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Summary 

The report contains a description, arranged in the same format 

as a manual, of the fundamental considerations upon which our modular 

system for programming computer controlled nuclear physics experiments 

is based. A program written with this system consists of subroutine calls 

interconnected by standard routines (macro-instructions), some of which 

may also consist of standard routines. Calls and standard routines are 

put into their actual form by a preassembler which assembles parameters 

given in dialogue by the user into prefabricated code units. One unit 

of a formalized language and a special flow-chart symbol represents each 

standard part, and hence the programs can be represented in both language 

and flow-chart form. Both representations can easily be derived from the 

parameters to be communicated to the preassembler. 

The description of the programming system is supplemented by 

descriptions and instructions for the use of important service routines. 
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1. Introduction 

The spur to the programme of research on "The Structural 

Analysis of Nuclear Physics Experiments" was given by the fact that 

it was recognized as impossible to control nuclear physics experiments 

satisfactorily by means of process computers if the language of the 

assembler is to be used as the sole basis for programming. Assembler 

programming is too time-consuming and liable to error to make a usable 

tool for experiment programming. Attempts therefore had to be made to 

create a system of sub-programs allowing flexible programming with 

existing units. The intended aim of the structural analysis was to give 

clear indications as to which units were needed for a modular system and 

also, if possible, to develop the basic features of such asystem. 

One essential factor which had to be borne in mind when the 

exercise was begun was that there is no problem-oriented language 

available for programming nuclear physics experiments and, in the present 

state of the computer art, it was quite possible that the prospects of 

creating such a language were not very bright. The reason for this, 

in fact, was that the program compiled for experiments would probably 

be too inefficient (i.e. too long and too slow) quite apart from the 

fact that formulation and the construction of compilers went far beyond 
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the scope of our research programme. Attempts were therefore first 

made to develop a modular program system not based on a special, 

problem-oriented language. The basic premise for the attempt to 

develop the required modular system in parallel with the structural 

analysis was that the structural analysis of computer-controlled 

experiments can effectively be carried out only with the aid of programs. 

Here, we hope we have succeeded in finding acceptable detail solutions. 

Meanwhile, we have also become convinced that it is only by means of 

a problem-oriented language that the problem of programming experiments 

can be finally solved. 

The present report is divided into four parts. The first 

and second parts set out general basic concepts, while the third 

describes the special methods devised for use with a particular 

computer (the PDP-9). Detailed program descriptions and instructions 

for use will be found in part four. 

2. "Modular System" problem analysis 

2.1 Modular systems 

For our purposes, the best definition of the term "modular" 

is "capable of assembly in a variety of ways from component parts". 

Examples of modular systems include construction kits (e.g. of the 

"Meccano" type), languages (in which words are the modules) and 
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words (in which letters are the modules). A more accurate definition 

of the expression "modular system" would be: "a collection of 

components which can be divided up into N different types is modular 

if any number of components of all kinds can be combined to form logical 

complexes of any size". 

2.2 The size of the modules 

The lower limit to the size of the modules into which a 

complex can be broken down is given by natural factors (the bit as the 

smallest possible module in a computer program, or the alpha-numerical 

symbol as the smallest module of a language). It is often useful to 

combine these smallest units into larger modules (e.g. to combine letters 

to form words). Such a combination may be carried out in several stages 

(bit -- computer word -- micro-instruction -- subroutine). 

In general, it is true to say that: 

the smaller the module in relation to the whole complexes, 

the more flexible the construction; 

the harder it is to grasp the representation of the complexes; 

the fewer different types of modules are required; 

and, 

the larger the module, 
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the easier ±t is to grasp the representation of the complexes; 

the more specific the properties of the modules; 

the less flexible they are in use; 

the wider the variety of modules required. 

Where, therefore, large modules are used for the sake of 

clarity, a good compromise is reached by also using the type of module 

from which the large ones are built up (interconnecting procedure calls 

by statements). 

2.3 Interconnection of modules 

The most important factors in a modular system are the rules 

by which the modules are interconnected to form entire complexes. 

These rules determine the structure of the points of intersection between 

the modules and vice versa (a procedure definition with pseudo-variables 

defines the point of intersection of program and procedure, while the 

rule for the procedure call follows from the definition of this point 

of intersection). The more complicated such points, the more complicated 

the interconnection rules. For this reason, the points of intersection 

should be determined in the simplest possible way. In addition, the way 

in which the modules are interconnected to form complexes must thereafter 

be borne in mind when stating rules. 
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2.4 Representation of modular interconnections 

There are two methods of representing a complex formed by 

the interconnection of modules, viz: 

1) graphic 

By "graphic representation" is meant any representation 

consisting solely of drawn symbols and where no connection is indicated 

except by graphical means. Such a representation, therefore, should in 

theory be completely comprehensible without the need for any additional 

alpha-numeric symbols. 

2) description by language 

A mixture of both methods (the flow-chart) is frequently used. 

Where linguistic means are used to describe a complex built 

up from modules, the desired significance and clarity can usually be 

attained only by the use of a formalized artificial language. 

A modular complex can be properly illustrated only by a 

full-scale representation (block diagrams of circuits made up of 

digital units, ALGOL programs). It is often useful to have both a 

graphic representation and one expressed in a formalized language 

(digital circuits reduced with the aid of Boolean algebra).The 

advantage of the graphic methods is that relationships and connections 

become clearer in a two-dimensional representation. Their limitations 
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appear in the illustration of complexes consisting of a very large 

number of individual modules. Dividing the drawing into several 

sheets tends to make it difficult to grasp. The only remedy is to 

break down the complex into super-modules (theoretical circuit diagrams). 

Where module complexes are described with the aid of a 

formalized language, the unidimensional nature of the medium makes it 

necessary to cast the language in such a way that structures are made 

clear from the linguistic description. It is only by means of 

language that multi-dimensional structures can be adequately described 

(the parallel operation of cyclic programs). 

2.5 Modular programming systems 

The most easily learned, most flexible and hence best solution 

to the problem of creating a modular programming system for nuclear 

physics experiments is derived from the analysis of the problem and 

is, in fact, the problem-oriented language. However, its formulation 

and the construction of a compiler to translate the programs written 

in the language into machine code involves a great deal of work. 

It is somewhat simpler to break the experiments down into 

processes common to the largest possible number of experiments and to 
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write programs for these processes at the assembler level. That the 

experiments investigated can be broken down in this way was demonstrated 

in two research reports3,4). The sub-programs must be put together 

to form the program for an actual experiment. 

The sub-programs may be written either as macro-instructions 

into which the parameters are inserted with the aid of macro-calls 

on assembly, or as subroutines into which the parameters are transferred 

from the parameter lists of the subroutine calls during the program 

run. Programming with subroutines is more rational if the same 

sub-programs are used several times in the same experiment with 

different sets of parameters. 

Experience has shown that an experiment program cannot 

be composed purely of subroutine calls of existing sub-programs, but 

that standard sequences of instructions, preferably combined to form 

macro-instructions, must exist to link the sub-programs. 

The drawback of such a programming system is that it is 

very much more unwieldy and liable to error than a problem-oriented 

language. Both faults are due to the fact that errors regarding the 

significance, sequence and number of parameters can easily arise in 
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composing the lists of parameters for the subroutine calls and macro-calls, 

and such errors are difficult to detect. For this reason, the 

inexperienced user will find such a system manageable only if he has 

the support of special auxiliary programs when composing his own 

programs. 

3. Program Structures 

3.1 Interrupt-controlled programs 

Unlike off-line computer programs which, when once started, 

run in a predetermined way, on-line, control and data processing programs 

consist of a number of routines, each activated by device flags 

(interrupts). Since interrupts must often be processed as rapidly as 

possible, important ones can interrupt the running processing of 

another call, which is not continued until the computer has reacted 

to the more important one. 

The importance of messages, and hence the degree to which 

their processing routines can be interrupted, is allowed for by the 

allocation of priorities. A message with a given priority can interrupt 

only those routines with a lower priority, and it can, in turn, itself 

be interrupted only by messages with a higher priority. The processing 
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of messages can also be broken down into parts with different priorities. 

A higher-priority part can require the computer to process another part 

with a lower priority. Thus, the computer takes note of the problem 

and deals with it later after all higher-priority routines are finished. 

The structure of an on-line control program becomes clearer 

if it is divided into sequential processes. Here, a sequential process 

proper should be a cycle in which the individual steps follow one 

another in a fixed time-order dictated by the program. Such a sequential 

process, for instance, might consist of the cycle: read-in magnet 

tape; process data read-in magnet; output of results on teleprinter. In this 

example, the magnetic tape control peripheral device is first activated 

by the processor. The end of data transmission is signalled by an 

interrupt to the processor, which then processes the data and finally 

activates the teleprinter output, so that the process is dealt with 

further by the teleprinter. A closer look at this cycle shows that, 

for instance, during the input from the magnetic tape, the peripheral 

device does not operate alone, but that this first step consists of 

a series of control instructions from the processor, their execution 

by the external device, the acknowledgement of their execution by 

means of an interrupt, and thus the activation of fresh control 

instruction sequences by the processor. All the operations in this 
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interplay between external devices and the processor follow one 

another, but in a rigidly fixed order. 

Several of these sequential processes generally run in 

parallel in the actual experiment. Each process attempts to make use of 

an operating component in the processor/external device system. 

Provided that the timing of such attempts does not actually conflict, 

the processes can, in fact, run parallel to one another. If two 

processes need to use the same component simultaneously, an 

executive must decide, on the basis of the allocated priorities, which 

process is to be allowed to take place first, while the other is put 

on stand-by until the component can be allocated to it. If a process 

is using the central processor, it is withdrawn immediately if a 

process with a higher priority also wants to use that component. 

The processor thus operates alternately for all parallel sequential 

processes. A lower-priority process has its turn when all 

higher-priority processes are occupied by external operations. 

It is, in fact, impossible to forecast the way in which individual 

processes will be delayed in this way. The time-sequence of 

parallel-running calculations and checks cannot, of course, be 

completely arbitrary. The reaction encompassing two different 

messages, for instance, cannot take place until both have been 
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received. Thus, it must be possible to co-ordinate in time and 

synchronize the processes running virtually parallel. 

The computer will frequently not be concerned with the 

processing of interrupts; there will be pauses during which the 

computer is either awaiting fresh calls or dealing with some back­

ground program not belonging to the experiment at all. The programmer's 

problem is to ensure that the times during which the computer is 

not doing any useful work are kept to the minimum. 

3.2 The strategy of the allocation of priorities 

Interrupts may be divided into two types for the purposes 

of allocating priorities to the individual interrupt operating 

programs, viz:-

1) Interrupts from devices which the computer cannot control 

in such a way as to be able to determine the frequency of the 

interrupts (alarms), and those specifying the beginning of a 

mechanical process (the indication that the magnetic tape is in 

position and ready for data transfer). In such cases, the interrupts 

must be fully processed within specific times. 
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2) Interrupts from devices where the computer controls 

their frequency and where they do not have to be processed completely 

within specific times. 

