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Summary

The report contains a description, arranged in the same format
as a manual, of the fundamental cqnsiderations upon which our modular
system for programming computer controlled nuclear physics experiments
is based. A program written with this system consists of subroutine calls
interconnected by standard routines (macro-instructions), some of which
may also consist of standard routines. Calls and standard routines are
put into their actual form by a preassembler which assembles parameters
given in dialogue by the user into prefabricated code units. One unit
of a formalized language and a special flow-chart symbol represents each
standard part, and hence the programs can be represented in both language
and flow-chart form. Both representations can easily be derived from the

parameters to be communicated to the preassembler.

The description of the programming system is supplemented by

descriptions and instructions for the use of important service routines.



Contents

- -

1. Introduction

2., "Modular system" problem analysis

2.1
2.2
2.3
2.4

2.5

Modular systems

The size of the modules

Interconnection of modules

Representation of modular interconnections

Modular programming systems

3. Program structures

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

Interrupt-controlled programs

The strategy of the allocation of priorities
The structure of nuclear physics data reduction
The structure of steps in data processing

The structure of programs for the operation of
devices

Synchronization problems

Program interconnections and their representa-
tion

Summary of part 3

modular programming system for the PDP-9

4.1
4.2
4.3

4.4
4.5

4-6

The form of the interrupt handling routines
Preparing for interrupt handling

Advantages and drawbacks of nesting the %ub-
routines

"Waiting"

The construction of a modular programmin
com%lex

Representation of the program complexes

=

o o O AN

1k

16

18

19

2l

23

L 23

23
26

28

. 30

31

33



4.7 Descri
4.7.1 Ge
4,7.1,

4.7.1.
4.7.1.

4.7.2
4.7.3
4.7.4
4.75
4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16

4.7.16.1 Declaration of a semaphore variable SEM

4.7.
4.7,
4.7,
4.7.
4.7.
4.7.

- vi -

ption of the standard subroutines (SSR)

neral

1 Indirect parameter transfer; §lob%l
paFameters

2 Declaration of data fields

3 Instruction input

Program serialization P
Indirect jump-out J
Parameter transfer N
Print M
Lower priority (request level) R
Raise priority L
Gate G
Switch S
Decode instruction D
Declaration of program label M
Declare global parameter GLOBL
Declare internal buffers BUF
Save and restore parameters SAV

And-interconnection A

S3R's for coordinating sequential processes

16.2 Sequence declaration SEQ
16.3 Activate call ACT

16.4 Assign statement ASS
16.5 Dyke call DYK

16.6 Undyke call UDY

16.7 Activating cyclic processes

3L
34

36
37
38
39
Lo
L1

Ll

bo
42
43
43
L
ks
46
46
L7
48
Lo
50
50
51
52
52
53
54



- vii -.

4.7.17 Input of any texts TEXT

4.7.18 Call C...

4.7.19 END of a seguence EX

4.7.20 Jump to

external address E

4.8 Example: multi-channel program

4.9 Reduction of

programs consisting of SSR's

5. Appendix: Program description and instructions for use

5.1 Preassembler and program generator

5.1.1 The
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.1.6
5.1.1.7
5.1.1.8

5.1.1.9

preassembler

Purpose

Method of operation

Separator

Completion of parameter input
Input and output devices
Program file

Operation

Names of parameter lists

Error correction

5.1.1.10 Phase errors

5.1.1.11 Erroneous SSR type designation

5.1.2 Writing the SSR library

5.1.2.1

Library name

5.1.2.2 The configuration of the SSR library

5.1.2.3%
5.1.2.4

5.1.2.5

5.1.3 The

Check codes
The use of macro-instructions

The indication of errors in th?igggry

program generator

55
55
' 56

57
58
65

67
67
67
67
68
68
69
69
TO

Tl

T3
T3
Th
75
5
75
75
T
T8

78

79



- viii -

5.2 Executive : - 80
5.2.1 Instruction decoding ERSTnn 80
5.2.2 Supervisor ORG 81
5.2.3 Queue handler SORQnn and SORAnn 82
5.2.4 Synchronization program DIJKST 83

5.2.4,1 DYKER 83
5.2.4.2 UNDYKER 87
5.2.4.3 ACTIV | 88
5.2.4.4 ASSIGN 30

5.3 Reducing program CUSORT 91

5.4 Parameter handler PARHAN | 93

5.5 Standardization of the names of program labels 98

Bibliography , 100

Figures 101



1, Introduction

The spur to the programme of research on "The Structural
Analysis of Nuclear Physics Experiments' was given by the fact that
it was recognized as impossible to control nuclear physics experiments
satisfactorily by means of process computers if the language of the
assembler is to be used as the sole basis for programming. Assembler
programming is too time-consuming and liable to error to make a usable
tool for experiment programming., Attempis therefore had to be made to
create a system of sub-programs allowing flexible programming with
existing units. The intended aim of the structural analysis was to give
clear indications as to which units were needed for a modular system and -

also, if possible, to develop the basic features of such asysten.

One essential factor which had to be borne in mind when the
exercise was begun wags that there is no problem-~oriented language
available for programming nuclear physics experiments and, in the present
state of the computer art, it was quite possible that the prospects of
creating such a language were not very bright. The reason for this,
in fact, was that the program compiled for experiments would probably
be too inefficient (i.e. too long and too slow) quite apart from the

fact that formulation and the construction of compilers went far beyond
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the scope of our research programme, Attempts were therefore first
made to develop a modular program system not based on a special,
problem-oriented language, The basic premise for the attempt to
develop the required modular system in parallel with the structural
analysis was that the structural analysis of computer-—controlled
experiments can effectively be carried out only with the aid of programs.
Here, we hope we have succeeded in finding acceptable detail solutions.
Meanwhile, we have also become convinced that it is only by means of
a problem-oriented language that the mroblem of programming experiments

can be finally solved.

The present report is divided into four parts. The first
and second parts set out general basic concepts, while the third
describes the special methods devised for use with a particular
computer (the PDP-9)., Detailed program descriptions and instructions

for use will be found in part four,

2. "lodular System" problem analysis

2,1 Modular systems

For our purposes, the best definition of the term "modular"
is "capable of assembly in a variety of ways from component parts".
Txamples of modular systems include construction kits (e.g. of the

"leccano" type), languages (in which words are the modules) and
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words (in which letters are the modules). A more accurate definition

of the expression '"modular system" would be: "a collection of
components which can be divided up into I differgnt types is modular

if any number of components of all kinds can be combined to form logical

complexes of any size'.

2.2 The size of the modules

The lower limit to the size of the modules into which a
complex can be broken down is given by natural factors (the bit as the
smallest possible module in a computer program, or the alpha-numerical
symbol as the smallest module of a language). It is often useful to
combine these smallest units indto larger modules (e.g. to combine lettvers
to form words). Such a combination may be carried out in several stages

(bit -— computer word -- micro-instruciion =-- subroutine).

In general, it is true to say that:

the smaller the module in relation to thie whole complexes,
the more flexible the construction:
the harder it is to grasp the representation of the conplexes;
the fewer different types of modules are recuired;

and,

the larger the module,
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the easier It 1s to grasp the representation of the complexes;
the more specific the properties of the modules;

the less flexible they are in use;

the wider the variéty of modules required,

Where, therefore, large modules are used for the sake of
clarity, a good compromise is reached by also using the type of module

from which the large ones are built up (intercomnecting procedure calls

by statements).

2.3 Interconnection of modules

The most important factors in a modular system are the rules
by which the modules are interconnected to form entire complexes,
These rules determine the structure of the points of intersection between
the modules and vice versa (a procedure definition with pseudo-variables
defines the point of intersection of program and procedure, while the
rule for the procedure call follows from the definition of this point
of intersection). The more complicated such points, the more complicated
the interconnection rules. For this reason, the points of intersection
should be determined in the simplest possible way. In addition, the way
in which the modules are interconnected to form complexes must thereafter

be borne in mind when stating rules.
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2.4 Representation of modular interconnections

There are two methods of representing a complex formed by
the interconnection of modules, viz:.
1) graphic

By "graphic representation" is meant any representation
consisting solely of drawn symbols and where no connection is indicated
excent by graphical means. 3Such a representation, therefore, should in
theory be completely comprehensible without the need for any additional

alpha-numeric symbols.
2) description by language

A mixture of both methods (the flow-chart) is frequently used.
Where linguistic means are used to describe a2 complex built

up from mcdules, the desired significance and clarity can usually be

attained only by the use of a formalized artificial language-

A modular complex can be properly illustrated only by a
full-scale represenitation (block diacrams of circuits msde up of
digital uniss, ATCOL programs). It is often useful to have both a
craphic representation and one expressed in s forﬁalized lan~uage
(digital circuits reduced with the aid of Boolean algebra). “he
advantage of the graphic nethods is that relationships and connections

become clearer in a two-~dimensional representation., Their linitations



-6 -

appear in the illustration of complexes consisting of a very large
number of individual modules., Dividing the drawing into several
sheets tends to make it difficult to grasp. The only remedy is to

break down the complex into super-modules (theoretical circuit diagrams).

Where module complexes are described with the aid of a
formalized langvage;,the unidimensional nature of the medium makes it
necessary to cast the language in such a way that structures are made
clear from the linguistic description. It is only by means of
language that multi-dimensional structures can be adeguately described

(the parallel operation of cyclic nrograms).

2.5 llodular programming systiems

The most easily learned, most flexible ond hence best solution
to the problem of creating a modular programmins system for nuclear
physics experiments is derived from the analysis of the problem and
is, in fact, the problem~oriented language. However, its formulation
and the construction of a compiler to translate the programs written

in the language into machine code involves a great deal of work.

It is somewhat simpler to break the experiments down into

processes common to the largest possible number of experiments and to
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write programs for these processes at the assembler level. That the
experiments investigated can be broken down in this wey was denonstrated

304)

in two research reports The sub-programs must be put together

to form the program for an actual experiment.

The sub-programs may be written either as macro-instructions
into which the parameters are inserted with the aid of macro~calls
on assembly, or as subroutines into which the parameters are transferred
from the parameter lists of the subroutine calls during the program
run, Programming with subroutines is more rational if the same

sub-programs are used several times in the same experiment with

different sets of parameters.

Txperience has shown that an experiment program cannot
be composed purely of subroutine calls of existing sub-programs, but
that standard sequences of instructions, precfersbly combined to form

macro-instructions, must exist to linlt the sub-prograns,

The drawback of such & programming system is thait it is
very much more unwieldy ond liable to error than o problen-oriented
lansuage. Both faults are due to the fact that errors resarding the

significance, sequence and number of parametcers can easily arise in
o b .
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composing the lists of parameters for the subroutine calls and macro-
calls, and such errors are difficult to detect. For this reason, the
inexperienced user will find such a system manageable only if he has
the support of special auxiliary programs when composing his own

programs.

