

available for programming nuclear physics experiments and, in the present

state of the computer art, it was quite possible that the prospects of

creating such a language were not very bright. The reason for this,

in fact, was that the program compiled for experiments would probably

be too inefficient (i.e. too long and too slow) quite apart from the

fact that formulation and the construction of compilers went far beyond

- 2 -

the scope of our research programme. Attempts were therefore first

made to develop a modular program system not based on a special,

problem-oriented language. The basic premise for the attempt to

develop the required modular system in parallel with the structural

analysis was that the structural analysis of computer-controlled

experiments can effectively be carried out only with the aid of programs.

Here, we hope we have succeeded in finding acceptable detail solutions.

Meanwhile, we have also become convinced that it is only by means of

a problem-oriented language that the problem of programming experiments

can be finally solved.

The present report is divided into four parts. The first

and second parts set out general basic concepts, while the third

describes the special methods devised for use with a particular

computer (the PDP-9). Detailed program descriptions and instructions

for use will be found in part four.

2. "Modular System" problem analysis

2.1 Modular systems

For our purposes, the best definition of the term "modular"

is "capable of assembly in a variety of ways from component parts".

Examples of modular systems include construction kits (e.g. of the

"Meccano" type), languages (in which words are the modules) and

- 3 -

words (in which letters are the modules). A more accurate definition

of the expression "modular system" would be: "a collection of

components which can be divided up into N different types is modular

if any number of components of all kinds can be combined to form logical

complexes of any size".

2.2 The size of the modules

The lower limit to the size of the modules into which a

complex can be broken down is given by natural factors (the bit as the

smallest possible module in a computer program, or the alpha-numerical

symbol as the smallest module of a language). It is often useful to

combine these smallest units into larger modules (e.g. to combine letters

to form words). Such a combination may be carried out in several stages

(bit -- computer word -- micro-instruction -- subroutine).

In general, it is true to say that:

the smaller the module in relation to the whole complexes,

the more flexible the construction;

the harder it is to grasp the representation of the complexes;

the fewer different types of modules are required;

and,

the larger the module,

- 4 -

the easier ±t is to grasp the representation of the complexes;

the more specific the properties of the modules;

the less flexible they are in use;

the wider the variety of modules required.

Where, therefore, large modules are used for the sake of

clarity, a good compromise is reached by also using the type of module

from which the large ones are built up (interconnecting procedure calls

by statements).

2.3 Interconnection of modules

The most important factors in a modular system are the rules

by which the modules are interconnected to form entire complexes.

These rules determine the structure of the points of intersection between

the modules and vice versa (a procedure definition with pseudo-variables

defines the point of intersection of program and procedure, while the

rule for the procedure call follows from the definition of this point

of intersection). The more complicated such points, the more complicated

the interconnection rules. For this reason, the points of intersection

should be determined in the simplest possible way. In addition, the way

in which the modules are interconnected to form complexes must thereafter

be borne in mind when stating rules.

- 5 -

2.4 Representation of modular interconnections

There are two methods of representing a complex formed by

the interconnection of modules, viz:

1) graphic

By "graphic representation" is meant any representation

consisting solely of drawn symbols and where no connection is indicated

except by graphical means. Such a representation, therefore, should in

theory be completely comprehensible without the need for any additional

alpha-numeric symbols.

2) description by language

A mixture of both methods (the flow-chart) is frequently used.

Where linguistic means are used to describe a complex built

up from modules, the desired significance and clarity can usually be

attained only by the use of a formalized artificial language.

A modular complex can be properly illustrated only by a

full-scale representation (block diagrams of circuits made up of

digital units, ALGOL programs). It is often useful to have both a

graphic representation and one expressed in a formalized language

(digital circuits reduced with the aid of Boolean algebra).The

advantage of the graphic methods is that relationships and connections

become clearer in a two-dimensional representation. Their limitations

- 6 -

appear in the illustration of complexes consisting of a very large

number of individual modules. Dividing the drawing into several

sheets tends to make it difficult to grasp. The only remedy is to

break down the complex into super-modules (theoretical circuit diagrams).

Where module complexes are described with the aid of a

formalized language, the unidimensional nature of the medium makes it

necessary to cast the language in such a way that structures are made

clear from the linguistic description. It is only by means of

language that multi-dimensional structures can be adequately described

(the parallel operation of cyclic programs).

2.5 Modular programming systems

The most easily learned, most flexible and hence best solution

to the problem of creating a modular programming system for nuclear

physics experiments is derived from the analysis of the problem and

is, in fact, the problem-oriented language. However, its formulation

and the construction of a compiler to translate the programs written

in the language into machine code involves a great deal of work.

It is somewhat simpler to break the experiments down into

processes common to the largest possible number of experiments and to

- 7 -

write programs for these processes at the assembler level. That the

experiments investigated can be broken down in this way was demonstrated

in two research reports3,4). The sub-programs must be put together

to form the program for an actual experiment.

The sub-programs may be written either as macro-instructions

into which the parameters are inserted with the aid of macro-calls

on assembly, or as subroutines into which the parameters are transferred

from the parameter lists of the subroutine calls during the program

run. Programming with subroutines is more rational if the same

sub-programs are used several times in the same experiment with

different sets of parameters.

Experience has shown that an experiment program cannot

be composed purely of subroutine calls of existing sub-programs, but

that standard sequences of instructions, preferably combined to form

macro-instructions, must exist to link the sub-programs.

The drawback of such a programming system is that it is

very much more unwieldy and liable to error than a problem-oriented

language. Both faults are due to the fact that errors regarding the

significance, sequence and number of parameters can easily arise in

- 8 -

composing the lists of parameters for the subroutine calls and macro-calls,

and such errors are difficult to detect. For this reason, the

inexperienced user will find such a system manageable only if he has

the support of special auxiliary programs when composing his own

programs.

3. Program Structures

3.1 Interrupt-controlled programs

Unlike off-line computer programs which, when once started,

run in a predetermined way, on-line, control and data processing programs

consist of a number of routines, each activated by device flags

(interrupts). Since interrupts must often be processed as rapidly as

possible, important ones can interrupt the running processing of

another call, which is not continued until the computer has reacted

to the more important one.

The importance of messages, and hence the degree to which

their processing routines can be interrupted, is allowed for by the

allocation of priorities. A message with a given priority can interrupt

only those routines with a lower priority, and it can, in turn, itself

be interrupted only by messages with a higher priority. The processing

- 9 -

of messages can also be broken down into parts with different priorities.

A higher-priority part can require the computer to process another part

with a lower priority. Thus, the computer takes note of the problem

and deals with it later after all higher-priority routines are finished.

The structure of an on-line control program becomes clearer

if it is divided into sequential processes. Here, a sequential process

proper should be a cycle in which the individual steps follow one

another in a fixed time-order dictated by the program. Such a sequential

process, for instance, might consist of the cycle: read-in magnet

tape; process data read-in magnet; output of results on teleprinter. In this

example, the magnetic tape control peripheral device is first activated

by the processor. The end of data transmission is signalled by an

interrupt to the processor, which then processes the data and finally

activates the teleprinter output, so that the process is dealt with

further by the teleprinter. A closer look at this cycle shows that,

for instance, during the input from the magnetic tape, the peripheral

device does not operate alone, but that this first step consists of

a series of control instructions from the processor, their execution

by the external device, the acknowledgement of their execution by

means of an interrupt, and thus the activation of fresh control

instruction sequences by the processor. All the operations in this

- 10 -

interplay between external devices and the processor follow one

another, but in a rigidly fixed order.

Several of these sequential processes generally run in

parallel in the actual experiment. Each process attempts to make use of

an operating component in the processor/external device system.

Provided that the timing of such attempts does not actually conflict,

the processes can, in fact, run parallel to one another. If two

processes need to use the same component simultaneously, an

executive must decide, on the basis of the allocated priorities, which

process is to be allowed to take place first, while the other is put

on stand-by until the component can be allocated to it. If a process

is using the central processor, it is withdrawn immediately if a

process with a higher priority also wants to use that component.

The processor thus operates alternately for all parallel sequential

processes. A lower-priority process has its turn when all

higher-priority processes are occupied by external operations.

It is, in fact, impossible to forecast the way in which individual

processes will be delayed in this way. The time-sequence of

parallel-running calculations and checks cannot, of course, be

completely arbitrary. The reaction encompassing two different

messages, for instance, cannot take place until both have been

- 11 -

received. Thus, it must be possible to co-ordinate in time and

synchronize the processes running virtually parallel.

The computer will frequently not be concerned with the

processing of interrupts; there will be pauses during which the

computer is either awaiting fresh calls or dealing with some back­

ground program not belonging to the experiment at all. The programmer's

problem is to ensure that the times during which the computer is

not doing any useful work are kept to the minimum.

3.2 The strategy of the allocation of priorities

Interrupts may be divided into two types for the purposes

of allocating priorities to the individual interrupt operating

programs, viz:-

1) Interrupts from devices which the computer cannot control

in such a way as to be able to determine the frequency of the

interrupts (alarms), and those specifying the beginning of a

mechanical process (the indication that the magnetic tape is in

position and ready for data transfer). In such cases, the interrupts

must be fully processed within specific times.

- 12 -

2) Interrupts from devices where the computer controls

their frequency and where they do not have to be processed completely

within specific times.

The time condition for the first type can be fulfilled

only by the allocation of a suitably high priority, whereas with

the second, the priorities can be allocated in such a way that the

computer is used as efficiently as possible.

The computer should react as rapidly as possible to an

alarm, which should therefore be allocated a high priority.

The data from experimental equipment in nuclear physics

experiments is often statistically distributed in time. The devices

cannot make any further measurements until the last measured value

has been read out. Since each measured value is coupled to a

discrete event, the faster results are output, the fewer events are

lost. For this reason, such output routines, too, should be given

a high priority.

Otherwise, the allocation of priorities is a means of

obtaining virtually parallel operation and thus of making full use of

- 13 -

the computer (this aspect is often overlooked in discussions on

priorities). If peripheral devices can run out of synchronism with

the computer and hence truly parallel to the processor, they should

be activated and operated at a higher priority to avoid unnecessary

waiting times in their parallel work. It is a logical consequence

of the observation of this principle that the slower a mechanical device

is the higher the prioroty at which it should be operated.

Priorities should be allocated to evaluation routines

in such a way that the times during which the computer is not usefully

employed are as short as possible. An example is given in the next

section.