The time condition for the first type can be fulfilled 

only by the allocation of a suitably high priority, whereas with 

the second, the priorities can be allocated in such a way that the 

computer is used as efficiently as possible. 

The computer should react as rapidly as possible to an 

alarm, which should therefore be allocated a high priority. 

The data from experimental equipment in nuclear physics 

experiments is often statistically distributed in time. The devices 

cannot make any further measurements until the last measured value 

has been read out. Since each measured value is coupled to a 

discrete event, the faster results are output, the fewer events are 

lost. For this reason, such output routines, too, should be given 

a high priority. 

Otherwise, the allocation of priorities is a means of 

obtaining virtually parallel operation and thus of making full use of 
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the computer (this aspect is often overlooked in discussions on 

priorities). If peripheral devices can run out of synchronism with 

the computer and hence truly parallel to the processor, they should 

be activated and operated at a higher priority to avoid unnecessary 

waiting times in their parallel work. It is a logical consequence 

of the observation of this principle that the slower a mechanical device 

is the higher the prioroty at which it should be operated. 

Priorities should be allocated to evaluation routines 

in such a way that the times during which the computer is not usefully 

employed are as short as possible. An example is given in the next 

section. 

An operation divided into quasi-parallel parts is not, 

of course, completed until all the parts have been finished, including 

the one with the lowest priority. Therefore where two different 

operations divided into quasi-parallel parts are processed, the 

lowest priority occurring in them dictates which is to be completed 

first, i.e. which one has the higher "total priority". 
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3.3 The structure of nuclear physics data reduction 

The salient feature of nuclear physics experiments is that 

the data provided by the equipment must almost invariably be 

evaluated statistically. Here, a very large quantity of primary 

data must be investigated, which must be very considerably reduced 

on the way from primary data to final result. In addition, it is 

often impossible to process intermediate results further until 

there are enough of them available. Frequently, therefore, it is 

necessary and usually highly desirable to divide the data processing 

cycle into individual steps. These individual steps generally 

involve the output from a buffer of a number of input data from 

which a smaller number of results data are obtained. These are 

then written into another buffer, there being no analytical connection 

between the two quantities of data. (e.g. the sorting of data to form 

a spectrum). The complete process consists of a "chain" of such 

steps, each one using the input buffer of the preceding step as 

its output buffer. 

The effect of this great reduction in the quantity of data 

is to reduce the frequency with which a step in the processing 

chain is used, assuming roughly the same length for all the 

intermediate result buffer stores. A given processing step will, then, 
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be used at time intervals which become longer, the further back the step 

is in the chain. The computer can do other work during such intervals. 

Basically, all steps which do not alter any common data 

simultaneously can operate in parallel. Where every step has a 

common buffer with the step immediately following and one with the 

immediately preceding, it may not operate in parallel with these 

steps, although it may well do so with others. Two successive 

steps may operate in parallel only if they have two buffers which 

are always alternately filled and omptied (alternating buffers). 

Where less data are passed to the computer, giving an excess 

of unused time, the machine is most efficiently used if the less 

frequent steps are dealt with in the intervals between the frequent 

ones, i.e. when the former can be interrupted by the latter. To  

this end, the less often the steps are used in the processing chain, 

the lower their priorities must be. 

There more data are offered to the computer than it has 

time to process, there is quite obviously no point in transferring 

them all. Such transfer can be prevented by assigning priorities 

in precisely the reverse order to that in the preceding example, 
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for example by giving input and the most frequent processed steps the 

lowest priorities. In such a case, however, the intervals between 

the use of the most frequent steps cannot be filled and the computer 

stands idle during these times. 

The transfer of too much data is prevented in the first 

priority allocation system by blocking the input to each intermediate 

result buffer store after it has overflowed until it is emptied 

once more. This gives a system in which the computer is automatically 

supplied with as much data as it can process, and is therefore used 

to the best advantage. Here too, of course, the overall priority of 

the processing cycle is the lowest one obtaining in it. 

3.4 The structure of the steps in data processing 

The structure of the individual steps in a nuclear physics 

data reduction program is derived from the way, described in the 

previous section, in which the steps operate virtually in parallel. 

During each data processing step, data (or parameters) 

are read out from one or more input buffers and written into one 

or more output buffers. Once an input buffer is full, the write 
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program must be halted and the next component in the processing 

chain must process all the information into the buffer forming its 

output store. Only then can the previous step be continued. 

In such a case, all the pointers to the output buffer may remain 

unchanged, but those of the input buffer must be reset. This is 

best done by a write call to the halted step in the program, with 

which the output buffer address is provided as a parameter. 

If, however, the output buffer cannot be filled from the 

input stores by the processing of the data, the pointers to the 

output buffers may remain unchanged until a fresh read call indicates 

a filled input buffer. 

It is useful, therefore, for a data processing step to 

receive the same number of read and write requests as there are 

input and output buffers in simultaneous use. Data transfer, 

accompanied at the same time by data processing, does not begin 

until all read and write requests have been made. The transfer cycle 

is stopped when an output buffer overflows, and can be continued 

only on receipt of the appropriate write request, just as the work 

is continued by a fresh read request after a buffer has been 

emptied. 
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The way in which a data processing cycle is to be finally 

ended remains to be explained. For this purpose, all buffers 

containing intermediate results should be emptied by the processing 

of these results. Therefore, every program step must have a request 

(finish) which, when given, simulates an output buffer overflow, so 

that the subsequent steps in processing are activated. Obviously 

the parts of the program then being read out must be informed of the 

extent to which the buffers have been filled. This is done by 

stipulating that each write program enters the number of data input 

under a buffer header before indicating an overflow, and that each 

read program refers to these headers. 

3.5 The structure of programs for the operation of devices 

Peripheral devices transfer data from data carriers into 

the computer or vice versa. Real data carriers, like punched or 

magnetic tape, supply limited quantities of data, whereas measuring 

instruments may be regarded as data readers from imaginary data 

carriers of infinite capacity. The same cycle takes place as in a 

processing step. Data is read from peripheral carriers and 

written into a buffer region in the core store, or vice versa. 
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Traditionally, writing into the buffer inside the computer 

is actuated by a read call, just as reading out of it is triggered 

by "write". Reading out of the data carrier is actuated by instructions 

like "seek data", while, in data-oriented media, "close data" is 

equivalent to "finish". 

As in the processing steps, the data are actually transferred 

only if both the read and write requests for the two data stores, 

the carrier and core, have been made. 

There are control commands, e.g. "start" and "stop", in 

experimental devices, in addition to the instructions initializing 

data transfer, as well as instructions ("init" and "close") enabling 

and disabling the interrupts of the devices. 

3.6 Synchronization problems 

The two previous sections may be summarized in the fallowing 

way: 

It is easy to divide an experiment program up into parts 

carrying out one step in data reduction or in the input or output 

processes. Each of these parts has various inputs. The calls to 

them must be made in a given order and, within the parts, operate 
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processes which are controlled by interrogating flags. Any further 

subdivision is prevented by the fact that the indicators and 

flags are common to the processes within the parts, a factor which 

renders it essential for such structures with several calls to be 

combined into units. 

It has already been pointed out that quasi-parallel 

working is impossible without synchronization. Steps must be taken, 

for example, to ensure that two parallel processes never operate 

simultaneously when one of them writes into and the other reads out 

from one and the same buffer. This can clearly be ensured only by 

setting and interrogating flags common to both processes. It is 

possible, basically, to take out from both processes those parts 

which have common synchronization flags and call them an independent 

part of the program which takes over the job of synchronization. 

The flags then become internally declared variables of such a 

synchronization section. Sub-programs are thus produced which, for 

example, control the filling and emptying of an alternating buffer 

store (alternating buffer program). 

An alternating buffer program must have at least four 

inputs through which it calls other parts of the program, 
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i.e. fill buffer 1, fill buffer 2, empty buffer 1, empty buffer 2. 

It must also have four outputs indicating that the called programs 

have completed their tasks. It is quite likely that the connection 

of synchronization programs to processing programs and vice versa 

could give rise to highly complicated structures which, where the 

scope of tasks becomes wider, would rapidly become impossible to 

grasp. After a brief series of tests, therefore, the method of 

synchronization employing specially written sub-programs was rejected 

as impracticable. 

Instead, a proposal made by DIJKSTRA1) was adopted. 

Here, synchronization is effected by means of operations changing the 

indicator variables (semaphores) common to several sub-programs 

running virtually in parallel. The semaphore operations are described 

in section 4.7.16. It will merely be mentioned here that the 

various parallel-running sub-programs must be interlinked by 

common variables. 

3.7 Program interconnections and their representation 

The simplest method of interconnecting two programs is 

by means of jumps from one to the other. It can, moreover, readily 

be represented purely graphically, on flow-charts. Interconnections 



- 22 -

can also be provided, however, by the use of common variables. In 

principle, this second method of interconnection can also be reduced 

to program-to-program jumps, but this time with the transfer of 

parameters, with the variable declared in only one program. 

Simultaneously with a jump, its address is transferred as a parameter 

to the other program so that parameters common at run-time are 

inserted into the sub-programs. This method is, however, extremely 

clumsy and gives rise to very complicated systems which are difficult 

to grasp, since the parameters must be inserted in the programs and 

often even passed on from program to program before ever the actual 

computing process can be started. 

It is better, therefore, to insert the names of variables 

into the sub-programs before assembly. This does mean, however, that 

the sub-programs must be interconnected by language units (variable 

names), that therefore the interconnections can no longer be 

represented purely graphically and that it would thus be logical 

to describe the entire program, in all its interconnections, by 

linguistic means. Nevertheless, because graphic symbols often give 

a more instructive representation than linguistic ones, a mixed 

system should be created in which the graphic symbols are partly 

supplemented by language units (names). 
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3.8 Summary of part 3. 

To summarize, then, it may be said that it should be a 

simple matter to subdivide programs for on-line data processing 

and checking in nuclear physics experiments into sub-programs. 

The interconnections between the modular sub-programs are such that 

they cannot be represented by graphic symbols alone. A modular 

experiment program must, therefore, be described linguistically 

to some extent. To eliminate ambiguity and to preserve meaning-fulness, 

the language used for such a description should be highly formalized. 

4. A Modular Programming System for the ΡDΡ-9 

4.1 The form of the interrupt handling routines 

It has already been said that an on-line program for 

checking a nuclear physics experiment consists entirely of interrupt 

handling routines. The interrupts bring about calls to the device 

handlers from which a further call is then made of devices by calls 

to device handlers, giving rise again to new interrupts. 