3. Program Structures

3.1 Interrupt-controlled programs

Unlike off-line computer programs which, when once started,
run in a predetermined way, on-line, control and data processing programs
consist of a number of routines, each activated by device flags
(interrupts). Since interrupts must often be processed as rapidly as
possible, important ones can interrupt the running processing of
another call, which is not contimued until the computer has reacted

to the more important one.

The importance of messages, and hence the degree to which
their processing routines can be interrupted, is allowed for by the
allocation of priorities, A message with a given priority can interrupt
only those routines with a lower prioriiy, and it can, in turn, itself

be interrupted only by messages with a higher priority. The processing
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of messages can also be broken dovn into parts with different priorities.
A higher-priority part can require the computer to process another part

with a lower priority. Thus, the computer takes note of the problem

and deals with it later after all higher-priority routines are finished.

The structure of an on-~line control program becomes clearer

if it is divided into sequential processes. Here, a sequential process
proper should be a cycle in which the individual steps follow one

another in a fixed time~order dictated by the program. Such a sequential
process, for instence, might consist of the cycle: read-in magnet

tape; process data read-in magnet; output of results on teleprinter. In this
example, the magnetic tape control peripheral device is first activated

by the processor. The end of data transmiséionAis signalled by an

interrupt to the processor, which then processes the data and finally

activates the teleprinter output, so that the process is dealt with
further by the teleprinter. A closer look at thk cycle shows that,
for instance, during the input from the magnetic tape, the peripheral
device does not operate slone, but that this first step consists of

s series of conirol instructions from the processor, their execution
by the external device, the acknowledgement of their executlon by
means of an interrupt, and thus the activation of fresh control

instruction sequences by the processor. All the operations in this
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interplay between exiternal devices and the processor follow one

another, but in a rigidly fixed order.

Several of these sequential processes generally run in
parallel in the actual experiment. ZEach process attempts to make use of
an operéting component in the processor/external device system.
Provided that the timing of such attempts does not actually conflict,
the processes can, in fact, run parallel. to one another., If two
processes need to use the same component simultaneously, an
executive must decide, on the basis of the allocated priorities, which
process is to be allowed 1o take ﬁlace first, while the other is put
on stand-by until the component can be allocated to it. If a process
is using the central processor, it is withdrawn immediately if a
process with a higher priority alsoc wants to use that component.

The processor thus operates alternately for all parallel sequential
processes. A lower-priority process has its turn when all
higher-priority processes are occupied by external operations.,

It is, in fact, impossible to forecast the way in which individual
processes will be delayéd in this way. The time-sequence of
narallel-running calculations and checks cannot, of course, be
completely arbitrary. The reaction encompassing two different

messages, for instance, cannot take place until both have been
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received. Thus, i1t must be possible to co-ordinate in time and

synchronize the processes running virtually parallel.

The computer will frequently not be concerned with the
processing of interrupts; there will be pauses during which the
computer is either awaiting fresh calls or dealing with some back-
ground program not belonging to the experiment at all., ‘‘he programmer's
problem is to ensure that the times during which the computer is

not doing any useful work are kept to the minimum.

3.2 The strategy of the allocation of priorities

Interrupts may be divided into two types for the purposes

of allocating priorities to the individual interrupt operating

programs, viz:-

1) Interrupts from devices which the computer cannot control
in suck a way as to be able to determine the frequency of the
interrunss (alarms), and those spec?fying the beginning of a
mechanical process (the indication that the magnetic tape is in
position and ready for data transfer). In such cases, the interrupts

must be fully processed within spvecific times.
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2) Interrupts from devices where the computer controls
their frequency and where they do not have to be processed completely

within specific times.

The time condition for the first type can be fulfilled
only by the allocation of a suitably high priority, whereas with
the second,. the priorities can be allocated in such a way that the

computer is used as efficiently as possible.

The computer should react as rapidly as possible to an

alarm, which should therefore be allocated a high priority.

The data from experimental equipment in nuclear physics
experiments is often statistically> distributed in time. The devices
cannot make any further measurements until the last measured wvalue
has been read out. Since each measured value is coupled to a
discrete event, the faster results are output, the fewer events are
lost. For this reason, such output routines, too, should be given

a high priority.

Otherwise, the allocation of priorities is a means of

obtaining virtually parallel operation and thus of making full use of
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the computer (this aspect is often overlooked in discussions on
priorities). If peripheral devices can run out of synchronism with
the computer and hence truly parallel to the processor, they should
be activated and operated at a higher priority to avoid unnecessary
waiting times in thelr parallel work., It is a logical consequence
of the observation of this principle‘that the slower a ﬁechanical device

is the higher the prioroty at which it should be operated.

Priorities should be allocated to evaluation routines
in such a way that the times during which the computer is not usefully
enployed are as short as possible. An example is given in the next

section.

An operation divided into quasi-parallel parts is not,
of course, completed until all the parts have been finighed, including
the one with the lowest priority. Therefore where two different
operations divided into quasi-parallel parts are processed, the
lowest priority occurring in them dictates which is to be completed

first, i.e. which one has the higher "total priority".
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3.3 The structure of nuclear physics data reduction

The salient feature of nuclear physics experiments is that
the data provided by the equipment must almost invariably be
evaluated statistically., Here, a very large quantity of primary
data must be investigated, which must be very considerably reduced
on the way from primary data to final result. In addition, it is
often impossible to process intermediate results further until
there are enough of them available., Freaquently, therefore, it is
necessary and usually highly desirable to divide the data processing
cyele into individual steps. ‘These individual steps generally
involve the output from a buffer 5f a number of input data from
which a smaller number of results data are obitained. These are
then written into another buffer, there being no analytical connection
between the two quantities of data (e.g. the sorting of data to form
a spectrum). The complete process consigts of a "chain" of such
steps, each one using the input buffer of the nreceding step as

its outnut buffer.

The effect of this great reduction in the quantity of data
is to reduce the frequency with which a step in ithe processing
chain is used, assuming roushly the same length for all the

intermediate result buffer stores. A given processing step will, then,
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be used at time intervals which become longer, the further back the step

is in the chain. The computer can do other work during such intervals.

Besically, all steps which do not alter any common data
simultaneously can operaté in narallel., i here every sten has &
common buffer with the step immediately following and one with the
immediately preceding, it may not operate in paraliel with these
steps, although it may well do so with others. “wo successive

steps mny operate in parallel only if they have two otuffers which
are always alternately filled snd cmpiied [nliemnnting brffers).
Where less data are passed to the computer, giving an excess

of unused time, the machine is most efficiently used if the less

frecuent ssevs are dealt with in the intervals vetween tie Trecuent

ones, l.e. when the former cen be interrupited by ithe laiters 7o
this end, the less oTften the steps are used in the nrccesging chein,

the lower their priorities mus?t be.

"here nore data z2re offered to tle computer thon 1t has
time %o process, there 1o guile obviously no point in tronslerring

them all. Such transfer can be prevented by assigning vriorities

precigely the reverse order to that in tne vrecedins exzmple,
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for example by giving input and the most frequent processed steps the
lowest priorities. In such a cases; however, the intervals beiween
the use of the most frequent steps cannot be filled and the computer

stands idle during these timeé.

The transfer of too.ﬁuch data is prevented in the first
priority allocation system by blocking the input to each intermediate
result buffer store after it has overflowed until it is emptied
once more. This gives a system in which the computer is automatically
supplied with as nuch data as it can process, and is therefore used
to the best advantage., Here too, of course, the overall priority of

the processing cycle is the lowest one obtaining in it.

3.4 The structure of the steps in data processing

The structure of the individual steps in a nuclear physics
data reduction program ls derived from the way, described in the

previous section, in which the siteps operate virtuzlly in parallel.

During each data processing step, data (or parameters)
are read out from one or more input buffers and written into one

or more output buffers. Once an input buffer is full, the write
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program must be halted and the next component in the processing
chain must process all the information into the buffer forming its
output store. Only then can the previous step be continued.
In such a case, all the pointers to the output buffer may remain
unchanged, but those of the input buffer must be reset. This is
best done by a write call to the halted step in the program, with

which the output buffer address is provided as a parameter.

If, however, the output buffer cammot be filled from the
input stores by the processing of the data, the pointers to the
output buffers may remain unchanged until a fresh read call indicates

a filled input buffer.

It is useful, thereforg, for a data processing step to
receive the same number of read and wrlite requests as there are
input and output buffers in simultaneous use. Data transfer,
accompanied at the same time by data processing, does not begin
until all read and write requests have been modes, The transfer cycle
is stopped when an output buffer overflows, and can be continued
only on receipt of the appropriate write request, just as the work
is continued by a fresh read request after a buffer has been

emptied.
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The way in which a data processing cycle is to be finally
ended remains to be explained, For this purpose, all buffers
containing intermediate results should be emptied by the processing
of these results. Therefore, every program step must have a request
(finish) which, when given, simulates an output buffer overflow, so
that the subsequent steps in processing are activated. Obviously
the parts of the program then being read out must be informed of the
extent to which tke buffers have been filled. This is done by
stipulating that each write program enters the number of data input
under a buffer header before indicating an overflow, and that each

read program refers to these headers.

3.5 The structure of programs for the operation of devices

Peripheral devices transfer data from data carriers into
the computer or vice versa., ieal date carriers, like punched or
magnetic tape,supply limited quantities of data, whereas measuring
instruments may be regarded as data readers from imaginary data
carriers of infinite capacity. The same cycle takes place as in a

processing step. Data is read from peripheral carriers and

written into a buffer region in the core store, or vice versa,.
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Traditionally, writing into the buffer inside the computer
is actuated by a read call, just as reading out of it is trigszered
by "write'". Ieading out of the data .carrier is aptuated by instructions
like "seel data'", while, in data-orienited media, "close data! is
equivalent to "finish",

As in the processing steps, the data are actually transferred

~

only if both th:z ®ead and write requests for the two data stores,

the carrier and core, have been made.

There are control commands, e.7. "stort" and "stop", in
experimental devices, in addition to the instructions initializing

data transfer, as well as instructions ("init" and "close") enebling

and disabling the interrupts of the devices.

3.6 Synchronizstion problems

“he two previous sections may be summarized in the following

It is easy to divide an experiment progran up into ports
carrying out one step in d=ta reduction or in the inpui or output
processes. nach of these parts has various inputs. 7The calls 1o

- PRR

them must be made in a2 given order and, within the parts, operate
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processes which are controlled by interrogating flags. Any further
subdivision is prevented by the fact that the indicators and

flags are common to the processes within the parts, a factor which
renders it essential for such structures with several calls to be

combined into units.

It has already been pointed out that quasi-parallel
working is impossible without synchronization. Steps must be taken,
for example, to ensure that two parallel processes never operate
simultaneously when one of them writes into and the other reads out
from one and the same buffer., This can clearly be ensured only by
setting and interrogating flags common to both processes. It is
possible, basically, to take out from both processes those parts
which have common synchronization flags and pall them an independent
part of the program which takes over the Jjob of synchronizstion.
The flags then become internally declared variables of such a
synchronization section. Sub-programs are thus produced which, for
exanmple, control the filling and emptying of an alternating buffer

store (alternating buffer program).