An operation divided into quasi-parallel parts is not,

of course, completed until all the parts have been finished, including

the one with the lowest priority. Therefore where two different

operations divided into quasi-parallel parts are processed, the

lowest priority occurring in them dictates which is to be completed

first, i.e. which one has the higher "total priority".

- 14 -

3.3 The structure of nuclear physics data reduction

The salient feature of nuclear physics experiments is that

the data provided by the equipment must almost invariably be

evaluated statistically. Here, a very large quantity of primary

data must be investigated, which must be very considerably reduced

on the way from primary data to final result. In addition, it is

often impossible to process intermediate results further until

there are enough of them available. Frequently, therefore, it is

necessary and usually highly desirable to divide the data processing

cycle into individual steps. These individual steps generally

involve the output from a buffer of a number of input data from

which a smaller number of results data are obtained. These are

then written into another buffer, there being no analytical connection

between the two quantities of data. (e.g. the sorting of data to form

a spectrum). The complete process consists of a "chain" of such

steps, each one using the input buffer of the preceding step as

its output buffer.

The effect of this great reduction in the quantity of data

is to reduce the frequency with which a step in the processing

chain is used, assuming roughly the same length for all the

intermediate result buffer stores. A given processing step will, then,

- 15 -

be used at time intervals which become longer, the further back the step

is in the chain. The computer can do other work during such intervals.

Basically, all steps which do not alter any common data

simultaneously can operate in parallel. Where every step has a

common buffer with the step immediately following and one with the

immediately preceding, it may not operate in parallel with these

steps, although it may well do so with others. Two successive

steps may operate in parallel only if they have two buffers which

are always alternately filled and omptied (alternating buffers).

Where less data are passed to the computer, giving an excess

of unused time, the machine is most efficiently used if the less

frequent steps are dealt with in the intervals between the frequent

ones, i.e. when the former can be interrupted by the latter. To

this end, the less often the steps are used in the processing chain,

the lower their priorities must be.

There more data are offered to the computer than it has

time to process, there is quite obviously no point in transferring

them all. Such transfer can be prevented by assigning priorities

in precisely the reverse order to that in the preceding example,

- 16 -

for example by giving input and the most frequent processed steps the

lowest priorities. In such a case, however, the intervals between

the use of the most frequent steps cannot be filled and the computer

stands idle during these times.

The transfer of too much data is prevented in the first

priority allocation system by blocking the input to each intermediate

result buffer store after it has overflowed until it is emptied

once more. This gives a system in which the computer is automatically

supplied with as much data as it can process, and is therefore used

to the best advantage. Here too, of course, the overall priority of

the processing cycle is the lowest one obtaining in it.

3.4 The structure of the steps in data processing

The structure of the individual steps in a nuclear physics

data reduction program is derived from the way, described in the

previous section, in which the steps operate virtually in parallel.

During each data processing step, data (or parameters)

are read out from one or more input buffers and written into one

or more output buffers. Once an input buffer is full, the write

- 17 -

program must be halted and the next component in the processing

chain must process all the information into the buffer forming its

output store. Only then can the previous step be continued.

In such a case, all the pointers to the output buffer may remain

unchanged, but those of the input buffer must be reset. This is

best done by a write call to the halted step in the program, with

which the output buffer address is provided as a parameter.

If, however, the output buffer cannot be filled from the

input stores by the processing of the data, the pointers to the

output buffers may remain unchanged until a fresh read call indicates

a filled input buffer.

It is useful, therefore, for a data processing step to

receive the same number of read and write requests as there are

input and output buffers in simultaneous use. Data transfer,

accompanied at the same time by data processing, does not begin

until all read and write requests have been made. The transfer cycle

is stopped when an output buffer overflows, and can be continued

only on receipt of the appropriate write request, just as the work

is continued by a fresh read request after a buffer has been

emptied.

- 18 -

The way in which a data processing cycle is to be finally

ended remains to be explained. For this purpose, all buffers

containing intermediate results should be emptied by the processing

of these results. Therefore, every program step must have a request

(finish) which, when given, simulates an output buffer overflow, so

that the subsequent steps in processing are activated. Obviously

the parts of the program then being read out must be informed of the

extent to which the buffers have been filled. This is done by

stipulating that each write program enters the number of data input

under a buffer header before indicating an overflow, and that each

read program refers to these headers.

3.5 The structure of programs for the operation of devices

Peripheral devices transfer data from data carriers into

the computer or vice versa. Real data carriers, like punched or

magnetic tape, supply limited quantities of data, whereas measuring

instruments may be regarded as data readers from imaginary data

carriers of infinite capacity. The same cycle takes place as in a

processing step. Data is read from peripheral carriers and

written into a buffer region in the core store, or vice versa.

- 19 -

Traditionally, writing into the buffer inside the computer

is actuated by a read call, just as reading out of it is triggered

by "write". Reading out of the data carrier is actuated by instructions

like "seek data", while, in data-oriented media, "close data" is

equivalent to "finish".

As in the processing steps, the data are actually transferred

only if both the read and write requests for the two data stores,

the carrier and core, have been made.

There are control commands, e.g. "start" and "stop", in

experimental devices, in addition to the instructions initializing

data transfer, as well as instructions ("init" and "close") enabling

and disabling the interrupts of the devices.

3.6 Synchronization problems

The two previous sections may be summarized in the fallowing

way:

It is easy to divide an experiment program up into parts

carrying out one step in data reduction or in the input or output

processes. Each of these parts has various inputs. The calls to

them must be made in a given order and, within the parts, operate

- 20 -

processes which are controlled by interrogating flags. Any further

subdivision is prevented by the fact that the indicators and

flags are common to the processes within the parts, a factor which

renders it essential for such structures with several calls to be

combined into units.

It has already been pointed out that quasi-parallel

working is impossible without synchronization. Steps must be taken,

for example, to ensure that two parallel processes never operate

simultaneously when one of them writes into and the other reads out

from one and the same buffer. This can clearly be ensured only by

setting and interrogating flags common to both processes. It is

possible, basically, to take out from both processes those parts

which have common synchronization flags and call them an independent

part of the program which takes over the job of synchronization.

The flags then become internally declared variables of such a

synchronization section. Sub-programs are thus produced which, for

example, control the filling and emptying of an alternating buffer

store (alternating buffer program).

An alternating buffer program must have at least four

inputs through which it calls other parts of the program,

- 21 -

i.e. fill buffer 1, fill buffer 2, empty buffer 1, empty buffer 2.

It must also have four outputs indicating that the called programs

have completed their tasks. It is quite likely that the connection

of synchronization programs to processing programs and vice versa

could give rise to highly complicated structures which, where the

scope of tasks becomes wider, would rapidly become impossible to

grasp. After a brief series of tests, therefore, the method of

synchronization employing specially written sub-programs was rejected

as impracticable.

Instead, a proposal made by DIJKSTRA1) was adopted.

Here, synchronization is effected by means of operations changing the

indicator variables (semaphores) common to several sub-programs

running virtually in parallel. The semaphore operations are described

in section 4.7.16. It will merely be mentioned here that the

various parallel-running sub-programs must be interlinked by

common variables.

3.7 Program interconnections and their representation

The simplest method of interconnecting two programs is

by means of jumps from one to the other. It can, moreover, readily

be represented purely graphically, on flow-charts. Interconnections

- 22 -

can also be provided, however, by the use of common variables. In

principle, this second method of interconnection can also be reduced

to program-to-program jumps, but this time with the transfer of

parameters, with the variable declared in only one program.

Simultaneously with a jump, its address is transferred as a parameter

to the other program so that parameters common at run-time are

inserted into the sub-programs. This method is, however, extremely

clumsy and gives rise to very complicated systems which are difficult

to grasp, since the parameters must be inserted in the programs and

often even passed on from program to program before ever the actual

computing process can be started.

It is better, therefore, to insert the names of variables

into the sub-programs before assembly. This does mean, however, that

the sub-programs must be interconnected by language units (variable

names), that therefore the interconnections can no longer be

represented purely graphically and that it would thus be logical

to describe the entire program, in all its interconnections, by

linguistic means. Nevertheless, because graphic symbols often give

a more instructive representation than linguistic ones, a mixed

system should be created in which the graphic symbols are partly

supplemented by language units (names).

- 23 -

3.8 Summary of part 3.

To summarize, then, it may be said that it should be a

simple matter to subdivide programs for on-line data processing

and checking in nuclear physics experiments into sub-programs.

The interconnections between the modular sub-programs are such that

they cannot be represented by graphic symbols alone. A modular

experiment program must, therefore, be described linguistically

to some extent. To eliminate ambiguity and to preserve meaning-fulness,

the language used for such a description should be highly formalized.

4. A Modular Programming System for the ΡDΡ-9

4.1 The form of the interrupt handling routines

It has already been said that an on-line program for

checking a nuclear physics experiment consists entirely of interrupt

handling routines. The interrupts bring about calls to the device

handlers from which a further call is then made of devices by calls

to device handlers, giving rise again to new interrupts.

When an interrupt occurs, the contents of all registers

used by the interrupt handling routine must first be saved, and they

are once more restored before returning to the interrupted program.

- 24 -

If several devices are connected to an interrupt channel, the computer

must first decide which device or devices caused the interrupt.

It codes the hardware interrupt into logical interrupts. Each of the

latter has its own processing routine, and they are processed in

succession.

Saving and restoring the register, and coding the hardware

interrupts are standard processes which should be carried out, not by

the user program, but by a standard executive. The interrupts are

then processed partly by the executive and partly by the user program.

Each logical interrupt causes a call from the executive to a part

of the user program. Once this part has been processed, a return

must be made to the executive.

There are two alternative methods of producing a return

to the executive, viz:-

1) A jump is made to a given address in the executive.

This implies that there is a definite division between the executive

and user program.

- 25 -

2) The jump from the executive to the user program is made

by subroutine calls and the reverse by returns.

In a modular system, the interrupt processing system in

the user program is made up of individual units. There are two

ways of making it up, viz:-

a) The individual units of their calls are written one after

the other and are thus passed through in succession.

b) The individual units or their calls represent formal

subroutines. Each one jumps to the next at each subroutine call;

subroutines are nested.

In the case of combination 1-a the sequence of the

individual units must be completed by a return (exit) into the executive.

With combination 2-a the sequence of the individual units must be

integral with a subroutine. After the innermost subroutine has

been processed, the subroutine returns in combination 2-b take

place in the opposite order to the subroutine calls and lead back to the

executive. Combination 1-b is pointless.