When an interrupt occurs, the contents of all registers 

used by the interrupt handling routine must first be saved, and they 

are once more restored before returning to the interrupted program. 



- 24 -

If several devices are connected to an interrupt channel, the computer 

must first decide which device or devices caused the interrupt. 

It codes the hardware interrupt into logical interrupts. Each of the 

latter has its own processing routine, and they are processed in 

succession. 

Saving and restoring the register, and coding the hardware 

interrupts are standard processes which should be carried out, not by 

the user program, but by a standard executive. The interrupts are 

then processed partly by the executive and partly by the user program. 

Each logical interrupt causes a call from the executive to a part 

of the user program. Once this part has been processed, a return 

must be made to the executive. 

There are two alternative methods of producing a return 

to the executive, viz:-

1) A jump is made to a given address in the executive. 

This implies that there is a definite division between the executive 

and user program. 
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2) The jump from the executive to the user program is made 

by subroutine calls and the reverse by returns. 

In a modular system, the interrupt processing system in 

the user program is made up of individual units. There are two 

ways of making it up, viz:-

a) The individual units of their calls are written one after 

the other and are thus passed through in succession. 

b) The individual units or their calls represent formal 

subroutines. Each one jumps to the next at each subroutine call; 

subroutines are nested. 

In the case of combination 1-a the sequence of the 

individual units must be completed by a return (exit) into the executive. 

With combination 2-a the sequence of the individual units must be 

integral with a subroutine. After the innermost subroutine has 

been processed, the subroutine returns in combination 2-b take 

place in the opposite order to the subroutine calls and lead back to the 

executive. Combination 1-b is pointless. 
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In combination 2-b, the borderline between executive and 

user program is ill-defined, whereas there is a clear distinction 

between the two in combinations 1-a and 2-a. With the latter two, 

therefore, a decision must be taken on whether device handlers are 

to be considered part of the user program or the executive, while 

such a differentiation is unnecessary in the case of 2-b. 

4.2 Preparing for interrupt handling 

The handling of a logical interrupt must be indicated to 

the executive by informing it of the connecting address for interrupt 

handling in the user program. This is often implicitly included in 

programming systems at assembler level by a wait call, so that the 

user program is continued with the instruction following the wait 

call on encountering the logical interrupt. Providing the connecting 

address on the actuation of the external device operation ended by 

the logical interrupt is an alternative here. 

The connecting address can be transferred by means of a 

subroutine call in which it is one of the parameters to be communicated. 

Such a method gives the following sequence: The user program activates 

an external device by calling the device handler and gives as a 
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parameter the point in the user program to which the handler is to 

jump when the end of the operation is signalled by a logical 

interrupt. In its turn, the device handler calls the hardware 

interrupt decoding program and informs it of the address in the 

device handler to which a jump should be made once the interrupt has 

been decoded. From the point of view of the user program, preparation 

for the processing of the interrupt takes place in nested subroutines. 

Which of the nested subroutines is considered still part of the user 

program or already part of the executive is immaterial. This method 

of preparing for interrupts, used together with form 2-b (section 4.1) 

of the interrupt handlers, takes place in the following way (fig. 1.).:-

An external device operation is initiated by a subroutine 

call of the device handler in which the connecting address is one of 

the parameters. This connecting address must be that of a part of a 

program in the form of a subroutine. A subroutine call is used if a 

jump is made from this part of a program to a further sub-part, 

e.g. to a sub-program of a modular system. Here, pre-programmed 

sub-programs are informed of their continuation address as a parameter 

when the call is made in exactly the same manner as the device 

handlers. Of course, the continuation address here, too, is that of 

a formal subroutine. The logical interrupt, by means of which the 
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external device signals the end of its work, causes the nested sub­

routines to be run through until a nev external device operation is 

activated or the machine must wait for the execution of another 

quasi-parallel operation, or until the work is finished. The new 

external device operation is once more activated by a subroutine call 

with the connecting address as a parameter. The wait is brought about 

by a subroutine call which interrogates a memory variable (see 4.7.16.5). 

In neither case is a direct jump into a new subroutine made, and 

thus the return to the executive takes place from these innermost 

subroutines through the subroutine return sequence. If the sequence 

of nested subroutines is not ended with a wait or external device call, 

the innermost subroutine to be used must be one consisting of only one 

subroutine return (EXIT). 

4.3 Advantages and drawbacks of nesting the subroutines 

It has already been shown that the borderline between the 

user program and the executive disappears in this cycle where parts 

of the executive and the device handler and user programs are nested 

as subroutines. If it is decided to call everything which need not 

be programmed by the user the executive, the latter can be extended at 

any time by a process of logical nesting, involving the once-for-all 

addition of the part written by the user. In the first stage, for 
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example, the executive may be extended by an ADC handler which, in its 

turn, will form the nucleus for a multi-channel program already containing 

simple data reduction routines. If this collection is also considered 

part of the executive, the extended executive additionally includes 

an external multi-channel device called in the same manner as the other 

external devices and indicating back to the user when its work is 

finished by means of a logical interrupt. 

The number of logical interrupts which the user program can 

await is not limited by the features of the system. Any number of 

external devices may be activated simultaneously. This means that 

any number of sequential processes can run in parallel in the user 

program, their number's being unrestricted by the length of executive 

lists. 

There is a drawback to subroutine (SR) nesting in that SR calls 

with their parameter transfer and also the SR returns take time. 

It must be possible to recall the evaluation programs repeatedly 

because each of them calls a further SR to indicate its completion 

and can therefore also (implicitly) call itslef, i.e. the program must be 

re-entrant. 
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Αs the executive has no means of accounting for the 

sequential processes that have been started, each sequential process 

can change only its own priority, not that of the other processes. 

The user must, of course, accustom himself to the fact that 

he must always explicitly supply the address of the subroutine with 

which his program is to be continued whenever he gives a subroutine 

call. This minor inconvenience, however, is compensated for by the 

external uniformity of external device calls with evaluation routine 

calls thus achieved. The user should always bear in mind that 

returns in the subroutines used serve to provide a return to the 

executive. 

4.4 "Waiting" 

It will frequently be impossible to complete a process 

activated by an interrupt immediately if, in fact, anoiher interrupt 

or the result of a calculation must be awaited. In the second case 

particularly the computer may not remain in a wait loop but should 

do useful work, e.g. finish the calculation of which the result is 

"awaited", until receiving the event which has to be awaited. 
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Processing the interrupt must, therefore, be broken off by the 

execution of the subroutine returns of all nested subroutine 

through until that moment, so that the part of the program 

by the interrupt is continued. Care must also be taken to ensure 

that the processing of the remainder of the interrupt is activated 

by the event to be "awaited". More details on this point will be 

found in the description of synchronizations (4.7.16). 

4.5 The construction of a modular programming complex 

The hierarchical construction of our modular system is of 

the two-stage type. Its lower stage contains device handler and 

evaluation program with the structure described in sections 3.4 and 

3.5. Each consists of a number of subroutines belonging logically 

together. For these programs to run, they must be provided with 

parameters, e.g. the addresses of data fields and the continuation 

address. This is effected by "calls" which contain the subroutine 

calls with parameter lists and, according to their external configuration, 

also represent subroutines. The calls must also be interconnected 

in order to provide a usable complex. Short standard subroutines 

(SSR) which can be regarded as macro-instructions (indeed, some of 

them are so defined) are used to this end. The programs are thus 

called and interconnected by a higher-order program of calls and SSR's. 
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It is the user's problem to insert parameters generating 

the desired experiment program into the calls and the SSR's forming 

the "cement" between the calls. In this he is assisted by a special 

program (preassembler, see 5.1.1) which fetches the calls and SSR's 

from a library, describes the necessary parameters to the user and 

thereby requests them, checks the parameters provided by the user for 

format errors and inserts them into the calls and SSR's, which can 

then be assembled. The PDP-9 loading program loads the programs 

appropriate to the calls at the same time as it loads the experiment 

program from the library. 

All SSR's with internal labels not appearing on the outside 

are defined as macro-instructions. Here, the parareters to be 

provided by the user are inserted into the prefabricated macro-

instructions. The internal labels are generated by the assembler 

on assembly and named. The remaining SSR's are formed from 

prefabricated sequences of instructions. 

The sub-programs themselves, which are called by the calls, 

are written, as far as possible, with the aid of the SSR's. They 

also contain sections written in assembler code. If certain rules 

are observed, they may also contain parts written in FORTRAN. 
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Every SSR, with very few exceptions, contains one or more 

subroutine calls which jump into standard parts or calls which carry 

on further. The points to which they jump represent parameters to be 

inserted by the user. With every call, a jump point must be given as 

a parameter, to which the called program jumps at each subroutine 

call once it has completed its task. Since a jump point may alio 

be a call in the program with a different set of parameters, 

it must be possible to recall the programs repeatedly, i.e. the program 

must be re-entrant. 

An experiment program made up of SSR's and calls may 

be divided into super-modules which, with slight modifications, and if 

suitably arranged, can also be used in other experiments. 

4.6 Representation of the program complexes 

It has been found that faster programming is often achieved 

through a graphical representation of the SSR interconnections. 

Linguistic representation is suitable in other cases, especially 

for programming synchronizations. It was explained in section 3.7 that 

not all the interconnections occurring in the structure of our problems 

can be represented purely graphically. We therefore arranged for 

series of letters (variable names) to be included in some of the 

graphic symbols. 
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To allow the user to take advantage of both methods of 

representation, we have tried to develop comprehensible graphic 

symbols for our standard subroutinesand also to give linguistic 

formulations so that, depending on the actual problem involved, one 

or the other method of representation, or both together, can be used 

for programming. We thought it important in this connection for each basic 

unit in both methods to correspond to a symbol or linguistic combinations, 

so that either method of representation can be transformed into the 

other without any special mental effort. The method used is immaterial 

on the input of the parameters into the preasSembler. The graphic 

representation of a program need not, therefore, be translated into the 

linguistic one, but a program can be created in dialogue with the 

preassembler simply on the basis of its graphic representation. 

4.7 Description of the standard subroutines (SSR) 

4.7.1 General 

The first factor to be mentioned in the description of 

an SSR will be its purpose, followed by an example of an excerpt 

from a program written in the form 

SSR type labels generated linguistic symbols. 
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By SSR type is meant the combination of symbols which must be 

passed to the preassembler so that it can search for the SSR under 

this type name in its library. The SSR has at least one call label 

formed by the preassembler from characteristic letters (generally 

the type code) and the SSR number to be provided by the programmer. 

Where SSR's have several call labels, they are differentiated by the 

addition of letters A, B, etc. Calls setting and resetting the 

flags are labelled with the suffix .T or .F. Examples : P1, P2, 

S1A, S1B, S1C, S1.F, S1.T. 