An alternating buffer program must have at least four

inputs through which it calls other parts of the program,
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i.es £ill buffer 1, £ill buffer 2, empty buffer 1, empty buffer 2.
It must also have four outputs indicating that the called programs
have completed their tasks., It is -quite likely that the connection
of synchronization programs to processimg programs and vice versa
could give rise to highly complicated structures which, where the
scope of tasks becomes wider, would rapidly become impossible to
grasp., After a brief series of tests, therefore, the method of
synchronization employing specially written sub-programs was rejected
as impracticable.

1)

Instead, a proposal made by DIJKSTRA was adopted.

Here, synchronization is effected by means of operations changing the
indicator variabtles (semaphores) common to several sub-programs
running virtually in parallel. The semaphore operations are described
in section 4.7.16., It will merely be meﬁtioned here that the

various parallel-running sub-programs must be interlinked by

common variables.

3.7 Program interconnections and their representation

The simplest method of interconnectiing two programs is
by means of jumps from one to the other. It can, moreover, readily

be represented purely graphically, on flow-charts. Interconnections
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can also be provided, however, by the use of common variables. In
principle, this second method of intercomnnectimn can also be reduced
to program-~to-program Jjumps, but this time with the transfer of
parameters, with the varisble declared in only one program.
Simultaneously with a Jjunp, its address is transferred as a parameter
to therther program so that parameters common at run-time are
inserted into the sub~programs., This method is, however, extremely
clumsy and gives rise to very complicated systems which are difficult
to grasp, since the parameters must be inserted in the programs and
oiften even passed on from vprogram to program before ever the actual

computing process can be started.’

It is better, therefore, to insert the names of variables
into the sub-programs before assembly. This does mean, however, that
the sub-programs must be interconnected by lanpuage units (variable
nomes), that therefore the interconnections cen no longex be
represented purely graphicolly and that it would thus be logical
to describe the entire program, in all its intercomnections, by
linguistic means. lNevertheless, because graphic symbols often give
o more instructive rcoresentation than linguistic ones, a mixed
systen should be created in which the graphic symbols are partly

supplemented by language units (nomes).
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Z.8 Summary of part 3.

To summarize, then, it may be said that it should be a
simple matter to subdivide programs for on-line data processing
and checking in nuclear physics experiments into sub-programs.
The interconnections between the modular sub-programs are such that
they cannot be represented by graphic symbols alone. A nmodular
experiment program must, therefore, be described linguistically
to some extent. 7o eliminate ambiguity and to preserve neaningfulness,

the language used for such a description should be highly formalized.

4., A lModular Programming System for the PiP-9

4,1 The form of the interrupt handling routines

It has already been said that an on-line program for
checking a nuclear physics experiment consists entirely of interrunt
handling routines. The interrupts bring about calls to the device
handlers from which a further call is then made of devices by calls

to device handlers, giving rise again to new interrupts.

Vhen an interrupt occurs, the contents of all registers

f

used by the interrupt handlins routine must first be saved, and ihey

are once more resiored vefore returning to the interrupted nrogram.
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If several devices are connected to an interrupt channel, the computer
must first decide which device or devices caused the interrupt.

I+t codes the hardware interrupt into logical interruptss. Fach of the

latter has its own processing routine, and they are processed in

succession.

Saving and restoring the register, and coding the hardware
interrupts are standard processes which should be carried out, not by
the user program, but by a standard executive, The interrupts are
then processed partly by the executive and partly by the user program.
Bach logical interrupt causes a call from the executive to a part
of the user program., Once this part hes been processed, a return

must be made to the executive.

There are two alternmative methods of producing a return

to0 the executive, viz:=-

1) A jump is made to a given address in the executive.
This implies that there is a definite division between the executive

and user Progralie
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2) The jump from the executive to the user program is made

by swebroutine calls and the reverse by returns.

In a modular system, the interrupt processing system in
the user program is made up of individual units. There are two

ways of making it up, viz:-

a) The individual units of their calls are written one after

the other and are thus passed through in succession.

Ly

b) The individual units or their calls represent formal

subroutines. Iach one jumps to the next at each subroutine call;

subroutines are nested.

In the case of combination l-a the sequence of the
individual units mus+t be completed by a return (exit) into the executive.
With combination 2-a ti:e sequence of the individual units must be
integral with a subroutine. After the innermost subroutine has
been processed, the subroutine returns in combination 2-b take
place in the opposite order to the subroutine calls and lead back to the

executive. Combination 1-b is pointless.
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In combination 2-b, the borderline beiween executive and
user program is ill-defined, whereas there is a clear distinction
between the two in combinations l-a and 2-a., With the latter iwo,
therefore, a decision must be taken on whether device handlers are
to be congidered part of the user program or the executive, while

such a differentiation is unnecessary in the case of 2-b.

4,2 Preparing for interrupt handling

The handling of a logical interrupt must be indicated to
the executive by informing it of the connecting address for interrupt
handling in the user program. Thﬁs is often impliecitly included in
programming systems at assembler level by a wait call, so that the
user program is continued with the instruction following the wait
call on encountering the logical interrupt. Providing the connecting
address on the actuation of the external device operation ended by

the logical interrupt is an alternative herec.

The connecting address can be transferred by means of a
subroutine call in which it is one of the parameters to be communicated.
Such a method gives the following sequence: The user program activates

an external device by callin: the device hondler and gives as a
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parameter the point in the user progrem to which the handlexr is to
jump when the end of the operation is signalled by a logical

interrupt. In its turn, the device handler calls the hrordware
interrupt decoding program and informs it of the address in the

device handler to which a jump should be made once the interrupt has
been decoded., Trom the point of view of the user program, preparastion
for the processing of the interrunt takes place in nested subroutines.
Which of the nested subroutines is considered still part of the user
progran or already part of the eXecutive is immaterial. This method
of preparing for interrupits, used together with form 2-b (section 4.1)

of the interrupt handlers, taokes place in the following wey (fig. 1.).:-

in external device operation is initiated by a subroutine
call of the device handler irn which the connecting address is one of

the parameters. This connecting address nmust be that of a part of a

m

progran in the foxm of a subroutine. £ subroutine call is used ii
jump is made from this part of a progrom to a further sub-part,
e.7s to0 a sub-program of a modular system. Here, pre-~programmed
sub-programs are informed of their continuation address as a parameter
when ihe call is mede in exactly the same manner as ine device
handlers. Of courge, the continuation address here, too, is that of

a formal subroutine. 7he logical interrupt, by means of which the
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extérnal device signals the end of its work, causes the nested sub-
routines to bé run through until a new external device operétion is
activated or the machine must wait for the execution of another
quasi-parallel operation, or until the work is finished. The new
external device operation 1s once more activated by a subroutine call
with the connecting address as a parameter. The wait is brought about
by a subroutine call which interrogates & memory variable (see 4.7.16.5).
In neither case is a direct jump into a new subroutine made, and
thus the return to the executive takes place from these innermost
subroutines through the subroutine return sequence. If the sequence
of nested subroutines is not ended .with a wait or external device call,
the innermost subroutine to be used must be one consisting of only one

subroutine return (EXIT).

4.3 Advantages and drawbacks of nesting the subroutines

It has already been shown that the borderline between the
user program and the executive disappears in this cycle where parts
of the executive and theAdevice handler and user programs are nested
as éubroutines. If it is decided to call everything which need not
be programmed by the user the executive, the latter can be extended at
any time by a process of logical nesting, involving the once~for-all

addition of the part written by the user. In the first stage, for
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example, the executive may be extended by an ADC handler which, in its
turn, will form the nucleus for a muliti-channel progrem already containing
simple data reduction routines. If ﬁhis collection is also considered
part of the executive, the extended execuiive additionally includes

an external multi-channel device called in the same nanner as the other
external devices and indicating back to the user when its work is

finished by means of a logical interrupt,

The number of logical interrupts which the user program can
await is not limited by the features of the system. Any number of
external devices may be activated simultaneously., This mezns that
any number of sequential processes can run in parallel in the user
program, their number's being unrestricted by the‘length of executive

lists.

There is o drawback to subroutine (SR) nesting in that SR calls
with their parameter transfer and also the S returns take time.
It must be possible to recall the evaluation programns repeatedly
because each of them calls a further 51 to indicate its compnletion
and can therefore also (implicitly) cali itslef, i.e. the program must be

re-entrant.
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As the executive has no means of accounting for the
sequential processes that have been started, each sequential process

can change only its own priority, not that of the other processes.

The user nust, of course, accustom himself to the fact that
he must always explicitly supply the address of the subroutine with
which his program is to be continued whenever he gives a subroutine
cell, This mincer inconvenience, however, is compensated for by the
external uniformity of external device calls with evaluation routine
calls thus achieved. The user should always bear in mind that
returns in the subroutines used sérve to provide a return to the

executive,

4.4 "Waiting"

It will frequently be impossible to complete a process
activated by an interrupt immediately if, in fact, another interrupt
or the result of a calculation must be awaited, In the second case
particularly the computer mny not remain in a wait loop but should
do useful work, e.g. finish the calculatidn of which the result is

"awelted", until receiving the event which has to be awaited.
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Processing the  interrupt must, therefore, be broken off hy the

execution of the subroutine returns of all nested subrou’’

by the interrupt is continued. Care nust also be taken to ensure
that the processing of the remainder of the interrupt is activated
by the event to be "awaited". I‘ore details on this point will be

found in the description of synchronizations (4.7.16).

4,5 The construction of a modular programming complex

The khierarchical construction of our modular system is of
the two-stage type. Its lower stage contains device handler and
evaluation program with the struciture described in sections 3.4 and
3+5« IDach consists of a number of subroutines belonging logically
together. Tor these programs to run, they must be provided with
parameters, e.7. the addresses of data fields and the continuation
address., This is effected by "calls'" which contain the subroutine
calls with parameter lists and, according to their external configuration,
also represent subroutines. The calls must also te interconnected
in order to provide a usable complex, GShort standard subroutines
(35%) which can be regarded as macro-instructions (indeed, some of
them are so defined) are used to this end. The programs are thus

called and interconnected by a higher-order program of calls and 35 's.
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It is the user's problem to insert parameters generating
the desired experiment program into the calls and the SSR's forming
the "cement" between the calls. In this he is assisted by a special
program (preassemblér, see 5.1.1) which fetches the calls and SSRk's
from a library, describes the necessary parameters to the user and
thereby requests them, checks the parameters provided by the user for
format errors and inserts them into the calls and SSR's, which can
then be assembled. The PDP=9 loading program loads the programs
appropriate to the calls at the same time as it losds the experiment

program from the library.

411 SS3t's with internal labels not appearing on the outside
are defined as macro-instructions. Here, the pararcters to be
provided by the user are inserted into the prefabricated macro-
instructions. The internal labels are generated by the assembler
on assembly and named. The remaining S37's are formed from

prefabricated sequences of instructions.