- 26 -

In combination 2-b, the borderline between executive and

user program is ill-defined, whereas there is a clear distinction

between the two in combinations 1-a and 2-a. With the latter two,

therefore, a decision must be taken on whether device handlers are

to be considered part of the user program or the executive, while

such a differentiation is unnecessary in the case of 2-b.

4.2 Preparing for interrupt handling

The handling of a logical interrupt must be indicated to

the executive by informing it of the connecting address for interrupt

handling in the user program. This is often implicitly included in

programming systems at assembler level by a wait call, so that the

user program is continued with the instruction following the wait

call on encountering the logical interrupt. Providing the connecting

address on the actuation of the external device operation ended by

the logical interrupt is an alternative here.

The connecting address can be transferred by means of a

subroutine call in which it is one of the parameters to be communicated.

Such a method gives the following sequence: The user program activates

an external device by calling the device handler and gives as a

- 27 -

parameter the point in the user program to which the handler is to

jump when the end of the operation is signalled by a logical

interrupt. In its turn, the device handler calls the hardware

interrupt decoding program and informs it of the address in the

device handler to which a jump should be made once the interrupt has

been decoded. From the point of view of the user program, preparation

for the processing of the interrupt takes place in nested subroutines.

Which of the nested subroutines is considered still part of the user

program or already part of the executive is immaterial. This method

of preparing for interrupts, used together with form 2-b (section 4.1)

of the interrupt handlers, takes place in the following way (fig. 1.).:-

An external device operation is initiated by a subroutine

call of the device handler in which the connecting address is one of

the parameters. This connecting address must be that of a part of a

program in the form of a subroutine. A subroutine call is used if a

jump is made from this part of a program to a further sub-part,

e.g. to a sub-program of a modular system. Here, pre-programmed

sub-programs are informed of their continuation address as a parameter

when the call is made in exactly the same manner as the device

handlers. Of course, the continuation address here, too, is that of

a formal subroutine. The logical interrupt, by means of which the

- 28 -

external device signals the end of its work, causes the nested sub­

routines to be run through until a nev external device operation is

activated or the machine must wait for the execution of another

quasi-parallel operation, or until the work is finished. The new

external device operation is once more activated by a subroutine call

with the connecting address as a parameter. The wait is brought about

by a subroutine call which interrogates a memory variable (see 4.7.16.5).

In neither case is a direct jump into a new subroutine made, and

thus the return to the executive takes place from these innermost

subroutines through the subroutine return sequence. If the sequence

of nested subroutines is not ended with a wait or external device call,

the innermost subroutine to be used must be one consisting of only one

subroutine return (EXIT).

4.3 Advantages and drawbacks of nesting the subroutines

It has already been shown that the borderline between the

user program and the executive disappears in this cycle where parts

of the executive and the device handler and user programs are nested

as subroutines. If it is decided to call everything which need not

be programmed by the user the executive, the latter can be extended at

any time by a process of logical nesting, involving the once-for-all

addition of the part written by the user. In the first stage, for

- 29 -

example, the executive may be extended by an ADC handler which, in its

turn, will form the nucleus for a multi-channel program already containing

simple data reduction routines. If this collection is also considered

part of the executive, the extended executive additionally includes

an external multi-channel device called in the same manner as the other

external devices and indicating back to the user when its work is

finished by means of a logical interrupt.

The number of logical interrupts which the user program can

await is not limited by the features of the system. Any number of

external devices may be activated simultaneously. This means that

any number of sequential processes can run in parallel in the user

program, their number's being unrestricted by the length of executive

lists.

There is a drawback to subroutine (SR) nesting in that SR calls

with their parameter transfer and also the SR returns take time.

It must be possible to recall the evaluation programs repeatedly

because each of them calls a further SR to indicate its completion

and can therefore also (implicitly) call itslef, i.e. the program must be

re-entrant.

- 30 -

Αs the executive has no means of accounting for the

sequential processes that have been started, each sequential process

can change only its own priority, not that of the other processes.

The user must, of course, accustom himself to the fact that

he must always explicitly supply the address of the subroutine with

which his program is to be continued whenever he gives a subroutine

call. This minor inconvenience, however, is compensated for by the

external uniformity of external device calls with evaluation routine

calls thus achieved. The user should always bear in mind that

returns in the subroutines used serve to provide a return to the

executive.

4.4 "Waiting"

It will frequently be impossible to complete a process

activated by an interrupt immediately if, in fact, anoiher interrupt

or the result of a calculation must be awaited. In the second case

particularly the computer may not remain in a wait loop but should

do useful work, e.g. finish the calculation of which the result is

"awaited", until receiving the event which has to be awaited.

- 31 -

Processing the interrupt must, therefore, be broken off by the

execution of the subroutine returns of all nested subroutine

through until that moment, so that the part of the program

by the interrupt is continued. Care must also be taken to ensure

that the processing of the remainder of the interrupt is activated

by the event to be "awaited". More details on this point will be

found in the description of synchronizations (4.7.16).

4.5 The construction of a modular programming complex

The hierarchical construction of our modular system is of

the two-stage type. Its lower stage contains device handler and

evaluation program with the structure described in sections 3.4 and

3.5. Each consists of a number of subroutines belonging logically

together. For these programs to run, they must be provided with

parameters, e.g. the addresses of data fields and the continuation

address. This is effected by "calls" which contain the subroutine

calls with parameter lists and, according to their external configuration,

also represent subroutines. The calls must also be interconnected

in order to provide a usable complex. Short standard subroutines

(SSR) which can be regarded as macro-instructions (indeed, some of

them are so defined) are used to this end. The programs are thus

called and interconnected by a higher-order program of calls and SSR's.

- 32 -

It is the user's problem to insert parameters generating

the desired experiment program into the calls and the SSR's forming

the "cement" between the calls. In this he is assisted by a special

program (preassembler, see 5.1.1) which fetches the calls and SSR's

from a library, describes the necessary parameters to the user and

thereby requests them, checks the parameters provided by the user for

format errors and inserts them into the calls and SSR's, which can

then be assembled. The PDP-9 loading program loads the programs

appropriate to the calls at the same time as it loads the experiment

program from the library.

All SSR's with internal labels not appearing on the outside

are defined as macro-instructions. Here, the parareters to be

provided by the user are inserted into the prefabricated macro-

instructions. The internal labels are generated by the assembler

on assembly and named. The remaining SSR's are formed from

prefabricated sequences of instructions.

The sub-programs themselves, which are called by the calls,

are written, as far as possible, with the aid of the SSR's. They

also contain sections written in assembler code. If certain rules

are observed, they may also contain parts written in FORTRAN.

- 33 -

Every SSR, with very few exceptions, contains one or more

subroutine calls which jump into standard parts or calls which carry

on further. The points to which they jump represent parameters to be

inserted by the user. With every call, a jump point must be given as

a parameter, to which the called program jumps at each subroutine

call once it has completed its task. Since a jump point may alio

be a call in the program with a different set of parameters,

it must be possible to recall the programs repeatedly, i.e. the program

must be re-entrant.

An experiment program made up of SSR's and calls may

be divided into super-modules which, with slight modifications, and if

suitably arranged, can also be used in other experiments.

4.6 Representation of the program complexes

It has been found that faster programming is often achieved

through a graphical representation of the SSR interconnections.

Linguistic representation is suitable in other cases, especially

for programming synchronizations. It was explained in section 3.7 that

not all the interconnections occurring in the structure of our problems

can be represented purely graphically. We therefore arranged for

series of letters (variable names) to be included in some of the

graphic symbols.

- 34 -

To allow the user to take advantage of both methods of

representation, we have tried to develop comprehensible graphic

symbols for our standard subroutinesand also to give linguistic

formulations so that, depending on the actual problem involved, one

or the other method of representation, or both together, can be used

for programming. We thought it important in this connection for each basic

unit in both methods to correspond to a symbol or linguistic combinations,

so that either method of representation can be transformed into the

other without any special mental effort. The method used is immaterial

on the input of the parameters into the preasSembler. The graphic

representation of a program need not, therefore, be translated into the

linguistic one, but a program can be created in dialogue with the

preassembler simply on the basis of its graphic representation.

4.7 Description of the standard subroutines (SSR)

4.7.1 General

The first factor to be mentioned in the description of

an SSR will be its purpose, followed by an example of an excerpt

from a program written in the form

SSR type labels generated linguistic symbols.

- 35 -

By SSR type is meant the combination of symbols which must be

passed to the preassembler so that it can search for the SSR under

this type name in its library. The SSR has at least one call label

formed by the preassembler from characteristic letters (generally

the type code) and the SSR number to be provided by the programmer.

Where SSR's have several call labels, they are differentiated by the

addition of letters A, B, etc. Calls setting and resetting the

flags are labelled with the suffix .T or .F. Examples : P1, P2,

S1A, S1B, S1C, S1.F, S1.T.

"Texts" briefly indicate the function of the SSR and

contain the parameters which must be inserted by the programmer.

Nearly all SSR's end with "go to" followed by the address of the

subroutine to which a jump must be made after the SSR has been executed,

per subroutine call. Eeference is made to the graphic symbols of the

SSR, beside which the SSE flow-charts are shown in the conventional

representation.

The "texts" may be considered as language units in a
programming language. No rigid rules of syntax are imposed,
since this programming language is not translated into a computable
program by a compiler. The formulations were chosen in such a way
as to provide similarities to existing programming languages.

- 36 -

The number, sequence and syntax of the parameters to be input

are determined by the indication of the SSR type. These parameters

are given in the correct order in the "texts".

For the purposes of the input of parameters into the

preassembler, it is best to arrange the SSR's by types, their sequence

being completely arbitrary in the source program composed by the

preassembler, since then the preassembler can carry out its search

in the SSR library much more rapidly. As, however, a program arranged

by SSR types is not easily understood by another user, the program

is reduced in the course of rearrangement to indications of type and

parameter. It is only these data, underlined in the "texts", that

are inserted into the preassembler. An additional advantage here

is that time is saved in punching the cards.

4.7.1.1. Indirect parameter transfer; global parameters

The names of semaphore variables and data (fields) can

indirectly be transferred by the SSR or calls. In other words, the

addresses at which the parameter names are to be found may be given

instead of the names themselves on the input of the parameters.

In the latter process, therefore, whether the address of the name or

the name of the parameter itself was given must be indicated by the

addition of YESindirect or NOindirect.

- 37 -

The names of semaphore variables and data may be declared

as global names valid for several, separately translated programs.

They are declared in one of the programs in which they are an internal

global address, and must be indicated as global addresses in all

programs by the SSR GLOBL.