"Texts" briefly indicate the function of the SSR and 

contain the parameters which must be inserted by the programmer. 

Nearly all SSR's end with "go to" followed by the address of the 

subroutine to which a jump must be made after the SSR has been executed, 

per subroutine call. Eeference is made to the graphic symbols of the 

SSR, beside which the SSE flow-charts are shown in the conventional 

representation. 

The "texts" may be considered as language units in a 
programming language. No rigid rules of syntax are imposed, 
since this programming language is not translated into a computable 
program by a compiler. The formulations were chosen in such a way 
as to provide similarities to existing programming languages. 
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The number, sequence and syntax of the parameters to be input 

are determined by the indication of the SSR type. These parameters 

are given in the correct order in the "texts". 

For the purposes of the input of parameters into the 

preassembler, it is best to arrange the SSR's by types, their sequence 

being completely arbitrary in the source program composed by the 

preassembler, since then the preassembler can carry out its search 

in the SSR library much more rapidly. As, however, a program arranged 

by SSR types is not easily understood by another user, the program 

is reduced in the course of rearrangement to indications of type and 

parameter. It is only these data, underlined in the "texts", that 

are inserted into the preassembler. An additional advantage here 

is that time is saved in punching the cards. 

4.7.1.1. Indirect parameter transfer; global parameters 

The names of semaphore variables and data (fields) can 

indirectly be transferred by the SSR or calls. In other words, the 

addresses at which the parameter names are to be found may be given 

instead of the names themselves on the input of the parameters. 

In the latter process, therefore, whether the address of the name or 

the name of the parameter itself was given must be indicated by the 

addition of YESindirect or NOindirect. 
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The names of semaphore variables and data may be declared 

as global names valid for several, separately translated programs. 

They are declared in one of the programs in which they are an internal 

global address, and must be indicated as global addresses in all 

programs by the SSR GLOBL. 

External global names declared in another program must be 

specified YESindirect, to be transferred indirectly, when input 

as parameters of SSR's and calls. 

4.7.1.2 Declaration of data fields 

Data and parameter fields must be declared in a data 

directory to be written for every experiment program. The data 

directory formally represents a program with the name DATBnn, where 

nn is the segment number in segmented programs. In unsegmented 

programs, nn = 1. The names of data fields are external addresses 

for all programs using them. 

The form 

field name 0; .GLOBL field name 
field length 

is prescribed for entry in the data directory. 
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A core allocator connected with the executive divides the 

core stores not occupied by programs into data fields, their lengths' 

corresponding to the entry "field length" which is given as a decimal 

number. The core store allocator enters the calculated initial 

addresses of the data fields, under the address "field name", in 

the data directory from which they are taken by the processing programs. 

When the field lengths are given, it must be remembered 

that each data field must have a header into which those programs 

which write-in data enter the number of data words actually inserted. 

Fields may be declared as overlapping: 

The directory entry 

field name 2 field name 1; .GLOBL field name 2 
50 

means that a core store area of 50 words receives the same core 

store address as the previously declared field with the name 

"field name 1". The data directory must be closed with the exit 

symbol -1. 

4.7.1.3 Instruction input 

Every instruction consists of a keyword and the actual 

instruction. The keywords must be explained in a directory ADRBnn, 
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The entries in the directory must be made in the following 

form: 

.ASCII 'KEY' (15) 

.DSA KEY; .GLOBL KEY 

Here, KEY is the keyword (of up to four symbols) defined as the 

address in the decoding section of the user program (subroutine). 

Part of the system program (ERSTnn), the first to be loaded 

by the user, uses the keyword directory to fetch the address of the 

decoding section and, with the aid of the decoding section, to fetch 

the address of the subroutine to be started as a result of the 

instruction. 

The exit symbol 

-1 

must be entered in the keyword directory. 

4.7.2 Program serialization Ρ 

Use: activation of "parallel" - running sub-programs 

with the same priority. 

Example: 

P p1 go to 3 branches: G1.T, P6, P7 *) 

SSR type: Ρ 

SSR no.: 1 

file:///P3Tnn
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where nn is the segment number of segmented programs, and nn = 1 

for unsegmented programs. 

Label generated: p1 

Execution: jumps are made to the indicated subroutines (up to 7) 

in succession (fig.12). 

*) Note: On the input of parameters into the preassembler, a total 

of 7 branch addresses must be given, those which do not apply being 

provided as dummies. 

4.7.3. Indirect jump-out J 

Use: jump to an address adopted as a parameter 

Example: 

J j1 Jump out by N1B 

SSR type: Ν 

SSR no.: 1 

Label generated: j1 

Execution: Indirect subroutine jump via address N1B, into which 

the jump point was written as a parameter by SSR N1 (fig. 3). 
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4.7.4 Parameter transfer N 

Use: transfer of parameter lists from subroutine calls. 

Example: 

N n1 get 5 parameters by label INIT 

SSR type: N 

SSR no.: 1 

Labels generated: n1; n1a, n1b, n1c, n1d, n1e 

Execution: 5 parameters are transferred, behind the last call made 

of subroutine INIT (only fifteen-bit addresses are permitted as 

parameters). The parameters accepted are found under addresses 

n1a, n1b, etc. Transfer is carried out with API and PI disabled 

by .CB or .DA (fig. 3). 

4.7.5 Print M 

Use: issue of messages via teleprinter. 

Example: 

MELD m1 print INPUT EPROR 

SSR type: MELD 

SSR no.: 1 

Label generated: M1 

Execution: A subroutine issuing the message via a teleprinter 

is added to a queue at main program level (fig. 4). 
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4.7.6 Lower priority (request level) R 

Use: Add a subroutine to a lower-priority queue. 

Example: 

R r1 request level 5 for P1 

SSR type: R 

SSR no.: 1 

Label generated: R1 

Execution: Subroutine P1 is added to the queue for level 5 

and started later (fig. 4). 

4.7.7 Raise priority L 

Use: Raising the priority. 

Example: 

L l1 raise priority to level 3 and go to P1 

SSR type: L 

SSR no.: 1 

Label generated: L1 

Execution: The priority is raised to 3 and a subroutine jump is 

made to P1. After the return from P1, the priority is lowered 

to its original value (DBK) (fig. 5). 
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4.7.8. Gate G 

Use: Making a continuing subroutine call only when 

a condition is satisfied. 

Example: 

G- g1 if g1.f do nothing else go to P1 

g1.f do g1.f 

g1.t undo g1.f 

initially YES g1.t 

SSR type: G 

SSR no.: 1 

labels generated: g1, g1.f, g1.t 

Alternatives to initial condition: NO gl.t 

Execution: A flag is set or reset by jumps g1.t and g1.f. 

Depending on the value of the flag, a jump to the label given 

as parameter is made or not after jump g1. (fig. 2). 

4.7.9 Switch S 

Use: Conditional branching 

Example: 

S s1A if s1.f go to P1 else to P2 

s1.f do s1.f 

s1.t undo s1.f 
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S s1B if s1.f go to P3 else to P4 

SSR type: S 

SSR no.: 1 

Labels generated: s1a, s1.f, s1.t (the last two only if "arm A" is 

stated). 

Execution: Jumps s1.f and s1.t set and reset flag. At jumps 

s1a, s1b, ..., branching occurs, dictated by the value of the 

common flag. The "arms" are continuously indexed A, B, etc. (fig. 2). 

4.7.10 Decode instruction D 

Use: Starting sub-programs by means of the input of 

instructions via a teleprinter. Each instruction consists of a 

keyword and the actual instruction itself. 

Example: 

D decode with key ATLA 4 commands 

on command GO go to P1 

on command END go to S1A 

on commend LOS go to S1B 

on command CLOS go to S1C 

(Up to seven instructions per keyword may be set*) 
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SSR type: D 

Labels generated: none 

Global address: keyword 

*Note: The input must be parameter pairs for seven instructions 

(unused ones as dummies). 

Execution: A decoding directory is generated containing the command 

word (up to four symbols) in 5/7-ASCII followed by the address 

of the sub-program to be started by the user as a parameter. 

The final symbol of the decoding address directory is -1. The keywords 

are also written in 5/7-ASCIΙ followed by the appropriate decoding 

section addresses in a directory to be written by the user (with 

the available auxiliary program). Decoding is carried out by part 

of the executive ERSTn (n = 1, ... as a segment number is segmented 

programs) which adds the subroutine address found during decoding 

to a queue running at main program level. 

Note: The subroutine address given in the decoding section must 

contain 0 in order to be entered in the queue; do not, therefore, 

make subroutine jumps in the program (Fig. 3). 

4.7.11 Declaration of program label M 

Use: Declaration of call labels, in subroutines to be 

translated separately and written by the user, as external addresses 

for other parts of the sub-programs. 
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Example: 

M declare label MARA = P1 

SSR type: M 

Program label (global address): MARA 

Execution: A SSR in the form 

MARA 0 

•GLOBL MARA 

JMS P1 

JMS* MARA 

is generated (fig. 4). 

4.7.12 Declare global parameter GLOBL 

Use: Declaration of parameters to (internal or external) 

global parameters. 

Example: 

GLOBL BUF1, BUF2, SPEK 

SSR type: GLOBL 

Execution: The parameter names given are regarded as global addresses. 

4.7.13 Declare internal buffers BUF 

Use: Declaration of intermediate buffers inside the program. 
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Example: 

BUF declare BUFFER with 100 words 

SSR type: BUF 

Buffer length: 100 (decimal) 

Execution: An entry is generated which is the same as the entries 

of the core allocation in the data directory: 

BUFFER .DSA ..0013 

100 

.DEC; ..0013 .BLOCK 100; .OCT 

4.7.14 Save and restore parameters SAV 

Use: To obtain subroutines which can be re-entrant. 

Each subroutine so written jumps at every subroutine call to an 

S3?- or call address indicated in the call to indicate the completion 

of its work. The program may, via this subroutine jump, pass to a 

call which calls the same sub-program with a different set of 

parameters and thus writes in the flag and any other parameters in 

the sub-program. Before the subroutine call, these parameters must 

be saved, to be restored after return. 

Example: 

SAV sav1 save entrance INIT (having delivered 4 parameters) and 

4 locations: P6, READER, PAR1, DATUM; done go to P5 
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SSR type: SAV 

SSR No.: 1 

Execution: The program is initialized by the subroutine call INIT; 

There are four parameters in the call after INIT, and these must be 

transferred. Five cells must be kept free behind these parameters 

for the entry of the content of cell RUAD inside the SSR and the 

contents of the four locations given. The content of INIT (the 

return address) is saved in RUAD. The program is then continued by 

a subroutine jump to P5. After the return from this subroutine, 

which may also implicity call ΙNΙΤ, the saved contents are restored 

with the aid of the content of RUAD which is taken back to INIT 

(flow-chart, see fig. 3). 