The sub-programs themselves, which are called by the calls,
are written, as far as possible, with the aid of the 333's. They
also contain sections written in assembler code., If certain rules

are observed, they may also contain mrts written in FOLRTTAN,
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Every SSR, with very few exceptions, contains one or more
subroutine calls which jump into standard parfs or calls which carry
on further. The points to which they jump represent parameters to be
inserted by the user. With every call, a jump point must be given as
a parameter, to which the called program jumps at each subroutine
call once it has completed its task. Since a jump point may also
be a call in the program with a different set of parameters,
it must be possible to recall the programs repeatedly, i.e. the program

must be re—entrant.
An experiment program made up of SSR's and calls may
be divided into super-modules which, with slight modifications, and if

suitably arranged, can also be used in other experiments.

4.6 Representation of the program complexes

It has been found that faster programming is often achieved
through a graphical representation of the SSR interconnections.
Linguistic representation is suitable in other cases, especially
for programming synchronizations. It was explained in section 3.7 that
not all the interconnections occurring in the structure of our problems
can be represented purely graphically. We therefore arranged for
series of letters (variable names) to be included in some of the

graphic symbols.
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To allow the uger to take advantgge of both methods of
representation, we have tried to develop comprehensible graphic
symbols for our standard subroutinesand also to give Yinguistic
formulations so that, depending on the actual problem involved, one
or the other method of representation, or both together, can be used
for programming. We thought it important in this connection for each basic
unit in both methods to cerrespond to a symbol or linguistic combinations,
so that either method of representation can be transformed into the
other without any special mental effort. The method used is immaterial
on the input of the parameters into the preassembler. The graphic
representation of a program need'not, therefore, be translated into the
linguistic one, but a program can be created in dialogue with the

preassembler simply on the basis of its graphic representation.

4.7 Description of the standard subroutines (SSR)

4,71 General

The first factor to be mentioned in the description of
an SSR will be its purpose, followed by an example of an excerpt
from & program writiten in the form

SSR type labels generated linguistic symbols.
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By SSR type is meant the combination of symbols which must be
passed to the preassembler so that it can search for the SSR under
this type name in its library. The -SSR has at lesst one call label
formed by the preassembler from characteristic letters (generally
the type code) and the SSR number to be provided by the programmer.
Where SSR's have several call labels, they are differentiated by the
addition of letters A, By, etc. Calls setting and resetting the

flags are labelled with the suffix .T or .F. Examples : Pl, P2,

Sla, S1B, S1C, S1.F, S1.T.

"Texts" briefly indicate the function of the SSR and
contain the parameters which must be inserted by the programmer.
Nearly all SSR's end with "go to" followed by the address of the
subroutine to which a jump must be made after the SSR has been executed,
per subroutine call. Reference is made to the graphic symbols of the
SSR, beside which the SSR flow-charts are shown in the conventional

representation.

The "texts" may be considered as language units in a
programming language. No rigid rules of syntax are imposed,
since this programming language is not translated into a computable

program by a compiler. The formulations were chosen in such a way

as to provide similarities to existing programming languages.
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The number, secquence and syntax of the parameters to be input

are determined by the indication of the S3R type. These parameters

are given in the correct order in the "texts".

For the purposes of the input of parameters into the
preaséembler, it is best to arrange the SSR's by types, their sequence
being completely arbitrary in the source program composed by the
preassembler, since then the preassembler can carry out its search
in the SS& library much more rapidly. As, however, a program arranged
by 83R types is not easily understood by another user, the program
is reduced in the course of rearrangement to indications of type and
paramefter. It is only these data, underlined in the "texts", that
are inserted into the preassembler., An additional advantage here

is that time is saved in punching the cards.

4.74lele Indirect parameter transfer; global parameters

The names of semaphore variables and data (fields) can
indirectly be transferred by the SSR or calls., In other words, the
addresses at which the parameter names cre to be found may be sgiven
ingtead of the names themselves on the input of the parameters.

In the latier process, therefore, whether the address of the name or
the name pf the parameter itself was given must be indicated by the

addition of YESindirect or ¥Oindirect.
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The names of semaphore variables and data may be declared
as global rames valid for several, separately translated programs.
They are declaredin one of the programs in which they are an internal
global address, ard nmust be indicated as global addresses in all

programs by the 33R GILOBL,
Txternal global nemes declared in another program must be

specified YESindirect, to be Transferred indirectl wren inpudt
Lo ’ ’

as parameters of SSR's and calls.

4eTele?2 Declaration of data fields

Data and parameter fields must be declared in 2o data
directory to be writton for every experiment prozram. The data
directory formally represents a progran with the name 1ATEnn, where
nn is the segment numter ir segmented programs. Tn unsemented

programnsg, nn = 1, The names of dava filelds are external addresses

for 21l progroms using them.

field nane O3 GIOT
field lernsth

field neme

is prescribed for entry in the data directory.



- 38 -

A core allocator connected with the executive divides the
core stores not occupled by programs into data fields, their lengths!
corresponding to the entry "field length" which is given as a decimal
number. The core store allocator enters the calculated initial
addresses of the data fields, under the address "field name'", in

the data directory from which they are taken by the processing programs.

When the field lengths are given, it must be remembered
that each data field must have = header into which those programs

which write~in data enter the number of data words actually inserted.

Flelds may be declared as overlapping:
The directory entry

field name 2 field name 1; .GI.0BL field name 2
5C

means that a core store area of 50 words receives the same core
store address as the previously declared field with the name
"field name 1", The data direcitory must be closed with the exit

symbol .

4.7.1.3 Instruction input

Fvery instruction consists of 2 keyword and the sctual

instruction. The keywords must be explained in a directory ADRBnn,
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The entries in the directory mist be made in the following

form:

«ASCIT

«DBA KIY; . GLORI: ¥IY

Here, K&7 is the keyword (of up to four symbols) defined as the

address in the decodings section of %he user nrosram (subroutine).

Part of the system progrom (7237nn), the first to be loaded

by the user, uses the keyword directo to fetch the address of the
J ’ J

decodins section and, with the aid of the decoding section, to fetch

the address of the subroutine to bve sterted as 2 resuls of the

instruction.

nust be entered in the leyword directory.

4.7.2 Program serianlization P

Use: activation of "parallel" - running sub-programs

with the same priority.

ETxample:
P pl go %o 3 branches: Gl.T, P6, 27 )
SSR type: P

[€]
154
o

3]
+-

¥

(@]
L]
=


file:///P3Tnn
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where nn is the segment number of segmented programs, and nn = 1
for unsegmented programs.

Label generated: pl

Execution: jumps are made to the indicated subroutines (up to 7)

in succession (fig.12).

*) Note: On the input of parameters into the preassembler, a total
of 7 branch addresses must be given, those which do not apply being

provided as dummies,

4,7.3. Indirect jump-ocut J

Use: Jjump to an address adopnted as a parameter
Txample:
d Jj1 Jump out by K1B
S35R type: N

3SR no.: 1

TLabel generated: jl

Execution: Indirect subroutine jump via address 1B, into which

oo

the jump point was written as a parameter by 550 71 (fig. 3).
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4eT7e4 Parameter transfer N

Use: transfer of parameter lists from subroutine calls,

) nl getv 5 parameters by label INIT

SS5E type: N

SSR no.: 1

Labels generated: nl; nla, nlb, nlc, nld, nle

Execution: 5 parameters are transferred, behind the last call m=ade
of subroutine INIT (only fifteen-bit addresses are pemitted as
parameters). The parameters accepted are found under addresses
nla, nlb, etc., Transfer is carried out with API and PI disabled

by 'CB or 'ODA. (figu 3).

4.7.5 Print If

Use: 1issue of messages via teleprinter,
Example:
JSEDRR)) ml print IEPUT»EERO?

SSR type: IMELD
5357 no.: 1

Label generated: M1l

Txecution: A subroutine issuing the message via a teleprinter

is added to a queue at main program level (fig. L).
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4,7.6 Lower priority (request level) R

Use: Add 2 subroutine to a lower-priority queue.

Example:
R rl request level 5 for P1
S5R type: R

Iabel generated: R1

Txecution: Subroutine P1 is added to the gueue for level 5

and started later (fig. 4).

4.7.7 Raise priority L

Use: Raising the priority.
Txamples

T 21 raise priority to level 3 and go to Pl

33% type: L

35K no.: 1

Label generated: L1

Execution: 'The priority is raised to 3 and a subroutine jump is
made to Pl, After the return from Pl, the priority iz lowered

to its original value (DEK) (fig. 5).



4.7.8. Gate G

Use:

o condition is

ilaking a continuing subroutine call only when

satisfied.

Gixemple:
G gi if gl.f do nothing else go to F1
gl.f do gl.f
gl.t undo gl.f
initiglly YB3 gl.t
351 type: G
53R no.: 1
Labels generated: gl, gl.f, gl.t

Alternatives to initial condition: ¥0O gl.t

Txecution: A flag is set or reset by jumps gl.t and gl.f.
Depending on the value of the flag, a jump to the label given

as parameter is made or rnot afier Jjump #l. (fig. 2).

4.7.9 Switch I
Use: Conditional branching
ixample:
5 sit 1f sl.f go to 21 else %o X2
sl.f do sl.f
sl.t undo sl.?F
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5 slB if sl.f go to P3 else to P4

SSR type: S

SSR no.: 1

Labels generated: sla, sl.f, sl.t (the last two only if "arm A" is
stated).

Txecution: Jumps sl.f and sl.t set and reset flag. At jumps

sla, slb, ..., branching occurs, dictated by the value of the

common flag. The "arms" are continuously indexed A, B, etc. (fig. 2).

4.7.10 Decode instruction D

Use: Starting sub-programs by means of the input of
instructions via a teleprinter. Rach instruction consists of a

keyword and the actual instruction itself.

Example;

decode with key ATLA 4 commands

S,

on command GO go to P1
on command IND go to S1lA
on commend T.0S go to S1B

on command CLOZ go to S1C

(Up to seven instructions per keyword may be set*)
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S22 type: D
Labels generated: none
Global address: keyword
*Note: The input must be parameter pairs:for seven instructions
(unused ones as dummies).
Txecution: A decodins directory is generated containing the command
word (up to four symbols) in 5/7-A5CII followed by the address

of the sub-program to be started by the user as a parameter.
The final symbol of the decoding address directory is ~1. The keywords
are also written in 5/7-i30II followed by the appropriate decoding
section addresses in a directory to be written by the user (with
the available auxiliary program). Decoding is carried out by parf
of the executive UI2Tn (n = 1y eee a8 o semment number is segmented
procrams) which cdds the subroutine address found during decoding
to 2 cueue runnirg at main program level.
"ote: The subroutine address given in the decodin~ section nusnt
contain O in order to be entered in the queue; do not, therefore,

make subroutine juips in the program (Fig. 3).