External global names declared in another program must be

specified YESindirect, to be transferred indirectly, when input

as parameters of SSR's and calls.

4.7.1.2 Declaration of data fields

Data and parameter fields must be declared in a data

directory to be written for every experiment program. The data

directory formally represents a program with the name DATBnn, where

nn is the segment number in segmented programs. In unsegmented

programs, nn = 1. The names of data fields are external addresses

for all programs using them.

The form

field name 0; .GLOBL field name
field length

is prescribed for entry in the data directory.

- 38 -

A core allocator connected with the executive divides the

core stores not occupied by programs into data fields, their lengths'

corresponding to the entry "field length" which is given as a decimal

number. The core store allocator enters the calculated initial

addresses of the data fields, under the address "field name", in

the data directory from which they are taken by the processing programs.

When the field lengths are given, it must be remembered

that each data field must have a header into which those programs

which write-in data enter the number of data words actually inserted.

Fields may be declared as overlapping:

The directory entry

field name 2 field name 1; .GLOBL field name 2
50

means that a core store area of 50 words receives the same core

store address as the previously declared field with the name

"field name 1". The data directory must be closed with the exit

symbol -1.

4.7.1.3 Instruction input

Every instruction consists of a keyword and the actual

instruction. The keywords must be explained in a directory ADRBnn,

- 39 -

The entries in the directory must be made in the following

form:

.ASCII 'KEY' (15)

.DSA KEY; .GLOBL KEY

Here, KEY is the keyword (of up to four symbols) defined as the

address in the decoding section of the user program (subroutine).

Part of the system program (ERSTnn), the first to be loaded

by the user, uses the keyword directory to fetch the address of the

decoding section and, with the aid of the decoding section, to fetch

the address of the subroutine to be started as a result of the

instruction.

The exit symbol

-1

must be entered in the keyword directory.

4.7.2 Program serialization Ρ

Use: activation of "parallel" - running sub-programs

with the same priority.

Example:

P p1 go to 3 branches: G1.T, P6, P7 *)

SSR type: Ρ

SSR no.: 1

file:///P3Tnn

- 40 -

where nn is the segment number of segmented programs, and nn = 1

for unsegmented programs.

Label generated: p1

Execution: jumps are made to the indicated subroutines (up to 7)

in succession (fig.12).

*) Note: On the input of parameters into the preassembler, a total

of 7 branch addresses must be given, those which do not apply being

provided as dummies.

4.7.3. Indirect jump-out J

Use: jump to an address adopted as a parameter

Example:

J j1 Jump out by N1B

SSR type: Ν

SSR no.: 1

Label generated: j1

Execution: Indirect subroutine jump via address N1B, into which

the jump point was written as a parameter by SSR N1 (fig. 3).

- 41 -

4.7.4 Parameter transfer N

Use: transfer of parameter lists from subroutine calls.

Example:

N n1 get 5 parameters by label INIT

SSR type: N

SSR no.: 1

Labels generated: n1; n1a, n1b, n1c, n1d, n1e

Execution: 5 parameters are transferred, behind the last call made

of subroutine INIT (only fifteen-bit addresses are permitted as

parameters). The parameters accepted are found under addresses

n1a, n1b, etc. Transfer is carried out with API and PI disabled

by .CB or .DA (fig. 3).

4.7.5 Print M

Use: issue of messages via teleprinter.

Example:

MELD m1 print INPUT EPROR

SSR type: MELD

SSR no.: 1

Label generated: M1

Execution: A subroutine issuing the message via a teleprinter

is added to a queue at main program level (fig. 4).

- 42 -

4.7.6 Lower priority (request level) R

Use: Add a subroutine to a lower-priority queue.

Example:

R r1 request level 5 for P1

SSR type: R

SSR no.: 1

Label generated: R1

Execution: Subroutine P1 is added to the queue for level 5

and started later (fig. 4).

4.7.7 Raise priority L

Use: Raising the priority.

Example:

L l1 raise priority to level 3 and go to P1

SSR type: L

SSR no.: 1

Label generated: L1

Execution: The priority is raised to 3 and a subroutine jump is

made to P1. After the return from P1, the priority is lowered

to its original value (DBK) (fig. 5).

- 43 -

4.7.8. Gate G

Use: Making a continuing subroutine call only when

a condition is satisfied.

Example:

G- g1 if g1.f do nothing else go to P1

g1.f do g1.f

g1.t undo g1.f

initially YES g1.t

SSR type: G

SSR no.: 1

labels generated: g1, g1.f, g1.t

Alternatives to initial condition: NO gl.t

Execution: A flag is set or reset by jumps g1.t and g1.f.

Depending on the value of the flag, a jump to the label given

as parameter is made or not after jump g1. (fig. 2).

4.7.9 Switch S

Use: Conditional branching

Example:

S s1A if s1.f go to P1 else to P2

s1.f do s1.f

s1.t undo s1.f

- 44 -

S s1B if s1.f go to P3 else to P4

SSR type: S

SSR no.: 1

Labels generated: s1a, s1.f, s1.t (the last two only if "arm A" is

stated).

Execution: Jumps s1.f and s1.t set and reset flag. At jumps

s1a, s1b, ..., branching occurs, dictated by the value of the

common flag. The "arms" are continuously indexed A, B, etc. (fig. 2).

4.7.10 Decode instruction D

Use: Starting sub-programs by means of the input of

instructions via a teleprinter. Each instruction consists of a

keyword and the actual instruction itself.

Example:

D decode with key ATLA 4 commands

on command GO go to P1

on command END go to S1A

on commend LOS go to S1B

on command CLOS go to S1C

(Up to seven instructions per keyword may be set*)

- 45 -
SSR type: D

Labels generated: none

Global address: keyword

*Note: The input must be parameter pairs for seven instructions

(unused ones as dummies).

Execution: A decoding directory is generated containing the command

word (up to four symbols) in 5/7-ASCII followed by the address

of the sub-program to be started by the user as a parameter.

The final symbol of the decoding address directory is -1. The keywords

are also written in 5/7-ASCIΙ followed by the appropriate decoding

section addresses in a directory to be written by the user (with

the available auxiliary program). Decoding is carried out by part

of the executive ERSTn (n = 1, ... as a segment number is segmented

programs) which adds the subroutine address found during decoding

to a queue running at main program level.

Note: The subroutine address given in the decoding section must

contain 0 in order to be entered in the queue; do not, therefore,

make subroutine jumps in the program (Fig. 3).

4.7.11 Declaration of program label M

Use: Declaration of call labels, in subroutines to be

translated separately and written by the user, as external addresses

for other parts of the sub-programs.

- 46 -

Example:

M declare label MARA = P1

SSR type: M

Program label (global address): MARA

Execution: A SSR in the form

MARA 0

•GLOBL MARA

JMS P1

JMS* MARA

is generated (fig. 4).

4.7.12 Declare global parameter GLOBL

Use: Declaration of parameters to (internal or external)

global parameters.

Example:

GLOBL BUF1, BUF2, SPEK

SSR type: GLOBL

Execution: The parameter names given are regarded as global addresses.

4.7.13 Declare internal buffers BUF

Use: Declaration of intermediate buffers inside the program.

- 47 -

Example:

BUF declare BUFFER with 100 words

SSR type: BUF

Buffer length: 100 (decimal)

Execution: An entry is generated which is the same as the entries

of the core allocation in the data directory:

BUFFER .DSA ..0013

100

.DEC; ..0013 .BLOCK 100; .OCT

4.7.14 Save and restore parameters SAV

Use: To obtain subroutines which can be re-entrant.

Each subroutine so written jumps at every subroutine call to an

S3?- or call address indicated in the call to indicate the completion

of its work. The program may, via this subroutine jump, pass to a

call which calls the same sub-program with a different set of

parameters and thus writes in the flag and any other parameters in

the sub-program. Before the subroutine call, these parameters must

be saved, to be restored after return.

Example:

SAV sav1 save entrance INIT (having delivered 4 parameters) and

4 locations: P6, READER, PAR1, DATUM; done go to P5

- 48 -

SSR type: SAV

SSR No.: 1

Execution: The program is initialized by the subroutine call INIT;

There are four parameters in the call after INIT, and these must be

transferred. Five cells must be kept free behind these parameters

for the entry of the content of cell RUAD inside the SSR and the

contents of the four locations given. The content of INIT (the

return address) is saved in RUAD. The program is then continued by

a subroutine jump to P5. After the return from this subroutine,

which may also implicity call ΙNΙΤ, the saved contents are restored

with the aid of the content of RUAD which is taken back to INIT

(flow-chart, see fig. 3).

4.7.15 And-interconnection A

Use: Further jump to a subroutine only if two actions with

the same priority have taken place in any order.

Example:

A a1a if a1b done undo both, go to P1

a1b if a1a done undo both, go to P1

initially YES both done

SSR type: A

SSR no.: 1

- 49 -

Labels generated: a1a, a1b

SR jumped to: P1

Initial conditon: jump made to both inputs

(alternative NO both done)

Operation (fig. 5): the jump to subroutine P1 is made only if jumps

are successively made to a1a and a1b. There is an initial exception

after the program has been loaded. The further jump takes place when

a jump is made to one of the two inputs.

4.7.16 SSR's for coordinating sequential processes

It was stated in section 3.1 that an experiment program

consists of sequential processes running virtually parallel. The

work of these processes must be coordinated in time. Thus, for

instance, two processes may not attempt to change the same variables

simultaneously or, in other cases, two phases of two processes must

take place in a given time-sequence. It must be possible, in both

instances, for one of the processes to "wait", where conditions

require it.

Coordination is effected in our system according to a
proposal made by DIJKSTRA1) with the aid of special variables,
the semaphore variables, which can only be integers and can be

http://me.de

- 50 -

changed only by special operations which cannot be interrupted.

Semaphore variables may be declared as global addresses. There are

the following SSR's or macro-instructions:

4.7.16.1 Declaration of a semaphore variable SEM

User Declaration of a semaphore variable.

Example:

SEM declare sema SEMNAM

SSR type: SEM

Execution: Two computer words With the identifier SEMNAM are

kept free. The content of the first word is set at -1 and that

of the second 0.

4.7.16.2 Sequence declaration SEQ

Use: Declares a subroutine at the beginning of a

sequential process and allocates a name and priority to it.

Example:

SEQ Declare sequence WORK with priority 5

beginning with p1

SSR type: SEQ

Execution: A sequence heading with the address WORK is generated.

- 51 -

The sequential process will begin with SSR P1, started with

priority 5.