4.7.15 And-interconnection A 

Use: Further jump to a subroutine only if two actions with 

the same priority have taken place in any order. 

Example: 

A a1a if a1b done undo both, go to P1 

a1b if a1a done undo both, go to P1 

initially YES both done 

SSR type: A 

SSR no.: 1 
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Labels generated: a1a, a1b 

SR jumped to: P1 

Initial conditon: jump made to both inputs 

(alternative NO both done) 

Operation (fig. 5): the jump to subroutine P1 is made only if jumps 

are successively made to a1a and a1b. There is an initial exception 

after the program has been loaded. The further jump takes place when 

a jump is made to one of the two inputs. 

4.7.16 SSR's for coordinating sequential processes 

It was stated in section 3.1 that an experiment program 

consists of sequential processes running virtually parallel. The 

work of these processes must be coordinated in time. Thus, for 

instance, two processes may not attempt to change the same variables 

simultaneously or, in other cases, two phases of two processes must 

take place in a given time-sequence. It must be possible, in both 

instances, for one of the processes to "wait", where conditions 

require it. 

Coordination is effected in our system according to a 
proposal made by DIJKSTRA1) with the aid of special variables, 
the semaphore variables, which can only be integers and can be 

http://me.de
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changed only by special operations which cannot be interrupted. 

Semaphore variables may be declared as global addresses. There are 

the following SSR's or macro-instructions: 

4.7.16.1 Declaration of a semaphore variable SEM 

User Declaration of a semaphore variable. 

Example: 

SEM declare sema SEMNAM 

SSR type: SEM 

Execution: Two computer words With the identifier SEMNAM are 

kept free. The content of the first word is set at -1 and that 

of the second 0. 

4.7.16.2 Sequence declaration SEQ 

Use: Declares a subroutine at the beginning of a 

sequential process and allocates a name and priority to it. 

Example: 

SEQ Declare sequence WORK with priority 5 

beginning with p1 

SSR type: SEQ 

Execution: A sequence heading with the address WORK is generated. 
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The sequential process will begin with SSR P1, started with 

priority 5. 

A subroutine 

WORK Ø 

JMP .+2 
5 
JMS P1 
JMP* WORK 

is gener ted (fig. 6). 

4.7.16.3 Activate call ACT 

Use: Activating (starting) a sequence. 

Example: 

ACT act 1 activate WORK; go to ΑCΤ2 

SSR type: ACT 

SSR no.: 1 

Activated sequence: WORK 

The program is continued with SSR ACT2. 

Execution: The sequence WORK is started with the priority given 

in the declaration by a subroutine call if the activate call has 

the same priority as or a lower priority than the sequence; 

otherwise, it is added to a queue. Thereafter the program is 

continued with the SSR ACT2 (fig. 6). 



- 52 -

4.7.16.4 Assign statement ASS 

Use: Assigning an initial value to a semaphore variable. 

Example: 

ASS ass1 assign to SEMNAM (NOindirect) 10; go to ASS2 

SSR type: ASS 

SSR no.: 1 

Semaphore variable: SEMNAM 

Allocated value: 10 

The program is continued with SSR ASS2. 

Execution: The first word of the semaphore variable SEMNAM is 
set to 10 and the second to 0 (fig. 6). 

4.7.16.5 Dyke call DYK 

Use: "Waiting" until a semaphore variable is not negative. 

Example: 

DYK dyk1 Dyke SEMNAM (NOindirect); go to P1 

SSR type: DYK 

SSR no.: 1 

Semaphore variable: SEMNAM 

The program is continued with P1 (fig. 6). 

Execution: The semaphore variable SEMNAM is interrogated by a 
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jump to a system subroutine DIJKGT. If its value is ≥ ø, it is 

reduced by 1 and a jump is made to subroutine P1. If its value 

is negative, it is not changed and subroutine P1 is entered in a 

queue which can be compiled for any semaphore variable. The second 

word of each semaphore variable contains the indicator to the 

first entry in the queue, and each Dyke call contains the indicator 

to the next entry in the queue belonging to the appropriate semaphore 

variable. The end of the queue is given by the pointer ø. The 

entries in the semaphore queue are in order of priorities (see 

description of DIJKST, 5.2.4). 

The jump to DYKER takes place with API and PI disabled. 

They are both enabled again before return. 

4.7.16.6 Undyke call UDY 

Use: Providing the indication that "waiting" is not (or no longer) 

necessary. 

Example: 

VDY udy1 undyke SEMNAM (NOindirect); go to P1 

SSR type: UDY 

SSR no.: 1 

Semaphore variable: SEMNAM 

The program is continued with SSR P1 (fig. 7). 
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Execution: The value of semaphore variable SEMNAM is increased by 

1. If this causes the value ø to be attained, a check is made on 

whether there is an entry in the queue appropriate to the semaphore 

variable (secnnd word of the variable ≠ ø), If so, the value of 

the semaphore variable is once more reduced by 1 and the SE to 

which a jump should be made from the first waiting DYKE is started 

or entered in a starting queue depending on whether the priority 

of the Undyke call is lower (or equal to) or higher than that of 

the waiting DYKE. The next item in the Dyke queue is advanced to 

first position. 

4.7.16.7 Activating cyclic processes 

Sequences consisting of closed cycles may be activated 

provided that the following rules are observed. 

1) The work of an external device must be contained in the cycle, or 

2) the cycle must contain a Dyke call, the semaphore variable of 

which has such an initial value on activation that the Dyke call 

is awaited; the cycle can then be started later by an Undyke on the 

same semaphore variable. 
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4.7.17 Input of any texts TEXT 

Use: Input of any texts, e.g. subroutines written by the user 

in assembler code. 

Example: 

TEXT RΕΑD 0 

∙ 

∙ 

JMP* READ 

SSE type: Text 

Execution: The text provided by the user is regarded as a parameter 

of the statement "TEXT" to the preassembler and inserted by the 

preassembler into the program generated. 
4.7.18 Call C... 

Use: Calling sub-programs with lists of parameters 

Example: (fig. 7). 

CADCR c1 Call adc1 to read into BUF1 

(NOindirect); finished go to P1 

(NOindirect) 

SSR type: CADCR 

SSR no.: 1 

Label generated: c1 
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Execution: A subroutine 

C1 0 

YES = 400000 

NO = 0; JMS* ADCIR; .GLOBL ADCIR 

JMP .+3 

.DSA BUF1+NO 

.DSA P1+NO 

JMP* C1 

is generated with which the sub-program ADCIR is called. It is a 

part of the operating program of ADC1. The calling of ADC1R has 

the effect of causing ADC no. 1 to read data into buffer BUF1. 

When buffer BUF1 is full, a logical interrupt is generated which 

continues the user program with SSR P1. 

The parameters buffer address and jump address may be 

external addresses or given indirectly (i.e. given by parameter 

addresses instead of in the form of the parameter itself) (YESindirect). 

4.7.19 End of a sequence EX 

Use: Closing a sequence 
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Example: (fig. 7) 

EX ex1 exit 

SSR type: EX 

SSR no.: 1 

Execution: a subroutine 

EX3 Ø 
JMP* EΧ3 

is generated. 

4.7.20 Jump to external address Ε 

Use: Jump to an explicitly specified label of a sub-program 

translated separately. 

Example: 

E e1 jump out to ENABLE 

SSR type: Ε 

SSR no.: 1 

Execution: A subroutine 

E1 0 
JMS* ENABLE; .GLOBL ENABLE 

JMP* E1 
is generated (fig. 4). 
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4.8 Example: multi-channel program 

The basic program described here is an analog-digital converter 

(ADC) operating program containing calls for the ADC, vhich stores the 

measured values of the input pulse height, converted to binary by 

the ADC into a data field. Together with this is a sorting program 

which allocates a memory location in an output field (the spectrum) 

to each binary number and always adds 1 to the content of the 

spectrum word if there is a corresponding binary number in the 

input data field. Here, the spectrum words are arranged in the 

order of the size of the possible input values. Both programs are 

intended to operate together on the alternating buffer system, so 

that the ADC program fills one buffer, while the other is being 

processed by the sorting program. It must be possible to call the 

program thus produced in the same way as a device directly providing 

pulse-height spectra (multi-channel analyser). 

The ADC is signalled to the operating system and the alternating 

buffer operation initialized. The INIT part of the program is 

called by two parameters, i.e. the address of a start-stop handler 

capable of starting or stopping other devices simultaneously with 

the multi-channel, and an address to which a jump is made when the 

INIT part is ready. 
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All parts of the multi-channel analyser (MCA) are called 

at level 5. 

M declare label MCA1I = P1 

Ρ p1 go to 2 branches: N1, L1 

N n1 set 2 parameters by label MCA1I 

L L1 raise priority to level 3, go to C1 

CADC1 c1 call adcl to init with start-stop-handler N1A 

(YESindirect), go to R1 

Ε r1 request level 5 for ASG1 

ASS asg1 assign to Ρ1EMΡTY (NOindirect) -1, go to ASS 2 

ASS asg2 assign to Ρ2EMΡTY (NOindirect) 0, go to ACT1 

ACT act1 activate sequence RDLOOP, go to UDY1 

UDY udy1 undyke P1EMPTY, go to J1 

J j1 jump out by N1B 

Read-in takes place by blocks into the intermediate buffer 

at level 1, and this buffer is processed parallel to it at level 5. 

SEQ declare sequence RDLOOP with priority 1 
beginning with DYK1 

DYK dyk1 dyke P1EMPTY (NOindirect), go to c2/ A wait is 
made here until the first intermediate buffer is 
clear 

CADCR c2 call adcl to read into BUF1 (NOindirect), done go 
to ACT2 
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ACT act2 activate WORK1, go to DYK2 

DYK dyk2 dyke P2EMPTY (NOindirect), go to C3 

CADCR c3 call adc1 to read into BUE2 (NOindirect), 
done go to ACT3 

ACT act3 activate WORK2, go to DYK1 

SEM declare sema P1EMPTY 

SEM declare sema P2EMPTY 

BUF declare BUF1 with 100 words 

BUE declare BUF2 with 100 words 

SEQ declare sequence WORK1 with priority 5 
beginning with C4 

CSRTG c4 call sorting program srt1 to get data out of 

BUF1, go to UDY2 

UDY udy2 undyke Ρ1ΕΜΡTY (NOindirect) go to EX1 

EΧ ex1 exit 
SEQ declare sequence WORK2 with priority 5 
beginning with C5 

CSRTG c5 call sorting program srt1 to get data out 

of BUF2, go to UDY3 

UDY udy3 undyke P2EMPTY, go to EX2 

EX ex2 exit 
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The sorting program, which has already received the GET 

call on initialization, is set in operation by the PUT call from 

the read part of the program. The terminating signal is given when one 

of the spectrum words overflows. 