4,7.11 Declaration of prosram label W

Use: Decleration of call labels, in subroutines to be
translated separately and written by the user, as external addresses

for other parts of ithc sub-programs,
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Txmmple:

2

[=

declare label IARA = P1
SSR type: M
Program label (global cddress): MARA
“xecution: A SSR in the form
TTARA 0
« GLOBL MARA
Jis Pl

P
JIIPH* TIARA

is generated (fig. 4).

4.7.12 Declare gldobal parameter GLORL

Use: Declaratior of parameters to (internal or external)

global parameters,

Lxample:

GLOBL BUFrl, BUP2, SPEX

3SR type: GLOBL

Ixecution: The parameter names given are regarded as zlobal addresses.

4,7.13 Declare internal buffers BUF

Use: Declaration of intermediate buffers inside the program.



Example:
BUF declare BRUFFE: with 100 words

S35 type: RBUS
Buffer length: 100 (decimal)
Execution: An entry is generated which 1s the same as the entries

of the core zllocation in the data directory:

BUFTFER «DSA  ,.0013
100
«DEC;  «40013 +«BIOCK 1C0; OCT

4,714 Save and restore parameters SAV

Use: 7o obvain subroutines which can be re-entrant.
Each subroutine so written jumps a2t every subroutine call to an
SSR or call address indicated in the call to indicate.the completion
of its work.e The program may, via this subroutine jump, pass to =
call which calls the same sub-program with a different set of
paraneters and thus writes in the flag and any other parameters in
the sub-program. 3efore the suroutine call, these parameters rust
be saved, to be restored after return.
Txample:

SAV savl save entrance INIT (having delivered 4 parameters) and

4 locations: 26, READDRE, TAR1, DATUIl; done go to PS
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SSR type: BSAV

SSE Noe.: 1

Execution: The program is initialized by the subroutine call INIT;
There are four parameters in the call after INIT, and these must be
transferred, Fiwve cells must be kept free behind these parameters
for the entry of the content of cell RUAD inside the SSR and the
contents of.the four locations given. The content of INIT (the
return address) is saved in RUAD. The program is then continued by
a subroutine jump to P5. After the return from this subroutine,
which may also implicity ecall INIT, the saved contents are restored
with the aid of the content of RUAD which is taken back to INIT

(flow-chart, see fig. 3).

A.,T7+1% And-interconnection A

Use: Further jump to a subroutine only if two actions with

the same priority have taken place in any order.

Example:
A ala if alb done undo both, go to Pl
alb if ala done undo both, go to P1
initially YGS both done
SSR type: A

SSIt noe.: 1



Labels generated: ala, albdb
32 jumped to: P1
Initial conditon: Jjump made to both inpuss

(alternative 0 both done)
Operation (fig. 5): the jump to subroutine Pl is made only if jumps
are successively made to ala and alb. There 1s en initial exeception
after the program has been loaded. The further Jjump takes nlace when

a jump is made to one of the two inputs.

4,7.16 83R2's for coordinating sequential processes

It was stated in section 3.1 that en experiment »rogram
consists of seguenvial processes running virtually parallel. The
work of these précesses must be coordinated in time. Thus, for
tance, wwo processes may not atiempt to change the same variables
simultaneously or, in other cases, two phases of two processes nugt
take place in =2 given fime-secquence. It must be pogsible, in both

+

instances, for one of ithe processes to "wait'", where conditions

require it.

Coordination is effected in our sysiem according $o a
T3MRA with the oid of special variables,

the semaphore variables, which can only be integers and can be
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changed only by special operations which cannot be interrupted.
Semaphore variables may be declared as global addresses. There are

the following SSR's or macro-instructions:

4.7.16.1 Declaration of a semaphore variable SEI

User Declaration of 2 semaphore variable,

Example:
ST declare sema SEMNAM

3SR type: SIU
Execution: Two computer words with the identifier SEMNAM are
kept free. The content of the first word is set at ~1 and that

of the second O.

4.T7.16.2 Seguence declaration SEQ

Use: Declares a subroutine at the beginning of a

sequential process and allocates a name and priority to it.

Example:
SEQ Declare sequence WOIK with priority 5

beginning with P1
S3R type: BSE

Execution: A sequence heading with the address WORK is generated,
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The sequential process will begin with S3R Pl, started with
priority 5.
A subroutine

WVORK £

JUP 42
5
JMS PL

J7P, WOR¥
“ is gener ted (fig. 6).

4,7.16.%3 Activate call ACT

Use: Activating (starting) a sequence.

oxample:
ACT act 1 activate VORK; go to ACTH2
S5R type: ACT

Activated sequence: VORK

The program is continued with 357 ACT2,

Ixecution: The sequence WORBK is started with the priority given
in the declaration by a subroutine call if the activete call has
the same prioriiy as or a lower nriority than the sequence;

otherwise, it is added to a queue., Thercafter the program is

continued with the SSE ACT2 (fig. 6).
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4.7.17.4 Assign statement ASS

Use: Assigrning an initial value to a semaphore variable.

Example:
ASS assl assign to SEINAIL (MOindirect) 10; go to ASS2
3SR type: ASS

no.: 1

%}
12
g

Semaphore variable: SEMIAM

£1located value: 10

The program is continued with S37% AS32.

Txecuvion: The first word of the semaphore varigble SFITIAT is

set to 10 and the seccond to O (fig. 6).

4.7.16.5 Dyke call DYX

Use: "Valiting" until a semaphore variable 1s not negative,

Txample:
DYK dykl @yke SmLrT (U0indirect); go to Tl

332 type: DIYK

S37 no.: 1

Senaphore variable: STHINAIT

The vprogram is continued with P1 (fig., 6).

Zxecution: The semaphore variable GLITTAT is interrogated by a
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jump to a system subroutine DIJTKST. If its value is 2 Q, it is
reduced by 1 and a jump is made %o subroutine 1, If its wvalue
is negcative, it is rnot changed end subroutine Pl ic entered in a
gueue which can be compiled for any semaphore variable, The second
word of each semaphore variagble contains the indicator to the
first entry in the queue, and each Dyke call contains the indicator
to the next entry in the queue belonging to the cppropriate semaphore
variable. The crd of the queue is given by the pointer @. The
entries in the semcophore aueue are in order of priorities (see

description of DIJE3T, 5.2.4).

The jump to DYKZR takes place with API and 1’7 disabled.

They are both enahled agnin before returnm,

4.7.16.6 Undyke eall UOY

Use: Providing the indication that "waiting" is not (or no longer)
necessary.

Lxample:

TnY udyl undyie S.0AN (0indirect); go to Tl

$57 type: UMY

3SR noe: 1

Semaphore variable:

The prosram is continued with 3532 P1 (figz. 7).
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Execution: The value of semaphore variable SEITFAII is increased by
1., If this causes the value g to be attained, a check is made on
whether there is an entry in the queue appropriate to the semaphore
variable (secnnd word of the variable £ £). if so, the wvalue of
the semaphore variagble is once more reduced by 1 and the SR 1o
which a2 jump should be made from the first waiting DYKE is started
or entered in a starting queue depending on whether the priority
of the Un&yke call is lower (or equal tc) or higher than that of
the waiting DYXE. The next item in the Dyke queue is advanced to

first position.

4.7.,16.7 Activating cyclic processes

Sequences consisting of closed cycles may be activated

nrovided that the following rules are observed.

1) The work of an external device must be contained in the cycle, or

2) the cycle must contain a Dyke call, the semaphore variable of
which has suck an initial value on activation that the Dyvke call

is awal"ed; the cycle can then be started later by an Undyke on the

sane semaphore variasble.
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4.7.17 Input of any texts TuXT

Use: Input of any texts, e.g. subroutines written by the user

in assembler code.

Example:

TEXT PEAD 0

JUP*  RBAD
SSR type: Text
Execution: The text provided by the user is regarded as a parameter
of the statement "TBXT" to the preassembler and inserted by the

preassembler into the program generated.

4-07018 Call Coee

Use: C(Calling sub-programs with lists of parameters

. Bxample: (fig. 7).

CADCR ¢l Call adcl to read into BUF1
(Woindirect); finished go to P1
(NOindirect)

33R type: CADCR

SST no.: 1

Label generated: cl



Execution: A subroutine

c1l 0

YES = 400000

N0 = 0; JNS* ADCIR; «GTLORL  ADCIR
TP .+3

«DSA BUFL+NO
«DSA PI4HNO

J¥P* C1

is generated with which the sub-program ADCIR is called. 1%t is a
part of the operating program of ADCl. The calling of ADCIR has
the effect of causing ADC no. 1 to read data into buffer BUF1,

When buffer BUFL is full, a logical interrupt is gere rated which

continues the user program with SSR Pl,

The parameters buffer address and Jjump address may be
external addresses or given indirectly (i.e. given by parameter

addresses instead of in the form of the parameter itself) (YESindirect).

4,7.19 End of a sequence &X

Use: Closing a sequence
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Example: (fig. 7)

EX exl exit

SSR type: EX

SSR no.: 1

Execution: a subroutine

EX3 )
CJUP¥  TX3

is generated.

4,7,20 Jump to external address B

Use: Jump to an explicitly specified label of a sub-program
translated separately.
Example:

E el jump out to ENABLE

S35 No.: 1

“xecution: A subroutine

xl 0
JILS* ENARLE «GLOBT ENABLH
JMP*  E1 '

is generated (fig. 4).
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4,8 GExample: multi-channel program

The basic program described here is an analog-digital converter
(ADC) operating program containing calls for the ADC, which stores the
measured values of the input pulse height, converted to binary by
the ADC into a data field. Together with this is a sorting program
which allocates a memory location in an output field (the spectrum)
to each binary number and always adds 1 to the content of the
spectrum word if there is a corresponding bihary number in the
input data field. Here, the spectrum words are arranged in the
order of the size of the possible input values. Both programs are
intended to operate together on the alternating buffer system, so
that the ADC program fills one buffer, while the other is being
processed by the sorting program. It nust be possible to call the
program thus produced in the same way as a device directly providing

pulse-height spectra (multi-channel analyser).