A subroutine

WORK Ø

JMP .+2
5
JMS P1
JMP* WORK

is gener ted (fig. 6).

4.7.16.3 Activate call ACT

Use: Activating (starting) a sequence.

Example:

ACT act 1 activate WORK; go to ΑCΤ2

SSR type: ACT

SSR no.: 1

Activated sequence: WORK

The program is continued with SSR ACT2.

Execution: The sequence WORK is started with the priority given

in the declaration by a subroutine call if the activate call has

the same priority as or a lower priority than the sequence;

otherwise, it is added to a queue. Thereafter the program is

continued with the SSR ACT2 (fig. 6).

- 52 -

4.7.16.4 Assign statement ASS

Use: Assigning an initial value to a semaphore variable.

Example:

ASS ass1 assign to SEMNAM (NOindirect) 10; go to ASS2

SSR type: ASS

SSR no.: 1

Semaphore variable: SEMNAM

Allocated value: 10

The program is continued with SSR ASS2.

Execution: The first word of the semaphore variable SEMNAM is
set to 10 and the second to 0 (fig. 6).

4.7.16.5 Dyke call DYK

Use: "Waiting" until a semaphore variable is not negative.

Example:

DYK dyk1 Dyke SEMNAM (NOindirect); go to P1

SSR type: DYK

SSR no.: 1

Semaphore variable: SEMNAM

The program is continued with P1 (fig. 6).

Execution: The semaphore variable SEMNAM is interrogated by a

- 53 -

jump to a system subroutine DIJKGT. If its value is ≥ ø, it is

reduced by 1 and a jump is made to subroutine P1. If its value

is negative, it is not changed and subroutine P1 is entered in a

queue which can be compiled for any semaphore variable. The second

word of each semaphore variable contains the indicator to the

first entry in the queue, and each Dyke call contains the indicator

to the next entry in the queue belonging to the appropriate semaphore

variable. The end of the queue is given by the pointer ø. The

entries in the semaphore queue are in order of priorities (see

description of DIJKST, 5.2.4).

The jump to DYKER takes place with API and PI disabled.

They are both enabled again before return.

4.7.16.6 Undyke call UDY

Use: Providing the indication that "waiting" is not (or no longer)

necessary.

Example:

VDY udy1 undyke SEMNAM (NOindirect); go to P1

SSR type: UDY

SSR no.: 1

Semaphore variable: SEMNAM

The program is continued with SSR P1 (fig. 7).

- 54 -

Execution: The value of semaphore variable SEMNAM is increased by

1. If this causes the value ø to be attained, a check is made on

whether there is an entry in the queue appropriate to the semaphore

variable (secnnd word of the variable ≠ ø), If so, the value of

the semaphore variable is once more reduced by 1 and the SE to

which a jump should be made from the first waiting DYKE is started

or entered in a starting queue depending on whether the priority

of the Undyke call is lower (or equal to) or higher than that of

the waiting DYKE. The next item in the Dyke queue is advanced to

first position.

4.7.16.7 Activating cyclic processes

Sequences consisting of closed cycles may be activated

provided that the following rules are observed.

1) The work of an external device must be contained in the cycle, or

2) the cycle must contain a Dyke call, the semaphore variable of

which has such an initial value on activation that the Dyke call

is awaited; the cycle can then be started later by an Undyke on the

same semaphore variable.

- 55 -

4.7.17 Input of any texts TEXT

Use: Input of any texts, e.g. subroutines written by the user

in assembler code.

Example:

TEXT RΕΑD 0

∙

∙

JMP* READ

SSE type: Text

Execution: The text provided by the user is regarded as a parameter

of the statement "TEXT" to the preassembler and inserted by the

preassembler into the program generated.
4.7.18 Call C...

Use: Calling sub-programs with lists of parameters

Example: (fig. 7).

CADCR c1 Call adc1 to read into BUF1

(NOindirect); finished go to P1

(NOindirect)

SSR type: CADCR

SSR no.: 1

Label generated: c1

- 56 -

Execution: A subroutine

C1 0

YES = 400000

NO = 0; JMS* ADCIR; .GLOBL ADCIR

JMP .+3

.DSA BUF1+NO

.DSA P1+NO

JMP* C1

is generated with which the sub-program ADCIR is called. It is a

part of the operating program of ADC1. The calling of ADC1R has

the effect of causing ADC no. 1 to read data into buffer BUF1.

When buffer BUF1 is full, a logical interrupt is generated which

continues the user program with SSR P1.

The parameters buffer address and jump address may be

external addresses or given indirectly (i.e. given by parameter

addresses instead of in the form of the parameter itself) (YESindirect).

4.7.19 End of a sequence EX

Use: Closing a sequence

- 57 -

Example: (fig. 7)

EX ex1 exit

SSR type: EX

SSR no.: 1

Execution: a subroutine

EX3 Ø
JMP* EΧ3

is generated.

4.7.20 Jump to external address Ε

Use: Jump to an explicitly specified label of a sub-program

translated separately.

Example:

E e1 jump out to ENABLE

SSR type: Ε

SSR no.: 1

Execution: A subroutine

E1 0
JMS* ENABLE; .GLOBL ENABLE

JMP* E1
is generated (fig. 4).

- 58 -

4.8 Example: multi-channel program

The basic program described here is an analog-digital converter

(ADC) operating program containing calls for the ADC, vhich stores the

measured values of the input pulse height, converted to binary by

the ADC into a data field. Together with this is a sorting program

which allocates a memory location in an output field (the spectrum)

to each binary number and always adds 1 to the content of the

spectrum word if there is a corresponding binary number in the

input data field. Here, the spectrum words are arranged in the

order of the size of the possible input values. Both programs are

intended to operate together on the alternating buffer system, so

that the ADC program fills one buffer, while the other is being

processed by the sorting program. It must be possible to call the

program thus produced in the same way as a device directly providing

pulse-height spectra (multi-channel analyser).

The ADC is signalled to the operating system and the alternating

buffer operation initialized. The INIT part of the program is

called by two parameters, i.e. the address of a start-stop handler

capable of starting or stopping other devices simultaneously with

the multi-channel, and an address to which a jump is made when the

INIT part is ready.

- 59 -

All parts of the multi-channel analyser (MCA) are called

at level 5.

M declare label MCA1I = P1

Ρ p1 go to 2 branches: N1, L1

N n1 set 2 parameters by label MCA1I

L L1 raise priority to level 3, go to C1

CADC1 c1 call adcl to init with start-stop-handler N1A

(YESindirect), go to R1

Ε r1 request level 5 for ASG1

ASS asg1 assign to Ρ1EMΡTY (NOindirect) -1, go to ASS 2

ASS asg2 assign to Ρ2EMΡTY (NOindirect) 0, go to ACT1

ACT act1 activate sequence RDLOOP, go to UDY1

UDY udy1 undyke P1EMPTY, go to J1

J j1 jump out by N1B

Read-in takes place by blocks into the intermediate buffer

at level 1, and this buffer is processed parallel to it at level 5.

SEQ declare sequence RDLOOP with priority 1
beginning with DYK1

DYK dyk1 dyke P1EMPTY (NOindirect), go to c2/ A wait is
made here until the first intermediate buffer is
clear

CADCR c2 call adcl to read into BUF1 (NOindirect), done go
to ACT2

- 60 -

ACT act2 activate WORK1, go to DYK2

DYK dyk2 dyke P2EMPTY (NOindirect), go to C3

CADCR c3 call adc1 to read into BUE2 (NOindirect),
done go to ACT3

ACT act3 activate WORK2, go to DYK1

SEM declare sema P1EMPTY

SEM declare sema P2EMPTY

BUF declare BUF1 with 100 words

BUE declare BUF2 with 100 words

SEQ declare sequence WORK1 with priority 5
beginning with C4

CSRTG c4 call sorting program srt1 to get data out of

BUF1, go to UDY2

UDY udy2 undyke Ρ1ΕΜΡTY (NOindirect) go to EX1

EΧ ex1 exit
SEQ declare sequence WORK2 with priority 5
beginning with C5

CSRTG c5 call sorting program srt1 to get data out

of BUF2, go to UDY3

UDY udy3 undyke P2EMPTY, go to EX2

EX ex2 exit

- 61 -

The sorting program, which has already received the GET

call on initialization, is set in operation by the PUT call from

the read part of the program. The terminating signal is given when one

of the spectrum words overflows.

M declare label MCA1R = P2

Ρ p2 go to 2 branches: N2, C6

N n2 cet 2 parameters by label MCA1R

CSRTP c6 call sorting program srt1 to sort into
spectrum N2A. (YESindirect), on overflow go to
J2

J j2 jump out by N2B

The spectrum overflow is simulated in the terminating

part of the program.

M declare label MCA1F = P3

Ρ p3 go to 2 branches: N3, C7

N n3 get 1 parameter by label MCA1F

CSRTF c7 call sorting program to finish (to
simulate overflow), go to J3

J j3 jump out by

- 62 -

In the termination part, the intermediate buffers are

emptied after the ADC has acted as if it had filled its buffer

as a result o.f its CLOSE call. A spectrum overflow is then

simulated by the termination of the sorting program and the program

is reset to its initial state.

M declare label MCA1C = P4

P p4 go to 2 branches: N4, ACT4

N n4 get 1 parameter by label MCA1C

ACT act4 activate END, go to L2

L l2 raise priority to level 3, go to C8

CADCC c8 call adc1 to close, go to R2

R. r2 request level 5 for J4

J J4 jump out by N4A

Level 0 is awaited in the sequence END until both

intermediate buffers are empty. The RD loop is stopped by

level 0.

SEQ declare sequence END with priority 0

beginning with DYK3

DYK dyk3 dyke Ρ1EMΡΤY (NOindirect), go to DYK4

DYK dyk4 Dyke P2EMPTY, go to R3

- 63 -

R r3 request level 5 for C9

CSRTC c9 call sorting program srt1 to close, go to EX3

EX ex3 exit

At START and STOP, the ready message addresses are taken

over and the priority allocated, since the ADC program is called

at level 3 except on READ.

M declare label MCA1A = P5

Ρ p5 go to 2 branches: N5, L4

N n5 get 1 parameter by label MCA1A

L 1 4 raise priority to level 3, go to C10

CADCA c10 call adc1 to start, done go to R4.