M declare label MCA1R = P2 

Ρ p2 go to 2 branches: N2, C6 

N n2 cet 2 parameters by label MCA1R 

CSRTP c6 call sorting program srt1 to sort into 
spectrum N2A. (YESindirect), on overflow go to 
J2 

J j2 jump out by N2B 

The spectrum overflow is simulated in the terminating 

part of the program. 

M declare label MCA1F = P3 

Ρ p3 go to 2 branches: N3, C7 

N n3 get 1 parameter by label MCA1F 

CSRTF c7 call sorting program to finish (to 
simulate overflow), go to J3 

J j3 jump out by 
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In the termination part, the intermediate buffers are 

emptied after the ADC has acted as if it had filled its buffer 

as a result o.f its CLOSE call. A spectrum overflow is then 

simulated by the termination of the sorting program and the program 

is reset to its initial state. 

M declare label MCA1C = P4 

P p4 go to 2 branches: N4, ACT4 

N n4 get 1 parameter by label MCA1C 

ACT act4 activate END, go to L2 

L l2 raise priority to level 3, go to C8 

CADCC c8 call adc1 to close, go to R2 

R. r2 request level 5 for J4 

J J4 jump out by N4A 

Level 0 is awaited in the sequence END until both 

intermediate buffers are empty. The RD loop is stopped by 

level 0. 

SEQ declare sequence END with priority 0 

beginning with DYK3 

DYK dyk3 dyke Ρ1EMΡΤY (NOindirect), go to DYK4 

DYK dyk4 Dyke P2EMPTY, go to R3 
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R r3 request level 5 for C9 

CSRTC c9 call sorting program srt1 to close, go to EX3 

EX ex3 exit 

At START and STOP, the ready message addresses are taken 

over and the priority allocated, since the ADC program is called 

at level 3 except on READ. 

M declare label MCA1A = P5 

Ρ p5 go to 2 branches: N5, L4 

N n5 get 1 parameter by label MCA1A 

L 1 4 raise priority to level 3, go to C10 

CADCA c10 call adc1 to start, done go to R4. 

R r4 request level 5 for J5 

J j 5 jump out by N5A 

M declare label MCA10 = P6 

P p6 go to 2 branches: N6, L5 

N n6 get 1 parameter by label MCA10 

L l5 raise priority to level 3, Go to C11 

CADCO c11 call adc1 to stop, done go to R5 

R r5 request level 5 for J6 

J j6 jump out by N6A 

EXIT 

http://cs.11
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Fig. 8 is a graphic representation of the program. From 

it, all parameters for insertion into the preassembler may also 

be derived. Fig. 9 is a representation of the ADC program. An 

alternating buffer program is shown for purposes of comparison in 

Fig. 10. This program undertakes the synchronization processes 

in parts MCA1I and MCA1C of the program instead of in the user 

program via the executive. 

There are four jumps in program SRΤ1, SRT1 is 

re-entrant. Jump SRT1G is called with two parameters, 

viz: the address of the buffer containing the data words to be 

sorted into a spectrum, and the address designed to activate 

SRT1 when all data words from that buffer have been sorted. 

Jump SRT2P is also called with two parameters, i.e. the address of 

the buffer containing the spectrum and that to be activated by 

SRT1 when one of the spectrum words overflows. Overflow simulation 

is effected by a third call SRT1F. The overflow is also simulated 

on call SRT1C, while, in addition, the program is reset to the 

initial state. 
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4.9 Reduction of programs consisting of SSR's 

A program composed with the aid of the preassembler consists 

of a number of standard subroutines and the appropriate calls. 

Here, there will very probably be a number of once-only subroutine 

calls within this program. 

There is, however, no point in subroutines without parameter 

transfer unless they are called several times, since they require 

three more memory locations (SR call, entry point, return) than the 

corresponding sequences of instructions replacing the SR calls. 

Examples have shown that the storage requirements of a program 

generated by the preassembler can be reduced by about 30% if once-only 

SR calls are replaced by the subroutine sequerce of instructions 

(without entry and returns). 

A previously translated program in the form of a listing 

must be used as a starting point in the reducing process because 

the macro-calls in this program are supplemented by the macro-framework 

(of the program itself) into which the assembler has 

inserted the actual parameters during translation. The macro-definitions 

are thus rendered superfluous and can be deleted, as 

can the macro-calls. Then, an investigation must be made at each 

http://sequ.er.ce
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subroutine call to find out whether the subroutine concerned is 

called again at another point in the program. If not, it is not 

a true subroutine and the subroutine code (without entry and return) 

may be inserted instead of the subroutine call. The name of the 

subroutine also disappears with the entry. 

A specially written auxiliary program, the reduction program 

CUSORT, deletes from a listing lines which have become irrelevant 

and rearranges once-only subroutines instead of their calls. This 

program reads-in the listing, presented in the form of ASCII text, 

of the program to be reduced and, on reading-in, erases all lines 

which have not led to an entry in the address or code column of the 

listing. 

The address and instruction codes are also deleted on reading-in; 

of the listing, therefore, only the source program remains. 

The latter is interrogated for all subroutine calls found several 

times in the program, and these are entered on a list. The source 

program is then issued, line by line, as a new, reduced source program. 

Output lines are deleted from the original source program. 
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Whenever a subroutine call is to be issued, reference is 

made to the list to find out whether it occurs nnce only in the program. 

If so, the subroutine concerned is issued instead of the subroutine 

call; excluding the entry line and its corresponding return. 

5. Appendix; Program description and instructions for use 

5.1 Preassembler and program generator 

5.1.1 The preassembler 

5.1.1.1 Purpose 

The preassembler assembles macro-definitions, prefabricated 

macro-calls and standard subroutines found in a library with the 

parameters provided by the user to form programs. The parameters 

to be supplied by the user are described by texts also taken from 

the library. Input can take place either in dialogue with the 

computer or with the aid of parameter lists written off-line. 

The parameters provided by the user are checked for correct 

format (e.g. their composition from permitted symbols). Corrections 

may be made by on-line dialogue. Experience has shown that source 

programs composed with the aid of the preassembler hardly ever 

contain any format errors. 
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5.1.1.2 Method of operation 

The first requirement made of the user by the preassembler 

is the name of the program to be composed. It then reads-out all the 

macro-definitions from the library and issues them as the first part 

of the program. It then requires the user to indicate an SSR type, 

which it seeks in the library and from which it obtains the descriptions 

of the parameters which must be inserted in the SSR by the user in 

order to make it part of a processable program. It requests each 

parameter, describes it, checks it for format errors, indicates 

such errors and expects corrections, and from these parameters builds 

up a list of them into an SSR. Once all the parameters for an SSR 

have been provided, it asks for the input of four up-arrows, and then 

inserts the parameters into the prefabricated SSR text which is also 

fetched from the library. Thereupon, it requests the next SSR type. 

5.1.1.3 Separator 

Each of the parameters provided by the user must be enclosed 

between separators, for which the preassembler uses up-arrows (7-bit 

ASCII code: 136). Whenever the preassembler asks for a parameter 

by its description, all the symbols provided by the user are read 

up to the first separator, which signals the beginning of the 

parameter. 
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As a check on the number of parameters input for an SSR, 

the sets of parameters in the individual SSR's are separated from 

one another by four up-arrows, requested from the user by the 

preassembler in dialogue. 

After the input of the name of the program (enclosed in 

separators), the preassembler also requests a line of four up-arrows. 

5.1.1.4 Completion of parameter input 

Once all the SSR's of a program, with their parameters, 

have been provided by the user, the signal EXIΤ is input instead 

of the four up-arrows required by the preassembler, which then 

finishes the program issued with .END, prints out on the teleprinter 

the number of SSR's composing the program and goes into a wait loop 

from which it can once more be started (CONTROL P). The monitor is 

loaded on the insertion of any other symbol via the operating 

teleprinter. 

5.1.1.5 Input and output devices 

The preassembler uses the following .DAT SLOTS (logical input and 

output channels): 
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.DAT SLOT Function 

-2 Input of instructions for use 

-3 Output of error messages, requests for 

instructions for use, output of parameter 

descriptions in dialogue 

1 Input of macro-definitions, SSR's and 

parameter descriptions from the library 

(.LIBR MAC) 

2 Output of the finished source program 

3 Input of the parameters 

5 Output of the program statement 

5.1.1.6 Program file 

The parameter descriptions may be issued by the preassembler 

together with the parameters provided as a program file. Its output 

can be stopped (see operation). In it, the SSR's and parameters are 

continuously numbered in such a way that the last three figures of a 

parameter number indicate the number of the parameter in the SSR and 

the first three that of the SSR in the program. 

The program file is issued so that it may be used to 

reinsert the parameters (fig.11). 
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5.1.1.7 Operation 

After the start, the preassembler announces itself by 

PROGRAMPREASSEMBLER (fig. 12). 

It then requires the user to reply to a few questions to 

determine its mode of operation. The questions may be answered 

YES or NO. In an abbreviated mode, the RETURN symbol (ASCII 015), 

given as a reply, corresponds to the YES. 

The abbreviated mode is set up when the preassembler's  

first question 

SWITCH FAST SETTING YES OR NO 

is answered by YES. 

The next question is 

IMPROVE VIA TELETYPE. 

If the answer is yes, the preassembler awaits the insertion of 

the corrected parameter again after each format error. 

The question 

MONΙΤOR OUTPUT 

needs no answer. 
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The question 

COMMENT LONG 

signifies that there are two descriptions for each parameter in 

the library, one detailed and one abbreviated (for experienced 

users). 

The question 

COMMENT VIA TT 

enables the parameter description to be suppressed from .DAT SLOT -3 

when it is unnecessary, for instance when the parameter input is via 

a punched tape written off-line. 

When the reply NO is given to the question 

EVERY PARAMETER, 

the user is given the opportunity of correcting parameter lists 

issued in the form of a program file and at the same time to 

create the program provided from the corrected parameters. To this 

end, the preassembler must be informed, on request, of the number 

of the first parameter to be altered, and this may be taken from 

the printed-out program file. The preassembler uses the old program 

file input via .DΑΤ SLOT 3 as a parameter list and first asks the user to indicate the parameter to be altered by describing it. 
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After its input, the number of the next parameter to be altered 

must be provided, and so forth. The preassembler issues the new 

program file and, on output, creates the new program on a magnetic 

store in a second pass, using the new program file as a parameter 

list (the two passes are necessary in this mode since otherwise four 

files - old and new program files, library and new program - would 

have to be opened at once). 

5.1.1.8 Names of parameter lists 

Once the questions determining the preassembler working 

mode have been answered, the preassembler asks for the names under 

which it can find the parameters on the input medium and under which 

the program file is to be issued. Names may consist of six alphanumeric 

symbols. PLS is accented as an extension (see program file manual). 