The ADC is signalled to the operating system and the alternating
buffer operation initialized. The IVIT part of the program is
called by two parameters, i.e. the address of a start-stop handler
capable of starting or stopping other devices simultaneocusly with
the multi-channel, and an address to which a jump is maode when the

INIT part is ready.



at level

hiil

L

CADC1

at level

DYK

CADCR
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All parts of the multi-channel analyser (11CA) are called

5.

declare label MCALI = P1

go 1o g.branches: ¥, Tl

set 2 parameters by label MCALI
raise priority to level 3, zo to C1

call adcl to init with start-stop-handler Il

A

(vBSindirect), go to 221

request level 5 for ASGL

assign to PIRMPTY (N0indirect) -1, go to ASS 2
assign to P2WIPTY (NOindirect).g, go to ACTL
activate sequence RDLOOF, go to UDYL

undyke PLlelPTY, go to Jl

jump out by W1R

Read-in takes place by blocks into the intermediate buffer

1, and this buffer is processed parallel to it at level 5,

dykl

declare sequence TDI.COP with priority 1

beginning with DYKL

dyke P1EMPTY (I'0Cindirect), go to €2/ A wait is
made here until the first intermediate buffer is

clear

call adcl to read into BUFL (NOindirect), done go

to ACT2



ACT

DYX

CADCR

ACT

CSRTG

CSRTG

Uny

inh'4
EAELH

act2
dyk2

c3

ac@é

udy2

exl

c5

udy3

ex2
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activate WORK1l, go to DYK2
dyke P2EMPTY (NOindirect), go to C3

call adcl to read into BUF2 (NOindirect ,
done go to ACT3

activate WORK2, go to DYK1

declare sema PlEMPTY
declare sema P2EMPTY
declare BUF1l with 100 words
declare BUF2 with 100 words

declare sequence WORK1 with priority 5

beginning with C4

call sorting program srtl to get data out of
BUFl, go to UDY2

undyke PIEMPTY (NOindirect) go to BX1
exit

declare sequence WORK2 with priority 5

beginning with C5

call sorting program srtl to get data out
of BUF2, go to UDY3
undyke P2EMPTY, go to 1X2

exit
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The sorting program,which has already received the CET
call on initialization, is set in operation by the PUT call from
the read part of the program. The terminating signal is given when one

of the spectrum words overflows.

1 declare label MCAIR = P2
P p2 £0 to 2 branches: "2, C6
T n2 zet 2 parameters by label MCALR

CSRTP ch call sorting program srtl to sort into
spectrum N24 (YBSindirect), on overflow go to
J2

dJ j2 jump out by MN23

The spectirum overflow is simulated in the terminetin-~

pvart of the program.

I declare label MCAIF = P3
P P3 go to 2 branches: 13, 7
¥ n3 get 1 paramever by label MCAIF

canny call sorting program to finish (to

1%

simulate overflow), o to J3

jump out Ly o

€4
T _f.
(&Y

%
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In the termination part, the intermediate buffers are

emptied after the ADC has acted as if it hsd filled its buffer

as a result &f its CLO3E call., A spectrum overflow is then

simulated by the terminatior of the sorting program and the program

is reset to its initisl state.

it declare label MCAIC = P4

= 4 go to 2 branches: II4, ACT4

T n4 get 1 parameter by label MCALC

ACT act4d activate i, go to 12

L 12 roilse priority to level 3, go to C8
CADCC c8 call adel to close, go %o 72

2 r2 request level 5 for J4

J i4 jump out by N4A

Tevel O is awaited in the sedquence D until bosh

intermediate buffers are empty. The D loop is stopped by

level O,

3i50 declare sequence ZND with priority O
besinning with DYF3

nYY dyk3 dyke PIEHPTY (IOindirect), go to DYI4

DYK ayliz4 Dyke P2EIPTY, go to R3
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R r3 request level 5 for C9
CSRTC c9 call sorting program srtl to close, go to X3
5% ex3 exit

At 3TART and STOP, the ready message addresses are taken
over and the priority alloccated, since the ADC progrem is colled

at level %3 except on XIAD,

=
=X

declare label MCAIA = P5

P PS5 go to 2 branches: ~_§, T4

i n> get 1 parameter bty label MCAlA

L 14 raise priority to level 3, go to ClO
CADCA clo call adel to start, done zo o 4.
R r4 request level 5 for J5

J i5 jump out by IT5A

17 declare label MCA10 = P6

P p6 go to 2 branches: U6, L5

M né get 1 parameter by label MCA1Q

L L5 raise priority to level 3, <o %o Cll
CADCO cll call adcl to stop, done go to T5

2 5 request level 5 for Jb6

J j6 jump out by 64

LXIT
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Fig. 8 is a graphic representation of the program. From
it, all parameters.for insertion into the preassembler may also
be derived, TIige 9 is a representation of the ADC program. An
alternating buffer program is shown for purposes of comparison in
Pige. 1Cs This program undertakes the synchronization processes
in parfs MCALTI and MCAIC of the program instead of in the user

program via the executive.

}Thére are four jumps in program SRT1l, SRTL is
re~entrant. Jump SRT1G is called with two parameters,
viz: the address of the buffer containing the data words to be
sorted into a spectrum, and the address designed to activate
31271 when all data words from that buffer have been sorted.
Jump 3RT2P is also called with two parameters, i.e. the address of
the buffer containing the spectrum and that to be activated by
SRT1 when one of the specetrum words overflows. Overflow simulation
is effected by a fthird call S271F, The overflow is also simulated
on call SRT1C, while, in addition, thé progran is reset to the

initial state,
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4.9 Reduction of programs consisting of SSE's

A program composed with the aid of the preassembler consists
of a number of standard subroutines and the appropriate calls.
Here, there will very probably be a number of once-only subroutine

calls within this program.

There i1s, however, no point in subroutines without parameter
transfer unless they are called several times, since they require
three more memory locations (52 call, entry point, return) than the
corresponding sequences of instructions replacing the 9 cnlls,.
Ixamples have shown thnt the storage reguirements of a progran
generated by the preacsembler can he reduced by about %, 1if once-

orly 57 calls are revlaced by the subroutine sequence of ingtructions

(vithout entry snd returns).

A previously troanslated prosram in the fTorm of o listing
nust be used as 2 sinrting point in the reducing process because
the macro~calls in this program are supvlemented by the m-cro-
framework (of 3he vrogram iiself) into which the assonmbler hos
inserted the octual parometers during translatior. '"he macro-
definitions are thus rendered superfluous and can be deleted, as

-+
u

can the m-oero-calls. Then, an invesitization rust be made at each
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subroutine call to find out whether the subroutine concerned is
called again at another point in the program. If not, it is not
e true subroutine and the subroutine code (without entry and return)
may be inserted instead of the subroutine call. The name of the

subroutine also disappears with the entry.

A specially written auxiliary program, the reduction program
CU30RT, deletes from a listing lines which have become irrelevant
and rearranses once-only subroutines instead of their calls. This
program rcads-in the 1isting,bpresented in the form of ASCII text,

of the program to be reduced and, on rerding-in, erascs all lines

which have not led to an entry in the address or code column of the

listinge.

The address and instruction codes are also deleted on feading—
in; of the listing, therefore, only the source program remsins,
The latter is interrogated for all subroutine calls found several.
times in the program, and these are entered on a list., The source
program is then issued, line by line, as a2 rew, reduced source program.

Output lines are deleted from the original eource vprogram.
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Whenever a subroutine call is fo be lssued, reference is
made to the list teo find out whether it occurs mnce only in the program.
If so, the subroutine conqerneq is issued instead of the subroutine

'

call; excluding the entry line and its corresponding return.

De Appendix; Program description and instructions for use

5el Preassembler and program generator

5ele.l The preassembler

5.1l Purpose

The preassembler assembles macro-definitions, nrefabricated
P y 7

mecro-calls and standard subroutines found in a library with the
parameters provided by the user to fomm programs. The nagrameters

to be supplied by the user are described by texts also talzen from
the library. Input can take place cither in dialogue with the

computer or with the aid of parameter lists written off-line.

The parameters provided by the user are checked for correct
format (e.g. their composition from permitted symbols). Corrections
may be made by on-line dialogue. Experience has shown that source
programs composed with the aid of the preassembler hardly ever

contain any format errors.
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5¢1.1,2 Method of operation

The first requirement made of the user by the preassembler
is the name of the program to be composed. It then reads-out all the
macro-definitions from the library and issues them as the first part
of the program, It then requires the user to indicate an 332 type,
which it seeks in the library and from which it dbtains the descriptions
of the parameters which must be inserted in the 3S2 by the user in
order to make it part of a processable program. It requests each
parameter, describes it, checks it for format errors, indicates
such errors and expects corrections, and from these parameters builds
up a list of them into an S5R. Onée all the parameters for an 3SR
have been provided, it asks for the inputf of four up-arrows, and then
inserts the parameters into the prefabricated 5852 text which is also

fetched from the library, Thereupon, it requests the next SS%E type.

5.1l.1.3 Separator

Each of the parameters provided by the user must be enclosed
between separators, for which the preassembler uses up-arrows (7-bit
ASCTI code: 13%6). i/henever the preassembler asks for a parémeter
by its description, all the symbols provided by the user are read
up to the first separator, which signéls the beginning of the

parameter. -
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As a check on the number of parameters input for an SSR,
the sets of parameters in the individual 33:i's are separated from
one another by four up-arrows, requested from the user by the

nreassembler in dialogue.

After the input of the name of the progran (enclosed in

separators), the preassembler also requesis a line of four up-arrows.

5.1l.1e4 Completion of narameter input

Once all the 537°'s of a program, with their parzneters,
have been provided by the user, the signal TXIT is input instead
of the four up-arrows required by the preassembler, which then

™ n

finishes the program issued with OFD, prints ou’s on the ieleprinter
Iy O 9 2

the number of 333's composing the vrosran and goes into a wait loop

from which 1t can once nmore be started (COFEEOL ?)e The monitor is

loaded on the insexrtion of any othor symbol via the operating

teleprinter.

5¢leled Input and output devices

1
A

The preassembler uses the following .DAT SLOVS (logical input and

output channels) :
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+DAT SLOT Function
-2 ’ Input of instructions for use
=3 Output of error messages, requests for

instructions for use, output of parameter
descriptions in dialogue

1 Input of macro-definitions, SSh's and
parameter descriptions fram the library

(LILIBR MAC)

2 Output of the finished source program
3 Input of the parameters
5 Output of the program statement

5¢lele6 Program file

The parameter descriptions may be issued by the preassembler
together with the parameters provided as a »nrogram file. Its output
can be stopped (see operation)., In it, the SSR's and porameters are
continuously numbered in such a way that the last three figures of a
parameter number indicate the number of the parameter in the 333 and

the first three that of the 852 in the program.

The program file is issued so that it may be used to

reinsert the parameters (fig.1ll).
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S5elele7 Operation
After the start, the preassembler announces

PROGRAMPREASSEMBLER (fig.12).

It then regulres the user to reply to a few
determine its mode of operation.

YES or NO.

given as a reply, corresponds to the YES.

itself by

guestions to
The questions may be answered

In an abbreviated mode, the RETURN symbol (A3CII 015),

The abbrevisted mode is set up when the vreassembler'!s

first question

SWITCH FAST SuT®ING YRS OR IO

"he rnext question is
TUPROVE VIA TEIETYPD.

If the answe > is yes, the preassembler awailtls

the corrected parameter again after each format error.

“"he guestion
MOITITOR OUTEUT

needs no answver,

the insertion of



...72_

COMMENT LOUG
signifies that there are two descriptions for each parameter in

the library, one detailed and one abbreviated (for experienced

users).