R r4 request level 5 for J5

J j 5 jump out by N5A

M declare label MCA10 = P6

P p6 go to 2 branches: N6, L5

N n6 get 1 parameter by label MCA10

L l5 raise priority to level 3, Go to C11

CADCO c11 call adc1 to stop, done go to R5

R r5 request level 5 for J6

J j6 jump out by N6A

EXIT

http://cs.11

- 64 -

Fig. 8 is a graphic representation of the program. From

it, all parameters for insertion into the preassembler may also

be derived. Fig. 9 is a representation of the ADC program. An

alternating buffer program is shown for purposes of comparison in

Fig. 10. This program undertakes the synchronization processes

in parts MCA1I and MCA1C of the program instead of in the user

program via the executive.

There are four jumps in program SRΤ1, SRT1 is

re-entrant. Jump SRT1G is called with two parameters,

viz: the address of the buffer containing the data words to be

sorted into a spectrum, and the address designed to activate

SRT1 when all data words from that buffer have been sorted.

Jump SRT2P is also called with two parameters, i.e. the address of

the buffer containing the spectrum and that to be activated by

SRT1 when one of the spectrum words overflows. Overflow simulation

is effected by a third call SRT1F. The overflow is also simulated

on call SRT1C, while, in addition, the program is reset to the

initial state.

- 65 -

4.9 Reduction of programs consisting of SSR's

A program composed with the aid of the preassembler consists

of a number of standard subroutines and the appropriate calls.

Here, there will very probably be a number of once-only subroutine

calls within this program.

There is, however, no point in subroutines without parameter

transfer unless they are called several times, since they require

three more memory locations (SR call, entry point, return) than the

corresponding sequences of instructions replacing the SR calls.

Examples have shown that the storage requirements of a program

generated by the preassembler can be reduced by about 30% if once-only

SR calls are replaced by the subroutine sequerce of instructions

(without entry and returns).

A previously translated program in the form of a listing

must be used as a starting point in the reducing process because

the macro-calls in this program are supplemented by the macro-framework

(of the program itself) into which the assembler has

inserted the actual parameters during translation. The macro-definitions

are thus rendered superfluous and can be deleted, as

can the macro-calls. Then, an investigation must be made at each

http://sequ.er.ce

- 66 -

subroutine call to find out whether the subroutine concerned is

called again at another point in the program. If not, it is not

a true subroutine and the subroutine code (without entry and return)

may be inserted instead of the subroutine call. The name of the

subroutine also disappears with the entry.

A specially written auxiliary program, the reduction program

CUSORT, deletes from a listing lines which have become irrelevant

and rearranges once-only subroutines instead of their calls. This

program reads-in the listing, presented in the form of ASCII text,

of the program to be reduced and, on reading-in, erases all lines

which have not led to an entry in the address or code column of the

listing.

The address and instruction codes are also deleted on reading-in;

of the listing, therefore, only the source program remains.

The latter is interrogated for all subroutine calls found several

times in the program, and these are entered on a list. The source

program is then issued, line by line, as a new, reduced source program.

Output lines are deleted from the original source program.

- 67 -

Whenever a subroutine call is to be issued, reference is

made to the list to find out whether it occurs nnce only in the program.

If so, the subroutine concerned is issued instead of the subroutine

call; excluding the entry line and its corresponding return.

5. Appendix; Program description and instructions for use

5.1 Preassembler and program generator

5.1.1 The preassembler

5.1.1.1 Purpose

The preassembler assembles macro-definitions, prefabricated

macro-calls and standard subroutines found in a library with the

parameters provided by the user to form programs. The parameters

to be supplied by the user are described by texts also taken from

the library. Input can take place either in dialogue with the

computer or with the aid of parameter lists written off-line.

The parameters provided by the user are checked for correct

format (e.g. their composition from permitted symbols). Corrections

may be made by on-line dialogue. Experience has shown that source

programs composed with the aid of the preassembler hardly ever

contain any format errors.

- 68 -

5.1.1.2 Method of operation

The first requirement made of the user by the preassembler

is the name of the program to be composed. It then reads-out all the

macro-definitions from the library and issues them as the first part

of the program. It then requires the user to indicate an SSR type,

which it seeks in the library and from which it obtains the descriptions

of the parameters which must be inserted in the SSR by the user in

order to make it part of a processable program. It requests each

parameter, describes it, checks it for format errors, indicates

such errors and expects corrections, and from these parameters builds

up a list of them into an SSR. Once all the parameters for an SSR

have been provided, it asks for the input of four up-arrows, and then

inserts the parameters into the prefabricated SSR text which is also

fetched from the library. Thereupon, it requests the next SSR type.

5.1.1.3 Separator

Each of the parameters provided by the user must be enclosed

between separators, for which the preassembler uses up-arrows (7-bit

ASCII code: 136). Whenever the preassembler asks for a parameter

by its description, all the symbols provided by the user are read

up to the first separator, which signals the beginning of the

parameter.

- 69 -

As a check on the number of parameters input for an SSR,

the sets of parameters in the individual SSR's are separated from

one another by four up-arrows, requested from the user by the

preassembler in dialogue.

After the input of the name of the program (enclosed in

separators), the preassembler also requests a line of four up-arrows.

5.1.1.4 Completion of parameter input

Once all the SSR's of a program, with their parameters,

have been provided by the user, the signal EXIΤ is input instead

of the four up-arrows required by the preassembler, which then

finishes the program issued with .END, prints out on the teleprinter

the number of SSR's composing the program and goes into a wait loop

from which it can once more be started (CONTROL P). The monitor is

loaded on the insertion of any other symbol via the operating

teleprinter.

5.1.1.5 Input and output devices

The preassembler uses the following .DAT SLOTS (logical input and

output channels):

- 70 -

.DAT SLOT Function

-2 Input of instructions for use

-3 Output of error messages, requests for

instructions for use, output of parameter

descriptions in dialogue

1 Input of macro-definitions, SSR's and

parameter descriptions from the library

(.LIBR MAC)

2 Output of the finished source program

3 Input of the parameters

5 Output of the program statement

5.1.1.6 Program file

The parameter descriptions may be issued by the preassembler

together with the parameters provided as a program file. Its output

can be stopped (see operation). In it, the SSR's and parameters are

continuously numbered in such a way that the last three figures of a

parameter number indicate the number of the parameter in the SSR and

the first three that of the SSR in the program.

The program file is issued so that it may be used to

reinsert the parameters (fig.11).

- 71 -

5.1.1.7 Operation

After the start, the preassembler announces itself by

PROGRAMPREASSEMBLER (fig. 12).

It then requires the user to reply to a few questions to

determine its mode of operation. The questions may be answered

YES or NO. In an abbreviated mode, the RETURN symbol (ASCII 015),

given as a reply, corresponds to the YES.

The abbreviated mode is set up when the preassembler's

first question

SWITCH FAST SETTING YES OR NO

is answered by YES.

The next question is

IMPROVE VIA TELETYPE.

If the answer is yes, the preassembler awaits the insertion of

the corrected parameter again after each format error.

The question

MONΙΤOR OUTPUT

needs no answer.

- 72 -

The question

COMMENT LONG

signifies that there are two descriptions for each parameter in

the library, one detailed and one abbreviated (for experienced

users).

The question

COMMENT VIA TT

enables the parameter description to be suppressed from .DAT SLOT -3

when it is unnecessary, for instance when the parameter input is via

a punched tape written off-line.

When the reply NO is given to the question

EVERY PARAMETER,

the user is given the opportunity of correcting parameter lists

issued in the form of a program file and at the same time to

create the program provided from the corrected parameters. To this

end, the preassembler must be informed, on request, of the number

of the first parameter to be altered, and this may be taken from

the printed-out program file. The preassembler uses the old program

file input via .DΑΤ SLOT 3 as a parameter list and first asks the user to indicate the parameter to be altered by describing it.

- 73 -

After its input, the number of the next parameter to be altered

must be provided, and so forth. The preassembler issues the new

program file and, on output, creates the new program on a magnetic

store in a second pass, using the new program file as a parameter

list (the two passes are necessary in this mode since otherwise four

files - old and new program files, library and new program - would

have to be opened at once).

5.1.1.8 Names of parameter lists

Once the questions determining the preassembler working

mode have been answered, the preassembler asks for the names under

which it can find the parameters on the input medium and under which

the program file is to be issued. Names may consist of six alphanumeric

symbols. PLS is accented as an extension (see program file manual).

The up-arrow separator must be used to indicate the end of the input

of the parameter list name. After these preparations, the actual work

of the preassembler, described in section 5.1.1.2, begins (fig.12).

5.1.1.9 Error correction

On the input of incorrectly expressed parameters, the

nature of the error is indicated and, with the correction mode

- 74 -

operational, a fresh input of parameters is expected. This cycle

is repeated until the parameter input contains no format errors.

If there is an error in reading, the incorrectly read line

is printed. It may be either transferred unaltered (RETURN),

or deleted [D(RETURN)] or corrected by typing the

correct text.

5.1.1.10 Phase errors

After the parameters for an SSR have been input, the

preassembler waits for the input of a sequence of four up-arrows

as a separator. If this sequence is provided too early (insufficient

parameters) or too late (too many parameters), the error message

PHASE ERROR is printed out via the operating teleprinter with the

serial number of the SSR in whose set of parameters the phase error

was discovered. The SSR with the incorrect number of parameters is

not inserted into the program. Since the parameter following a

sequence of four up-arrows is invariably the type designation of an

SSR, the parameter inserted after incorrectly given sequences of

up-arrows is interpreted by the preassembler as an SSR type

designation.

- 75 -

5.1.1.11 Erroneous SSR type designation

If the preassembler is given an SSR type which does not

appear in the library, it gives the" error message NOT FOUND. In

dialogue, the question IS THIS TO BE CORRECTED? is then printed via

the operating teleprinter. If the answer is YES, (or the RETURN

symbol), the SSR type designation may be repeated. If it is NO,

and on the input of off-line written parameter lists, the preassembler

skips all inputs up to the next sequence of four up-arrows, and

interprets the parameter following those as the next SSR type designation.

5.1.2 Writing the SSR library

5.1.2.1. Library name

The preassembler looks for the SSR library on the external

store (magnetic tape or dinc) under the name .LIBR MAC.

5.1.2.2 The configuration of the SSR library

The SSR library is formed by an ASCII text divided into

lines. The individual SSR's are entered in random order. Each SSR

in the library consists of (fig.13):

1) two successive lines, each of four up-arrows;

2) the SSR type designation;

- 76 -

3) the descriptions of the parameters;

4) a line of four up-arrows, and

5) the actual SSR.

The actual SSR is written as a normal part of a program.