The up-arrow separator must be used to indicate the end of the input 

of the parameter list name. After these preparations, the actual work 

of the preassembler, described in section 5.1.1.2, begins (fig.12). 

5.1.1.9 Error correction 

On the input of incorrectly expressed parameters, the 

nature of the error is indicated and, with the correction mode 
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operational, a fresh input of parameters is expected. This cycle 

is repeated until the parameter input contains no format errors. 

If there is an error in reading, the incorrectly read line 

is printed. It may be either transferred unaltered (RETURN), 

or deleted [D(RETURN)] or corrected by typing the 

correct text. 

5.1.1.10 Phase errors 

After the parameters for an SSR have been input, the 

preassembler waits for the input of a sequence of four up-arrows 

as a separator. If this sequence is provided too early (insufficient 

parameters) or too late (too many parameters), the error message 

PHASE ERROR is printed out via the operating teleprinter with the 

serial number of the SSR in whose set of parameters the phase error 

was discovered. The SSR with the incorrect number of parameters is 

not inserted into the program. Since the parameter following a 

sequence of four up-arrows is invariably the type designation of an 

SSR, the parameter inserted after incorrectly given sequences of 

up-arrows is interpreted by the preassembler as an SSR type 

designation. 
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5.1.1.11 Erroneous SSR type designation 

If the preassembler is given an SSR type which does not 

appear in the library, it gives the" error message NOT FOUND. In 

dialogue, the question IS THIS TO BE CORRECTED? is then printed via 

the operating teleprinter. If the answer is YES, (or the RETURN 

symbol), the SSR type designation may be repeated. If it is NO, 

and on the input of off-line written parameter lists, the preassembler 

skips all inputs up to the next sequence of four up-arrows, and 

interprets the parameter following those as the next SSR type designation. 

5.1.2 Writing the SSR library 

5.1.2.1. Library name 

The preassembler looks for the SSR library on the external 

store (magnetic tape or dinc) under the name .LIBR MAC. 

5.1.2.2 The configuration of the SSR library 

The SSR library is formed by an ASCII text divided into 

lines. The individual SSR's are entered in random order. Each SSR 

in the library consists of (fig.13): 

1) two successive lines, each of four up-arrows; 

2) the SSR type designation; 
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3) the descriptions of the parameters; 

4) a line of four up-arrows, and 

5) the actual SSR. 

The actual SSR is written as a normal part of a program. 

Every sequence of symbols which, when the SSR is inserted into a 

real program, are to be altered (formal parameters) must be enclosed 

in two up-arrows. 

Each parameter description consists of:-

1) a detailed text; 

2) an abbreviated text as an aid to memory; 

3) the sequence of symbols of the appropriate formal parameter; 

4) the check code. 

Each part of a parameter description is termined by an up-arrow. 

The parts may be written one after the other in a line or 

distributed over several lines. The SSR. type designation must be 

terminated by an up-arrow. 
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5.1.2.3 Check codes 

The check codes inform the preassembler about the aspects 

used in testing the actual parameters fed in, which are to be 

inserted into the SSR instead of the formal parameters. There are 

check routines in the preassembler for the following codes:-

1) MC6 A check is made to see whether the actual parameters 

satisfy the criteria laid down for variable names in 

the assembler manual. 

2) PN Check as in 1); in addition, the sequence of symbols 

input is interpreted by the preassembler as the name 

of the program generated. 

3) PN5 as 2); however, with a maximum of only five symbols. 

4) JON YES or NO are expected as input. 

5) GO2 Exactly two octal figures must be typed be the user. 

6) GO1 One octal figure must be typed by the user. 

7) DZ2 Λ maximum of two decimal figures must be typed by the user. 

8) NΟΤ No check. 

Back-arrows are transcribed in all tests. Frameworks of 

formal programs (see 5.1.3) can thus also be generated. 
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5.1.2.4 Use of macro-instructions 

SSR's containing internal labels or addresses not appearing 

externally and intended to be given another name every time the SSR 

is inserted in a program are best written as macro-instructions, so 

that the assembler can generate a new name at every call (see assembler 

manual). The macro-definitions are entered in an SSR with the type 

designation MACDEF, containing no formal parameter and automatically 

input by the preassembler (it must therefore be included, empty, in 

the library, even when no macro-definitions are used) (fig. 14). 

The macro-calls appropriate to macro-definitions are processed 

like an ordinary SSR. 

5.1.2.5 The indication of errors in the SSR library 

The preassembler indicates a few errors which may have arisen 

in writing the SSR library:-

EDEER indicates that a formal parameter found in the SSR 

does not correspond to any of the formal paramters in the parameter 

descriptions. 

CODE NOT FOUND means that a check code not shown on the 

preassembler's code list is given in one of the parameter descriptions. 
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IOPS 01 is given when a parameter description does not finish 

with the prescribed up-arrow according to the check code. 

5.1.3 The program generator 

The program generator inserts actual parameters in the place 

of formal ones in prefabricated formal programs containing formal 

parameters. In this way, many actual programs, e.g. operating programs 

for similar devices, can be generated from one formal program. By 

and large, the program generator can be used to alter any texts at 

previously determined points with a particular aim in view; indeed, a 

text is altered in the same way at all points indicated by the same 

formal parameter. 

The program generator operates in exactly the same way as 

the preassembler, and therefore any description of it is superfluous. 

The only differences are these:-

1) The program generator uses back-arrows as separators (ASCII code 137). 

2) Once the working mode has been determined (5·1·1·7), the 

program generator requires the user to input an explanatory 

comment. 

3) In the case of the program generator, the "formal programs" 

correspond to the SSR's. They must be arranged individually 
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as files in an external store under a name with the extension 

FPR. The formal programs are constructed in exactly the 

same way as an SSR entered in the SSR library (5.1.2.2). 

4) There is a check code BIN instead of the GO1 (5.1.2.3). 

When this code is given in the description of the formal 

parameters, the program generator requires the input of any 

number of (different) decimal numbers from 1 to 16 and from 

them generates an octal number with which the insertion 

points of a line control, numbered from 1 to 16, can be 

called on a multiple address system, i.e. the bits indicated 

are put in the bit group 1 - 16 (PDP-9 word; bit numbering 

from left to right, beginning with bit 0 and going up to 17), 

while the computer word thus produced is recoded as an octal 

word in the alphanumeric code. 

5.2 Executive 

5.2.1 Instruction decoding ERSTnn 

In segmented programs (nn = segment number), the decoding 

program ERSTnn must always be the first to be loaded. On being loaded, 

it brings the remaining parts of the executive with it from the program 

library. 
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ERSTnn is started by CONTROL S via the teleprintser. At its 

first start, it initiates the software queue handler and, by making a 

jump to the core store allocation program DΑTΙNT, divides the free core 

store with the aid of the data directory (see 4.7.1.2) into the fields 

given therein. It then goes into a wait loop in the ORG program. 

At every new start given by CONTROL'S, it awaits the input 

of an instruction keyword (see 4.7.1.3), fetches the program address 

specified by the instruction following the keyword and, when CONTROL S 

is repeated, arranges the appropriate subroutine in the supervisor queue SORQ10. 

5.2.2 Supervisor ORG 

The supervisor ORG organizes the processing of up to eighteen 

queues at main program level (queue handler SORQnn with nn = 10 ... 31 (octal)) 

Processing of the queues is started by ORG in the order of their 

importance (with SORQ10 as the most and SORQ31 the least important 

After a program from a queue has been processed, ORG checks 

to find out whether a more important queue has been initialized 

meanwhile and starts its higher-priority processing. 



- 82 -

5.2.3 Queue handler SORQnn and SORAnn 

Queue handlers SORQnn (with nn as the level number) and SORAnn 

arrange subroutines required at higher priority levels in queues from 

which the lower-priority subroutines are being processed. Here, 

nn may assume the values 4 - 31 (octal). Processing the queue at 

level 4 - 7 is started by software requests, and those at levels 

10 - 31 by the supervisor ORG called by the queue handlers. 

Addresses SORQnn and SORAnn denote different entries into 

the same handler with the number nn. Unlike SORA, SORQ enables the 

API and PI again. 

Call (example): 

ISA+10 /API OFF 

IOF /PI OFF 

JMS* SORQnn 

.GLOBL SORQnn 

JMP .+2 

.DSA SR /ADDRESS OF SR TO BE QUEUED 
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Operation: 

The subroutines requested are entered in a chain-structured 

queue. Each link in the chain indicates the following one, while 

the end of the chain is indicated by a special entry. After all 

higher-priority work has been done, the subroutines are processed in 

the order of their entry. The first cell of the subroutine serves 

as storage cell for the pointer. Each SR may not, therefore, be entered 

more than once in the chain. Subroutines where the first unit is ≠ 0 

are not entered without the subsequent issue of an error message. 

5.2.4 Synchronization program DIJKST 

The program DIJKST carries out the organizations necessitated 

on activations, Dyke calls and Undyke calls. It possesses four entry 

points: DYKER, UNDYKER, ACTIV and ASSIGN. 

5.2.4.1 DYKER 

Call: 

ISA+10 /API OFF 

IOF 

JMS* DYKER 

.GLOBL DYKER 
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.DSA DYKER 

.DSA SEMA /SEMA VARIABLE (+4000000, IF INDIRECT) 

-1 /PRIORITY ENTERED HERE 

0 /NEXT UNIT IN QUEUE ENTERED HERE 

.DSA DYKEWAIT 

.DSA DYKEFURTHER 

.DSA HILEVEL 

.DSA SAMLEVEL 

.DSA LOLEVEL 

HILEVEL 0 

JMS SAMLEVEL 

DBK 

JMP* HILEVEL 

SAMLEVEL 0 

LAC SAMLEVEL 

DZM SAMLEVEL 

DAC RUAD 

SKP 

DYKEFURTHER ISZ count 

JMS SR /CONTINUING SR 

LAC COUNT 

SAD (0 
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JMP* RUAD 

TAD (-1 

DAC COUNT 

DYKEWAIT ... /NEXT INSTRUCTION 

COUNT 0 

LOLEVEL =SAMLEVEL 

RUAD 0 

Operation: 

DYKER finds out whether the semaphore variable has a 

positive value. If so, the value is reduced by one, the second of 

the exit addresses given as parameters (DYKEFURTHER in the call example) 

is fetched, and an exit made to the given address. If the semaphore 

variable has a negative value, the content of the priority cell is 

fetched. If the latter is -1, the priority of the level at which the 

DYKER call took place is calculated and entered in the priority cell 

as a binary number. This entry is made only when the DYKE call is 

executed for the first time. 

Thereafter cell 2 of the semaphore variable is checked. 