The question

COMFENT VIA 77
enables the parsmeter description to be suvpressed from DA 3T.0T =3

when it is unnecessary, for instance when the parameter input is vie

a punched tape written off-line,

Vhen the reply I'O is given to the quesiion
BVETRY PANTITO,
the user is given the opportunity of correcting parameter lists

-

issued in the form of a program file and at the same time o

create the program provided from the corrected parameters. "o this
end, the precassembler must be informed, on request, o the number

of the first parameter to be altcred, and this may be taken from

the printed-out program file. The preassenbler uses the old nrogrem

4

file input via DAT 3107 3 as a parameter list and first as

user to indicate the porameter to be alicred by describing it,
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After ite input, the number of the next parameter to be altered
nust be provided, and so forth. The preassembler izsues the new
program file and, on output, creates the new progrem on o magnetic
store in a second pass, using the new program file as o porameter
1list (the two passes are necessary in this node since otherwige four
files - o0ld and new program files, library and new program - would

have to be opened at once).

H5eleleB Mames of norameter lisits

Once the auestions determining the preassenbler working
mode have been answecred, the nrecssembler asks for the names under
which it can Tind the parcmeters on the input medium and under which

the programn file ig to be issued. Tzmes may consist of gix alphoruneric

[}

svmbols. TT.5 is accented as an extension (see progrenm file nerual).

The up=arrow separator nust be used to indicate the end of the input
1 P X

[~ TN
ERY]

of the parameter list name. Al

er these nrerorations, the actual worl

of the preassembler, described in section 5,1.1.2, begins (fig.12).

5.1.1.0 Trror correction

On the input of incorrecily expressed narcmeters, the

nature of the error is indicated z2nd, with the correciior mode
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operational, a fresh input of parameters is expected.s This cycle

is repeated until the parameter input contains no format errors.

If there is an error in reading, the incorrectly read line
is printed. It may be either fransferred unaltered ( RETURN),

or deleted [D(RETURN)] or corrected by typing the

correct text,.

BelelelD Phase errors

s fter the parameters for an SS2 hsve been input, the
preagsenbler waits for the input of a segquence of four up-arrows
as a2 separator. If this sequence is provided too early (insufficient

parameters) or too late (too many paremeters), the error message

&)

PHASE ERROR is printed out via the operating teleprinter with the
serial number of the S3R in whose set of parameters the vhase error
was discovered. The SS5Z with the incorrect number of parameters is
not inserted into the program. Since the paremeter following a
sequence of four up-arrows is invariably the tvpe designation of an
55R, the parameter inserted after incorrectly given sequences of
up=~arrows is interpreted by the preassembler zs an 333 type

designation,
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5¢lels1ll Errcneous S3R7 type designation

If the preassembler is given an 3SR type which does not
appear in the library, it gives the error message ¥CT FOUID. In
dialogue, the qguestion I3 THIS T0 BE CORRECTED? is then printed via
the operating teleprinter. If the answer is YES, (or the RETURN
symbol), the SSR type designation may be repeated. If i% is To,
and on the input of off-line written porameter lists, the preassembler
skips all inputs up to the next sequence of four up-arrows, and

interprets the parameter following those as the next 3317 type desiznotion.

5ele2 Writing the SST library

5.1.2.1, TLibrary nane

3

The preassembler looks for the 337 library on the external

TEA N

store (magnetic tape or disc) under the name JLIBR AC.

5.1e2.2 The configuration of the 5SR library

The 537 library is formed by an ASCII text divided into
T
2

lines., The individual 55's are entered in random order. =-ch 3f

in the library consists of (fis.13):

1) two successive lines, each of four up=arrows;

2) the 8§ type designation;

/
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3) the descriptions of the parameters;
4) a line of four up=arrows, and
5) the actual SSR.

The actual S8R 1is written as a normal part of a program,.
Every éequence of symbols which, when the 38R is inserted into a
real program, are to be altered (formal parameters) must be enclosed

in two up-arrows.

Each parameter description consists of:-

1) a detailed text;

2) an abbreviated text as an aid to memory;

3) the sequence of symbols of the appropriate formal parameter;
4) the check codc.

Each part of a parameter description is termined by an up-
arrow. The parts may be written one after the other in a line or
distributed over several lines. The 3S2 tvpe designation nmust be

terninated by an upearrow.
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5ele2e3 Check codes

The check codes inform the preassembler about the aspects
used 1in testing the actual parameters-fed in, which are to be
inserted into the 53R instead of the formal parameters. There sre

check routines in the preassembler for the following codes: -

1) MC6 A check is made to see whether the actual parameters
satisfy the criteria laid dovn for veriable names in
the assembler manual.

2) PN Checl: as in 1); in a2ddition, the sequence of symbols
input is interpreted by the preassembler as the name
of the prosram generated.

3) PN5 as 2); however, with a maximum of only five symbolc.

4) JOW YHS or 0 are expecived a2s input.

5) Go2 Exactly two octal figures nust be fyped e the uscr,

6) col One octal Figure must be typed by the user.

FER

7) DZ2 A maximum of two decimal figures must be ITyped by the u

[&]
O

&) ¥07 o check.

Backearrows are ftranscribed in 21l tests. Frameworks of

formal programs (sec 5.1.3) can thus also be generatod.
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5¢1¢2.4 Use of mecro-ingtructions

SSR'g containing internal labels or addresses not appearing
externally and intended to be given another name every time the SSR
is inserted in a program are best written as macro-instructions, so
that the assembler can generate a new name at every call (see assembler
manual). The macro-definitions are entered in an SSR with the type
designation MACDET, containing no formal parameter and automatically

input by the preassembler (it must therefore be included, empty, in

the library, even when no macro-definitions are used) (fig. 14).

The macro-calls appropriate to macro-definitions are processed

like an ordinary SSR.

Fele2+.5 The indication of errors in the 352 library

The preassembler indicates a few errors which may have arisen

in writing the 5S8R library:-

EDERR indicates that a formal parameter found in the SS2
does not correspond to any of the formal paramters in the parameter

descriptions,

CODE ¥OT FPOUND means that a check code not shown on the

preassembler!s code list is given in one of the parameter descriptions.
v ? %
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I0PS 01 is given when a parameter description does not finish

with the prescribed up-arrow according to the check code.

5.1e3 The program generator

The progrem generator inserts actual parameters in the place
of formal ones in prefabricated Tormal programs containing formal
paraneters. In this way, many actucl programs, e.g. operating vrograms
for similar devices, con be generated from one formal program. 3By
and large, the program generator can be used to alter any texts at
previously determined points with a perticular s2im in view; indced, 2
text is altered in the same way at all points indicated by the same

formal parameser.,

“"he progran generato

3
O
o]
6}
o

es in exactly the same wey as

the preassembler, and thereore any description of it is superfluous.

The only differences are these:-

1) The program senerator uses back-arrows as separators (4SCIT code 17
2) Once the working mode has been determined (5.1.1.7), the
prosram generator reculres the user vo input an exnlanatory
comnent,
2) In the case of the nrogram generator, the "formal progsrams!

correspond to the 33i's. ‘hey rmust be erranged individually
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as Tiles in an external store under o name with the extension

t
ko)
o

Re The formal progroms are constructed in exactly the
same way as an SS® entered in the S5 library (5.1.2.2).

4) There is a check code RIIT instead of the 001 (5.1.2.3).
When this code is given in the descripiion of the formal
parameters, the program generator regquires the input of any
number of (different) decimal numbers from 1 to 16 and Ffrom
them generates an octal number with which the inservion
points of a line control, numbered from 1 to 16, can be
called on a multiple address system, i.e. the bits indicated
are putin the bit group 1~ 16 (PDP-9 word; bit numbering
from left to right, beginning with bit ¢ and going up to 17),
while the computer word thus produced is recoded as an octal

word in the alphanumeric code.

5.2  B®xecutive

5.2.1 Instruction decoding Znginn

In segmented vrograms (nn = segment number), the decoding
nrogram ER3Tnn must elways be the first to be loaded. "n being loaded,
it brings the remainings parts of the executive with it from the pro~ram

library.
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-+

Bi83Mnn 1s starved by NOTNNOL 5 via the televrinter. At idn
first start, iv initiates the sofitware cueue handler and, by naking a
Jump- to the core store cllocation program DATITT, divides the free corc

storc with the 2id of the data directory (see 4.7.1.2) into the fields

given therein. It then roes into a wait loop in the ORG program.

AT every new start given by CONTROL'S, it awaits the input

=Y

of an instruction kevword (see 4.7.1.3), Tetches the vrosrsn address

o

specified by the instruction following the kerword and, when COI7ov

ot

is repeated, arranges the appropriate subrouzine in the u»r- rosg

gsupervisor aueue 3°20Q1C,

5e2.2 Supervisor OVG

‘'he supervisor 03¢ orpganizes the nrocessing of up %o eighteen
queues &t main prosram level (cueue handler 5700nn with nr = 10 ... 31 (octal))

bl o

Processing of the cueues is started by 031 in the orde

)

of their

importance (with 507010 as the most and $ORN31 the least imporiant

After a program from a queue has been processed, ORG checks

to find out whether o nmore important queue has been initialized

meanwinile and starits its higher-priority vrocessing.
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5.2¢3 Queue handler SORQnn and SORAnn

Queue handlers SORQnn (with nn as the level number) and SORAnn
arrange subroutines required at higher priority levels in queues fronm
which the lowér—priority subroutines are being processed., Here,
nn may assume the values 4 - 31 (octal). DProcessing the queue at
level 4 - 7 is started by software requésis, and those at levels

10 - 31 by the supervisor ORG called by the queue handlers.

Addresses SORQnn and SORAnn denote different entries into
the same handler with the number nn., TUnlike SORA, SORQ enables the

API and PI agein.

Call (example):

ISA+10 | /API OFF
IOF /PI OFF
JMS¥  SORQnn

.GLOBL SORQnn

JMP .42

.DSA SR /ADDRESS OF SR TO BE QUEUED
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Operation:

The subroutines reguested are entered in a chnin-stiructured
gqueuve., Iach link in the chain indicétes the folléwing ore, while
the end of the chain is indicated by a special entry. After all
higher-priority work has been done, the subroutines are processed in
the order of their entry. The first cell of the subroutine serves
as storage cell for the vointer. ¥Hach 3% may not, therefore, be entered

more than once in the chain. Subroutines where the first unit is £ 0

are not entered witizout the subsequent issue of an error message.

Hel2e4 Svnchronization program DIJKST
o by =2

The program DIJKSY carries out the organizations necessitated

on activations, Dyke calls and Undyke calls., It possesses four entryv

points: DYKHR, UNDYKET, ACTIV and ASSIGN.

5¢2¢4.1 DIKH..