Every sequence of symbols which, when the SSR is inserted into a

real program, are to be altered (formal parameters) must be enclosed

in two up-arrows.

Each parameter description consists of:-

1) a detailed text;

2) an abbreviated text as an aid to memory;

3) the sequence of symbols of the appropriate formal parameter;

4) the check code.

Each part of a parameter description is termined by an up-arrow.

The parts may be written one after the other in a line or

distributed over several lines. The SSR. type designation must be

terminated by an up-arrow.

- 77 -

5.1.2.3 Check codes

The check codes inform the preassembler about the aspects

used in testing the actual parameters fed in, which are to be

inserted into the SSR instead of the formal parameters. There are

check routines in the preassembler for the following codes:-

1) MC6 A check is made to see whether the actual parameters

satisfy the criteria laid down for variable names in

the assembler manual.

2) PN Check as in 1); in addition, the sequence of symbols

input is interpreted by the preassembler as the name

of the program generated.

3) PN5 as 2); however, with a maximum of only five symbols.

4) JON YES or NO are expected as input.

5) GO2 Exactly two octal figures must be typed be the user.

6) GO1 One octal figure must be typed by the user.

7) DZ2 Λ maximum of two decimal figures must be typed by the user.

8) NΟΤ No check.

Back-arrows are transcribed in all tests. Frameworks of

formal programs (see 5.1.3) can thus also be generated.

- 78 -

5.1.2.4 Use of macro-instructions

SSR's containing internal labels or addresses not appearing

externally and intended to be given another name every time the SSR

is inserted in a program are best written as macro-instructions, so

that the assembler can generate a new name at every call (see assembler

manual). The macro-definitions are entered in an SSR with the type

designation MACDEF, containing no formal parameter and automatically

input by the preassembler (it must therefore be included, empty, in

the library, even when no macro-definitions are used) (fig. 14).

The macro-calls appropriate to macro-definitions are processed

like an ordinary SSR.

5.1.2.5 The indication of errors in the SSR library

The preassembler indicates a few errors which may have arisen

in writing the SSR library:-

EDEER indicates that a formal parameter found in the SSR

does not correspond to any of the formal paramters in the parameter

descriptions.

CODE NOT FOUND means that a check code not shown on the

preassembler's code list is given in one of the parameter descriptions.

- 79 -

IOPS 01 is given when a parameter description does not finish

with the prescribed up-arrow according to the check code.

5.1.3 The program generator

The program generator inserts actual parameters in the place

of formal ones in prefabricated formal programs containing formal

parameters. In this way, many actual programs, e.g. operating programs

for similar devices, can be generated from one formal program. By

and large, the program generator can be used to alter any texts at

previously determined points with a particular aim in view; indeed, a

text is altered in the same way at all points indicated by the same

formal parameter.

The program generator operates in exactly the same way as

the preassembler, and therefore any description of it is superfluous.

The only differences are these:-

1) The program generator uses back-arrows as separators (ASCII code 137).

2) Once the working mode has been determined (5·1·1·7), the

program generator requires the user to input an explanatory

comment.

3) In the case of the program generator, the "formal programs"

correspond to the SSR's. They must be arranged individually

- 80 -

as files in an external store under a name with the extension

FPR. The formal programs are constructed in exactly the

same way as an SSR entered in the SSR library (5.1.2.2).

4) There is a check code BIN instead of the GO1 (5.1.2.3).

When this code is given in the description of the formal

parameters, the program generator requires the input of any

number of (different) decimal numbers from 1 to 16 and from

them generates an octal number with which the insertion

points of a line control, numbered from 1 to 16, can be

called on a multiple address system, i.e. the bits indicated

are put in the bit group 1 - 16 (PDP-9 word; bit numbering

from left to right, beginning with bit 0 and going up to 17),

while the computer word thus produced is recoded as an octal

word in the alphanumeric code.

5.2 Executive

5.2.1 Instruction decoding ERSTnn

In segmented programs (nn = segment number), the decoding

program ERSTnn must always be the first to be loaded. On being loaded,

it brings the remaining parts of the executive with it from the program

library.

- 81 -

ERSTnn is started by CONTROL S via the teleprintser. At its

first start, it initiates the software queue handler and, by making a

jump to the core store allocation program DΑTΙNT, divides the free core

store with the aid of the data directory (see 4.7.1.2) into the fields

given therein. It then goes into a wait loop in the ORG program.

At every new start given by CONTROL'S, it awaits the input

of an instruction keyword (see 4.7.1.3), fetches the program address

specified by the instruction following the keyword and, when CONTROL S

is repeated, arranges the appropriate subroutine in the supervisor queue SORQ10.

5.2.2 Supervisor ORG

The supervisor ORG organizes the processing of up to eighteen

queues at main program level (queue handler SORQnn with nn = 10 ... 31 (octal))

Processing of the queues is started by ORG in the order of their

importance (with SORQ10 as the most and SORQ31 the least important

After a program from a queue has been processed, ORG checks

to find out whether a more important queue has been initialized

meanwhile and starts its higher-priority processing.

- 82 -

5.2.3 Queue handler SORQnn and SORAnn

Queue handlers SORQnn (with nn as the level number) and SORAnn

arrange subroutines required at higher priority levels in queues from

which the lower-priority subroutines are being processed. Here,

nn may assume the values 4 - 31 (octal). Processing the queue at

level 4 - 7 is started by software requests, and those at levels

10 - 31 by the supervisor ORG called by the queue handlers.

Addresses SORQnn and SORAnn denote different entries into

the same handler with the number nn. Unlike SORA, SORQ enables the

API and PI again.

Call (example):

ISA+10 /API OFF

IOF /PI OFF

JMS* SORQnn

.GLOBL SORQnn

JMP .+2

.DSA SR /ADDRESS OF SR TO BE QUEUED

- 83 -

Operation:

The subroutines requested are entered in a chain-structured

queue. Each link in the chain indicates the following one, while

the end of the chain is indicated by a special entry. After all

higher-priority work has been done, the subroutines are processed in

the order of their entry. The first cell of the subroutine serves

as storage cell for the pointer. Each SR may not, therefore, be entered

more than once in the chain. Subroutines where the first unit is ≠ 0

are not entered without the subsequent issue of an error message.

5.2.4 Synchronization program DIJKST

The program DIJKST carries out the organizations necessitated

on activations, Dyke calls and Undyke calls. It possesses four entry

points: DYKER, UNDYKER, ACTIV and ASSIGN.

5.2.4.1 DYKER

Call:

ISA+10 /API OFF

IOF

JMS* DYKER

.GLOBL DYKER

- 84 -

.DSA DYKER

.DSA SEMA /SEMA VARIABLE (+4000000, IF INDIRECT)

-1 /PRIORITY ENTERED HERE

0 /NEXT UNIT IN QUEUE ENTERED HERE

.DSA DYKEWAIT

.DSA DYKEFURTHER

.DSA HILEVEL

.DSA SAMLEVEL

.DSA LOLEVEL

HILEVEL 0

JMS SAMLEVEL

DBK

JMP* HILEVEL

SAMLEVEL 0

LAC SAMLEVEL

DZM SAMLEVEL

DAC RUAD

SKP

DYKEFURTHER ISZ count

JMS SR /CONTINUING SR

LAC COUNT

SAD (0

- 85 -

JMP* RUAD

TAD (-1

DAC COUNT

DYKEWAIT ... /NEXT INSTRUCTION

COUNT 0

LOLEVEL =SAMLEVEL

RUAD 0

Operation:

DYKER finds out whether the semaphore variable has a

positive value. If so, the value is reduced by one, the second of

the exit addresses given as parameters (DYKEFURTHER in the call example)

is fetched, and an exit made to the given address. If the semaphore

variable has a negative value, the content of the priority cell is

fetched. If the latter is -1, the priority of the level at which the

DYKER call took place is calculated and entered in the priority cell

as a binary number. This entry is made only when the DYKE call is

executed for the first time.

Thereafter cell 2 of the semaphore variable is checked.

The semaphore variable consists of two cells. (The value of the

variable is entered in the first, while the second indicates the

http://mo.de

- 86 -

first unit in the appropriate waiting list.) If it is 0, the address

of the call priority unit is entered in it. If the address of another

DYKES call is already entered in cell 2, and thus a queue has already

been opened, the units of this queue are examined for their priorities

and the call which has just been processed is arranged according to

its priority in the queue. The latter is itself in the form of

chain. The semaphore variable indicates the first unit, and each

subsequent unit the following one. The units are arranged in the

order of priority of the DYKER calls by DYKER.

After the units have been arranged in the queue,

an exit is made from DYKES to the first of the transfer vectors given

in the call (DYKEWAIT in the example). The subroutine SR called after

DYKEFURTHER is thus started immediately after the DYKER call only if

the value of the semaphore variable is positive. Otherwise, the start

can be given only by an UNDYEER call with the same semaphore variable.

The subroutine SR, in its turn, may (implicitly) call a

further subroutine, which causes the DYKES call to be run through

again. This repetitiveness is to be permitted by the code around

JMS SR.

DYKES once more enables the API and PI.

- 87 -

5.2.4.2 UNDYKER

Call:

ISA+10

IOF

JMS* UNDYKER

.GLOBL UNDYKER

JMP .+3

.DSA SEMA /+4000000, if indirect

-1

Operation:

UNDYKER raises the semaphore variable SEMA by one. If the

value 0 is thereby obtained, UNDYKER checks to find out whether a

queue had been opened for the semaphore variable (word 2 of the

semaphore variable ≠ 0). If so, the semaphore variable is once more

reduced by one, and, on the first execution of the UNDYKER call, the

priority with which the call was made is calculated and entered in

the second parameter cell. The first entry is then taken from the

queue, its priority (calculated by DYKER) fetched and the difference

in priority from UNDYKER call calculated. Depending on the result,

the last subroutine in the DYKER call address list is arranged in

a software request queue, or the last but one or last but two

- 88 -

subroutine is started, after the priority has been suitably raised.

Starting in such a case takes place in the following way: the address

immediately following the last parameter of the DYKES call is input

in the first entry of the subroutine concerned and a jump is made

to entry 2 of the subroutine.

If the priority was raised in UNDYKER, it must be lowered

once more by DBK in the subroutine (the DYKER call HILEVEL in the

example).

A program arranged in a software request queue is not arranged

for the second time by the queue handler until its first entry has the

content 0. For this reason, this transfer entry is erased in the

subroutine SAMLEVEL (= LOLEVEL).

UNDYKER enables the API and PI.