The semaphore variable consists of two cells. (The value of the 

variable is entered in the first, while the second indicates the 

http://mo.de
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first unit in the appropriate waiting list.) If it is 0, the address 

of the call priority unit is entered in it. If the address of another 

DYKES call is already entered in cell 2, and thus a queue has already 

been opened, the units of this queue are examined for their priorities 

and the call which has just been processed is arranged according to 

its priority in the queue. The latter is itself in the form of 

chain. The semaphore variable indicates the first unit, and each 

subsequent unit the following one. The units are arranged in the 

order of priority of the DYKER calls by DYKER. 

After the units have been arranged in the queue, 

an exit is made from DYKES to the first of the transfer vectors given 

in the call (DYKEWAIT in the example). The subroutine SR called after 

DYKEFURTHER is thus started immediately after the DYKER call only if 

the value of the semaphore variable is positive. Otherwise, the start 

can be given only by an UNDYEER call with the same semaphore variable. 

The subroutine SR, in its turn, may (implicitly) call a 

further subroutine, which causes the DYKES call to be run through 

again. This repetitiveness is to be permitted by the code around 

JMS SR. 

DYKES once more enables the API and PI. 
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5.2.4.2 UNDYKER 

Call: 

ISA+10 

IOF 

JMS* UNDYKER 

.GLOBL UNDYKER 

JMP .+3 

.DSA SEMA /+4000000, if indirect 

-1 

Operation: 

UNDYKER raises the semaphore variable SEMA by one. If the 

value 0 is thereby obtained, UNDYKER checks to find out whether a 

queue had been opened for the semaphore variable (word 2 of the 

semaphore variable ≠ 0). If so, the semaphore variable is once more 

reduced by one, and, on the first execution of the UNDYKER call, the 

priority with which the call was made is calculated and entered in 

the second parameter cell. The first entry is then taken from the 

queue, its priority (calculated by DYKER) fetched and the difference 

in priority from UNDYKER call calculated. Depending on the result, 

the last subroutine in the DYKER call address list is arranged in 

a software request queue, or the last but one or last but two 
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subroutine is started, after the priority has been suitably raised. 

Starting in such a case takes place in the following way: the address 

immediately following the last parameter of the DYKES call is input 

in the first entry of the subroutine concerned and a jump is made 

to entry 2 of the subroutine. 

If the priority was raised in UNDYKER, it must be lowered 

once more by DBK in the subroutine (the DYKER call HILEVEL in the 

example). 

A program arranged in a software request queue is not arranged 

for the second time by the queue handler until its first entry has the 

content 0. For this reason, this transfer entry is erased in the 

subroutine SAMLEVEL (= LOLEVEL). 

UNDYKER enables the API and PI. 

5.2.4.3 ACΤIV 

Call: 

ISA+10 

IOF 
JMS* ACTIV 
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.GLOBL ACTIV 

JMP .+6 

SEQAD .DSA SEQ /ADDRESS OF SEQUENCE TO BE STARTED 

-1 /PRIORITY ENTRY UNIT 

.DSA HILEVEL 

.DSA SAMLEVEL 

.DSA LOLEVEL 

with 

HILEVEL 0 

JMS SAMLEVEL 

DBK 

JMP* HILEVEL 

SAMLEVEL 0 

JMS* SEQAD 

JMP* SAMLEVEL 

LOLEVEL =SAMLEVEL 

and 

SEQ 0 

JMP .+2 

5 /PRIORITY 5 

JMS SR /FIRST SSR IN THE SEQUENCE 

JMP* SEQ 
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Method of operation: 

Like UEDYKER, ACTIV establishes whether the priority of 

the sequence SEQ to be activated is higher, the same or lower. 

Again, like UNDYKER, it ensures the start of the corresponding subroutine 

(HILEVEL, SAMLEVEL or LOLEVEL) from the call address list. A DBK 

must be made in HILEVEL. The sequence (SEQ in the example) must carry 

the entry of its priority at the prescribed place in its head. 

ACTIV enables the API and PI. 

5.2.4.4 ASSISE 

Call (example): 

ISA+10 

IOF 

JMS* ASSIGN 

.GLOBL ASSIGN 

.DSA SEMA /+4000000, IF INDIRECT 

3 /ALLOCATED VALUE 

Method of operation: 

ASSIGN enters the value given as a parameter in the call 

into the first word of the semaphore variable SEMA and erases the 
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second word of the semaphore variable. The indication of any possible 

Dyke queue is thereby erased (the indications to the next unit in 

each unit of the waiting list chain are erased or transcribed by 

DYKER when a fresh entry is made). 

ASSIGN enables the API and PI. 

5.3 Reducing program CUSORT 

The program CUSORT abbreviates programs containing 

subroutines called once only by setting in order the sequences 

of instructions in the subroutines instead of their calls. In doing 

so, it uses the listing of the translated program as a basis. 

In addition, all lines which have not directly generated a code in 

the listing (macro-definitions) are erased. 

The source programs generated by CUSORT can be translated 
without error if the following rules have been observed in the original 
program: 

1) Non-executable statements must be in a line together 

with an executable statement (e.g. .GLOBL NAME; ONE = 1). 

2) Each subroutine may contain only one return instruction, 

which should be at the end of it. 
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3) Labels may not be placed in front of subroutine returns: 

instead of 

END JMP* SUBROU 

the program should read 

END=. 

JMP* SUBROU 

4) No instruction within the subroutine may refer to the 

subroutine itself (e.g. LAC* SR) 

CUSORT uses the following .DAT SLOTS: 

1 Error messages 

2 Operating inputs 

3 Input (listing) 

4 Output (new source program) 

After starting, the program requires a program name 

(LST is accepted as an extension). 

Error messages: 

BUFFEROVERFLOW the program to be read in is too long. 

FILE LST NOT FOUND the listing of the program given has not been found. 

In both cases, a different program name is requested. 



- 93 -

READ ERROR an error in input. The incorrect line 

is issued and can be corrected (input of 

the new line via the operating teleprinter) 

or accepted (input of (CARRIAGE RETURN)). 

5.4 Parameter handler PARHAN 

With the aid of PARHAN, integers and real numbers can be 

given as output or input in decimal form via the teleprinter (and 

can thus be checked and changed). This rives single and double 

precision and any data field length. 

Let it be assumed that the names of the parameters and 

parameter fields of a user program a list to which 

PARHAN has access. The further organization is as follows: In his 

program the user calls program PARHAN and checks the initial 

address of the parameter list: 

PRG 

JMS* PARHAN; .GLOBL PARHAN 

JMP .+2 
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.DSA PARALI 
∙ 
∙ 

JMP* PRG 

The form of the parameter list is: 

PARALI N 

ΝΑΜE1 

NAME2 

Here, N is the number of parameters or parameter fields in 

the list. In the case of the ith parameter, the parameter description 

and value (or the parameter values in the case of fields) are to be 

found in NAME1 and the following lines: 

NAME1 VALUE1 

200000 

0 

.ASCII "DESCRIPTION" <15> 
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VALUE1 600002 

0 

0 

0 

0 

0 

0 

The length of the parameter field is given on the right in 

VALUE1. The significance of the bit positions 0 and 1 is: 

00 : integer 

01 : integer double precision 

10 : real 

11 : real double precision 

600002 typifies, for instance, a parameter field of two 

real numbers of double precision. The parameter value (or the values 

in the case of fields) in the dual representation within the PDP-9 is 

stored in units VALUE+1 et.seq. This representation is in the form: 

a) integer: 

01 17 
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Bit 0 contains the sign (0 = plus, 1 = minus). 

The absolute value of the integer number is stored on the right in 

the remaining 17 bits. Thus -131071 ≤ integer number ≤ +131071 

(maximum 7 places). 

b) double precision integer: 

1st word 01 17 

2nd word 0 17 

Bit 0 in the first word contains the sign, and the remaining 
35 bits the absolutp value of the integer number. 

-235+1 ≤ integer number ≤ +235-1 (maximum 12 places). 

c) real: 

1st word 0 89 17 
exponent mantissa 

2nd word 01 17 
mantissa 

Sits 0 to 8 of the first word contain the 2-complenent of 

the exponent, and bit 0 of the second the sign of the mantissa. 
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The mantissa is found in the remaining 26 bits (beginning with bit 1 

of the second word and ending with bit 17 of the first one). Here, 

the mantissa is in the "normalized" form, i.e. for a number ≠ 0, 

there is always a 1 in bit 1 of the second word. 

The method of writing is as in FORTRAN: 

±0.123456E±12, i.e. 6 places after the decimal point are accurate 

(maximum 13 places). 

d) double precision real: 

1st word 0 17 
exponent 

2nd word 01 17 
mantissa 

3rd word 0 17 
mantissa 

The first word stores the 2-complement of the exponent and 

bit 0 of the second word the sign of the mantissa. The remaining 

35 bits contain the mantissa in normalized form. Method of writing: 

±0.123456789D±12, i.e. 9 places are accurate (maximum 16 places). 
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Care must be taken on the input of parameter values to ensure 

that no more places are used than given above, and that, in the case 

of real numbers, the form 

±0.___E±__ 

or 

±0.___D±__ 

is chosen. 

After the jump to PARHAN, the description of the first 

parameter in the list and its value are printed out. The input of 

(RETURN) leaves the value unaltered and permits the issue of the 

next parameter vith description and value (or the next parameter 

value in the case of a field). If the input is a value (followed 

by RETURN or ALT MODE), PARHAN checks for format errors (but not 

all of them!), e.g. the number of places, the size of the numbers, 

and the correct method of writing (in the case of real numbers) etc. 

If an error message is given, PARHAN waits for a fresh input until 

the value is accepted. The input of the symbol ALT MODS (alone or 

after the input word) causes a return to the calling program PRG. 

5.5 Standardization of the names of program labels 

It has been found an advantage to apply a standard system, 

indicating the function carried out, to the names of entry points 
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into the programs» Since, with the PDP-9, program labels may consist 

of a maximum of 6 alphanumeric symbols, the first one always being a 

letter, the following standard was laid down: 

The final symbol in the name indicates the function of the 

part of the program: 

A START 

C CLOSE 

F FINISH 

G GET 

I INIT 

O STOP 

Ρ PUT 

R READ 

W WRITE 

All other letters and figures may be used as desired. 

The one or two-figure program number is given before the close symbol. 

The program itself is designated by the (up to) three initial symbols, 

the last of which must be a letter. E.g. MCA1I is the INIT call of 

multi-channel program MCΑ No.1. 
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Fig. 2 
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Fig. 3 



- 104 -

Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 11 Preassembler monitor (same parameters as in fig. 12). 
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Fig. 12 Example of preassembler 
dialogue input. All 
symbols to the right of 
> are supplied by the 
user. 
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Fig. 13 
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Fig. 14 