5.2.4.3 ACΤIV

Call:

ISA+10

IOF
JMS* ACTIV

- 89 -

.GLOBL ACTIV

JMP .+6

SEQAD .DSA SEQ /ADDRESS OF SEQUENCE TO BE STARTED

-1 /PRIORITY ENTRY UNIT

.DSA HILEVEL

.DSA SAMLEVEL

.DSA LOLEVEL

with

HILEVEL 0

JMS SAMLEVEL

DBK

JMP* HILEVEL

SAMLEVEL 0

JMS* SEQAD

JMP* SAMLEVEL

LOLEVEL =SAMLEVEL

and

SEQ 0

JMP .+2

5 /PRIORITY 5

JMS SR /FIRST SSR IN THE SEQUENCE

JMP* SEQ

- 90 -

Method of operation:

Like UEDYKER, ACTIV establishes whether the priority of

the sequence SEQ to be activated is higher, the same or lower.

Again, like UNDYKER, it ensures the start of the corresponding subroutine

(HILEVEL, SAMLEVEL or LOLEVEL) from the call address list. A DBK

must be made in HILEVEL. The sequence (SEQ in the example) must carry

the entry of its priority at the prescribed place in its head.

ACTIV enables the API and PI.

5.2.4.4 ASSISE

Call (example):

ISA+10

IOF

JMS* ASSIGN

.GLOBL ASSIGN

.DSA SEMA /+4000000, IF INDIRECT

3 /ALLOCATED VALUE

Method of operation:

ASSIGN enters the value given as a parameter in the call

into the first word of the semaphore variable SEMA and erases the

- 91 -

second word of the semaphore variable. The indication of any possible

Dyke queue is thereby erased (the indications to the next unit in

each unit of the waiting list chain are erased or transcribed by

DYKER when a fresh entry is made).

ASSIGN enables the API and PI.

5.3 Reducing program CUSORT

The program CUSORT abbreviates programs containing

subroutines called once only by setting in order the sequences

of instructions in the subroutines instead of their calls. In doing

so, it uses the listing of the translated program as a basis.

In addition, all lines which have not directly generated a code in

the listing (macro-definitions) are erased.

The source programs generated by CUSORT can be translated
without error if the following rules have been observed in the original
program:

1) Non-executable statements must be in a line together

with an executable statement (e.g. .GLOBL NAME; ONE = 1).

2) Each subroutine may contain only one return instruction,

which should be at the end of it.

- 92 -

3) Labels may not be placed in front of subroutine returns:

instead of

END JMP* SUBROU

the program should read

END=.

JMP* SUBROU

4) No instruction within the subroutine may refer to the

subroutine itself (e.g. LAC* SR)

CUSORT uses the following .DAT SLOTS:

1 Error messages

2 Operating inputs

3 Input (listing)

4 Output (new source program)

After starting, the program requires a program name

(LST is accepted as an extension).

Error messages:

BUFFEROVERFLOW the program to be read in is too long.

FILE LST NOT FOUND the listing of the program given has not been found.

In both cases, a different program name is requested.

- 93 -

READ ERROR an error in input. The incorrect line

is issued and can be corrected (input of

the new line via the operating teleprinter)

or accepted (input of (CARRIAGE RETURN)).

5.4 Parameter handler PARHAN

With the aid of PARHAN, integers and real numbers can be

given as output or input in decimal form via the teleprinter (and

can thus be checked and changed). This rives single and double

precision and any data field length.

Let it be assumed that the names of the parameters and

parameter fields of a user program a list to which

PARHAN has access. The further organization is as follows: In his

program the user calls program PARHAN and checks the initial

address of the parameter list:

PRG

JMS* PARHAN; .GLOBL PARHAN

JMP .+2

- 94 -

.DSA PARALI
∙
∙

JMP* PRG

The form of the parameter list is:

PARALI N

ΝΑΜE1

NAME2

Here, N is the number of parameters or parameter fields in

the list. In the case of the ith parameter, the parameter description

and value (or the parameter values in the case of fields) are to be

found in NAME1 and the following lines:

NAME1 VALUE1

200000

0

.ASCII "DESCRIPTION" <15>

- 95 -

VALUE1 600002

0

0

0

0

0

0

The length of the parameter field is given on the right in

VALUE1. The significance of the bit positions 0 and 1 is:

00 : integer

01 : integer double precision

10 : real

11 : real double precision

600002 typifies, for instance, a parameter field of two

real numbers of double precision. The parameter value (or the values

in the case of fields) in the dual representation within the PDP-9 is

stored in units VALUE+1 et.seq. This representation is in the form:

a) integer:

01 17

- 96 -

Bit 0 contains the sign (0 = plus, 1 = minus).

The absolute value of the integer number is stored on the right in

the remaining 17 bits. Thus -131071 ≤ integer number ≤ +131071

(maximum 7 places).

b) double precision integer:

1st word 01 17

2nd word 0 17

Bit 0 in the first word contains the sign, and the remaining
35 bits the absolutp value of the integer number.

-235+1 ≤ integer number ≤ +235-1 (maximum 12 places).

c) real:

1st word 0 89 17
exponent mantissa

2nd word 01 17
mantissa

Sits 0 to 8 of the first word contain the 2-complenent of

the exponent, and bit 0 of the second the sign of the mantissa.

- 97 -

The mantissa is found in the remaining 26 bits (beginning with bit 1

of the second word and ending with bit 17 of the first one). Here,

the mantissa is in the "normalized" form, i.e. for a number ≠ 0,

there is always a 1 in bit 1 of the second word.

The method of writing is as in FORTRAN:

±0.123456E±12, i.e. 6 places after the decimal point are accurate

(maximum 13 places).

d) double precision real:

1st word 0 17
exponent

2nd word 01 17
mantissa

3rd word 0 17
mantissa

The first word stores the 2-complement of the exponent and

bit 0 of the second word the sign of the mantissa. The remaining

35 bits contain the mantissa in normalized form. Method of writing:

±0.123456789D±12, i.e. 9 places are accurate (maximum 16 places).

- 98 -

Care must be taken on the input of parameter values to ensure

that no more places are used than given above, and that, in the case

of real numbers, the form

±0.___E±__

or

±0.___D±__

is chosen.

After the jump to PARHAN, the description of the first

parameter in the list and its value are printed out. The input of

(RETURN) leaves the value unaltered and permits the issue of the

next parameter vith description and value (or the next parameter

value in the case of a field). If the input is a value (followed

by RETURN or ALT MODE), PARHAN checks for format errors (but not

all of them!), e.g. the number of places, the size of the numbers,

and the correct method of writing (in the case of real numbers) etc.

If an error message is given, PARHAN waits for a fresh input until

the value is accepted. The input of the symbol ALT MODS (alone or

after the input word) causes a return to the calling program PRG.

5.5 Standardization of the names of program labels

It has been found an advantage to apply a standard system,

indicating the function carried out, to the names of entry points

- 99 -

into the programs» Since, with the PDP-9, program labels may consist

of a maximum of 6 alphanumeric symbols, the first one always being a

letter, the following standard was laid down:

The final symbol in the name indicates the function of the

part of the program:

A START

C CLOSE

F FINISH

G GET

I INIT

O STOP

Ρ PUT

R READ

W WRITE

All other letters and figures may be used as desired.

The one or two-figure program number is given before the close symbol.

The program itself is designated by the (up to) three initial symbols,

the last of which must be a letter. E.g. MCA1I is the INIT call of

multi-channel program MCΑ No.1.

- 100 -

Bibliography

1) E.W. Dijkstra: Co-operating Sequential Processes (in: Programming

Languages, NATO Advanced Study Institute, Ed. by Dr. F. Genuys;

Academic Press, London and New York (1968)).

2) PDP-9 MACR0-9 Assembler

(Digital Equipment Corporation Program Library No. DEC-9A-AMZA-D).

3) L. Erevert: Zur Strukturanalyse kernphysikalischer Experimente als

Grundlage für ihre Steuerung durch einen Digitalrechner (On the

structural analysis of nuclear physics experiments with a view to

controlling them by means of a digital computer). (BMwF-FB K 68-50 (1968)).

4) L. Frevert: Eigenschaften eines Programmsystems für rechnergeführte
kernphysikalische Experimente, hergeleitet aus der Analyse eines
einfachen Experimentes (Features of a programming system for computer-controlled
nuclear physics experiments, derived from the analysis of
a simple experiment). (BMwF-FB Κ 69-22 (1969)).

- 101 -

Fi
g.
 1

In
te
rr
up
t

pr
oc
es
si
ng

In
 t
he
 p
ar
t

on
 t
he
 l
ef
t,
 t

he
 u
se
r

pr
og
ra
m

ca
ll
s

a
de
vi
ce
 p
ro
gr
am
 a
nd
 t
hu
s

pr
ep
ar
es
 t

he
 l
og
ic
al

in
te
rr
up
t.

Th
e

ha
rd
wa
re
 i

nt
er
ru
pt
 o
f
th
e

eq
ui
pm
en
t

la
te
r

ca
us
es
 t

he
 j
um
p
to
 t
he
 e
xe
cu
ti
ve

wh
ic
h
ge
ne
ra
te
s

th
e

lo
gi
ca
l

in
te
rr
up
t

in
to
 t
he
 d

ev
ic
e

pr
og
ra
m

fr
om
 w
hi
ch
 a

 j
um
p

is
 m
ad
e
in
to

pa
rt
s

I,
 I

I,
 I

II
 a
nd
 I
V

of
 t
he
 u
se
r

pr
og
ra
m.

A
de
vi
ce
 i

s
in
it
ia
te
d

fr
om
 p
ar
t

IV
,

wh
er
eu
po
n
a

re
tu
rn
 i
s

ma
de
 i

nt
o

th
e

ba
ck
gr
ou
nd
 p

ro
gr
am
.

- 102 -

Fig. 2

- 103 -

Fig. 3

- 104 -

Fig. 4

- 105 -

Fig. 5

- 106 -

Fig. 6

- 107 -

Fig. 7

- 108 -

Fi
g.
 8

Mu
lt
i-
ch
an
ne
l
pr
og
ra
m
MC
A
1

- 109 -

Fi
g.
 9

- 110 -

Fi
g.
 1
0

- 111 -

Fig. 11 Preassembler monitor (same parameters as in fig. 12).

- 112 -

Fig. 12 Example of preassembler
dialogue input. All
symbols to the right of
> are supplied by the
user.

- 113 -

Fig. 13

- 114 -

Fig. 14