Coll:
ISA+10 /API OFF
IOF
JMS*  DYKER

.GLOBL DYKER
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.DSA  DYKER

.DEA  SEMA /SEMA VARIABLE (+4000000, IF INDIRECT)
-1 /PRIORITY ENTERED HERE

0 /NEXT UNIT IN QUEUE ENTERED HERE

.DSA  DYKEWAIT
.DSA  DYKEFURTHER
.DSA  HILEVEL
.DSA  SAMLEVEL
.DSA  LOLEVEL
HILEVEL 0
JMS SAMLEVEL
DBK
JMP*  HILEVEL
SAMLTVEL 0
LAC SAMLEVEL

DZM SAMLEVEL

DAC RUAD
SKP
DYITTURTH T ISZ COUNT
JMS SR /CONTINUING SR
LAC COUNT

SAD (0



JMP¥  RUAD
TAD (-1
DAC COUNT
DYKEJAI® teeasenn /NEXT INSTRUCTION
counT 0
LOLAVET, =SAMLEVEL
RUAD 0
Operation:

DYXER finds out whether the semaphore varishble ZI1. has =
positive value. 1If so, the value is reduced by one, the sccond of
the exit addresses given as parameters -(DYERFULTHE ! in the czll example)
is fetched, and an exit made to the given address. If the semaphore
variable has a nerative value, the content of the nriority cell is
fetched., TIf the lotter is =1, the priority of the level at which the
DYKL? call took place is calculated and entered in the nriority cell
as a binary number. This entry is mnde only when the DVIT cell is

executed for the first time.

Thereafter cell 2 of the semaphore variable is checked.
The semaphore variable consists of two cells. (The value of the

variable is entered in the Tirst, while the second indicates the
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first unit in the appropriate waiting list.) If it is 0, the address
of the call priority unit is entered in it. If the address of another
DYKER call is already entered in cell 2, and thus a queue has already
been opened, the units of this queue are examined for their priorities
and the call which has just been processed is arranged according to
its priority in the queue., The latter is itself’in the form of

chain, The semgphore variable indicates the first unit, and each
subsequent unit the following one. The units are arranged in the

order of priority of the DYKT2 calls by DYKER.

After the units have been arrenred in the queue,
an exit is made from DYKE: to the fi?st of the transfer vecitors given
in the call (DYEEWAIT in the example). e subroutine 3 celled after
DYEEFURTHER is thus started immediately after the DYKER call only if
the value of the semaphore variable is positive. Otherwise, the start

can be givern only by an UTOYEHR call with the same semaphore variable.

The subroutine SR, in its turn, may (implicitly) call a
further subroutine, which causes the DYKER call to be run through
again. This repetitiveness is %o be vemmitted by the code around

JIMS S,

DYXEE once more enables the API and PI.
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Call:
ISA+10
I0F
JMS*  UNDYKER
.GLOBL UNDYKER
JMP .+3
.DSA  SEMA /+4000000, if indirect

-1

Operation:

UFDYKH.. raises the semaphore variable 571A by one, If the
value O is thereby obiained, UNDYXED cheelzs to find ouv vhether a

[¢]

aveue had been opened for the semapihore verisble (word 2 o

gsemaphore variable £ 0). If so, the semaphore varioble iz once more
reduced by one, and, dn the fixet execution of fthe UTDYED call, the
priority with which <the call was mede 1s calculated and entered in
the second parameter cell., The entry is then taken from the
queue, its oriority (calculsted by TYE") Ffetched and the difference
in priority from UIMTHIT call celculated. Depending on the resulj

the last subroutine in the DY call eddress list is arrenged in

a software recuest cueue, or the last but one or last buit iwo



- 88 -

subroutine is started, after the priority has been suitably raised.
Starting in such a case takes place in the following way: the address
immediately following the last parameter of the DYKER call is input
in the first entry of the subroutine concerned and a jump is made

to entry 2 of the subroutine.

If the priority was raised in UNDYKZER, it must be lowered

once more by DZK in the subroutine (the DY¥R2 call HIINVAL in the

example).

A progran arranged in a software request queue is not arranged
for the second time by the queue handler until its first entry has the
content 0. For this reason,

ls transfer entry is erosed in the

subroutine SANIEVET (= TOILBVEL),

UITHYEER enables the API and PI.

526443 ACTIV

Call:
I3A+10
iop

JMS¥*  ACTIV



SEQAD

HILEVEL

SAVTEVED

LOLEVET

and
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+GLOBL ACTIV

JMP +6

.DSA SEQ /ADDRESS OF SEQUENCE TO BE STARTED
-1 /PRIORITY ENTRY UNIT

.DSA HILEVEL

.DSA SAMLEVEL

.DSA LOLEVEL

with

0

JMS SAMLEVEL

DBK

JMP* HILEVEL

0

JMS*\ SEQAD

JMP#¥ SAMLEVEL

=SAMLEVEL

0

JMP .42

> /PRIORITY 5

JMS SR /FIRST SSR IN THE SEQUENCE
JMP*  SEQ
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Method of operation:

TLike UNDYKER, ACTIV establishes whether the priority of
the sequence SEQ to be activated is higher, the same or lower,
Again, like UNDYKER,“it ensures the start of the corresponding subroutine
(FILEVEL, SANLEVEL or IOLAVET) from the call address list. A DBK
nust be made in EILEVELs The sequence (SEQ in the example) must carry

the entry of its priority at the prescribed place in its head.

ACTIV enables the API and PI.

5e2e4ed ASSIGH
Ccall (example):

ISA+10

I0F

JMS¥*  ASSIGN

.GLOBL ASSIGN

.DSA  SEMA /+4000000, IF INDIRECT

3 /ALLOCATED VALUE

Method of operation:

A3SIGY enters the value given as o parameter in the call

into the first word of the semaphore variable SEMA and erases the
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second word of the semaphore veriable., The indication of any possible
Dyke queue is thereby erased (the indications to the next unit in
each unit of the waiting list chain are erased or. transcribed by

DYXOR when a fresh entry is made).

ASSIGY enables the API and PI.

53 Reducing program CUS0:T

The progranm CUIQORT abbreviates programs containing
subroutines called once only vy setiting in order the sequences
of instructions in the subroutines instead of their calls. In doing
so, 1t uses the listing of the translated program as a basis.
In addition, all lines which have not directly gencerated a code in
the listing (mocro-definitions) are erased,
"he source programs generated by CUSONT can be translated

without error if the following rules have been observed in the original

program:
1) ITon-execcutable statements must be in 2 line together

with an exccutable statement (e.g. JGTORT 4770 ONE = 1),
2) Fach subroutine may contain only onrne return instruction,

which should be at the end of it.
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3) Labels may not be placed in front of subroutine returns:
instead of
END JUP*  SUBROU

the program should read
END=,
JMP* SUBROU
4) No instruction within the subroutine may refer to the

subroutine itself (e.g. TAC* SR)

CUSORT uses the following .DAT SLOTS:
1 Trror messages
2 Operating inputs
3  Input (listing)

4 Ooutput (new source program)

After starting, the program requires a program name

(ST is accepted as an extension).

Error messages:

BUFFEROVERFLOV the program to be read in is tooc long,
FILE LST NOT FOUND the listing of the nprogram given hos not been found.

In both cases, a different program name is requested.
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ROAD Tn20er an error in input. The incorrect line

is issued and can be corrected (input of

the new line via the overating teleprinter)
ks /

o

or accented (input of

\

RENUET)) .,

5.4 FParameter hondler FATHAY

_

With the aid of PA-HAN, interers ond real numbers can be
civen as output or inputl in decimel form via the teleprinter (and

can “hus be checked and chenced). This rives single and double

precision and any data field lengsh

naroneters and

ligs 30T o whiceh

prosran P:0, the user calls wrogram PACIAT and checks ©

JMS¥*  PARHAN, .GLOBL PARHAN

JMP 42



.DSA  PARALI

JMP¥*  PRG

The form of the parameter list is:

PARATLI W
NAMEL
N AMER

Here, I is the number of parameters or parameter fields in
the list., In the casc of the ith parameter, the parameter description

and value (or the parameter values in the case of fields) are to be

found in FAW31l and the following lines:

A VATUEL

200000

.ASCII "DESCRIPTION' {15 >
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VALUE1 600002

O

The length of the parameter field is given on the right in
VATUEl. 7“he significance of the bit positions 0 and 1 is:

00 ¢+ integer

0l : integer double precision

10 : real

11 rezl double nrecision

.o

600002 typifies, for instance, a parameter field of two
real numbers of double precision. The parameter value (or the values
in the case of fields) in the dual representation within the PnP-9 is

stored in units VAIUL+1 et,seqg. This represcntation is in the form:

2) integer:

01 17

1l

.
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Bit 0 contains the sign (0 = plus, 1 = minus).
The absolute value of the integer number is stored on the right in
the remaining 17 bits, Thus =131071 £ intercer number £ +131071

(maximum 7 places).

b) double precision integer:

1st word 01 17

LL l

2nd word

o
e

Bit 0 in the first word coniains *the sign, ond the remoining
25 bits the absolute -2lue of the integer number.

—299,1 & integer number $42%°0 (maximum 12 places).

c) real:

lst word ¢ 89 17
[ exponent = 7 nantifsa T

2nd word 0y 17
li o mentissa

Bits O to & of the first word conitain the 2-complement d

the exponent, ond hit O of the second the sisn of the mantissa.,
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The mantissa is found in the remaining 26 bits (berinning with bit 1

of the second word and ending with bit 17 of the first one).

Tere,
the mntissa is in the "normelized" form, i.e. for 2 number £ 0,
there is always a 1 in bit 1 of the

secornd word.

The method of writing is os

as in FORTRAI:

r0.123456?"1'12, i.es 6 places after the decimal point are

accurate
(maximum 13 vnlaces).

d)

double precigion

real:
1st word 9] e T
[ exponent i
2nd word 0l . 17
[ mentisss
2rd word ¢ I
! nrntisse
The first vord ot

tores the 2-conplement of the exponent and
tit 0 of the second word

the sirn of the manticeon.

35 bits contain the mnontis

in rormalized form, ethod of writins:
+ ScoaoT +-, - . Q - ey { ~
-0e1234567890~-12, 1lee. © places are occurate (rmnxi

mun 16 places).
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Care must be taken on the input of parameter values to ensure
that no more places are used than given above, and that, in the case
of real numbers, the form

+

L00mmmmmmm T e

or

£0 4 mmmmmeeDEen

is chosen,

After the jump to PARHAN, the description of the first
paraneter in the list and its wvalue zre printed out. The input of
(RETURN) leaves the value unaltered and permits the issue of the
next parameter with description and value (or the next parameter
value in the case of a field). If the input is a value (followed
by RETURN or ALT MODE), PARHAN checks for format errors (but not
all of them!), e.g. the number of places, the size of the numbers,
and the correct method of writing (in the case of real numbers) etc.
If an error message is given, PARHAN walts for a fresh input until
the value is accepted. The input of the symbol ATT 11CD2 (alone or

after the input word) causes a return to the calling program PIC.

5.5 Standardization of the names of program labels

It has been found an advantare to apply a2 stondard system,

indicating the function carried out, to the names of entry points
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into the programs. Since, with the FDP-9, program labels may consist

of a maximum of 6 alphanumeric symbols, the first one always being a

letter, the following stondard was. laid down:

The final symbol in the name indicates the function of the

vart of the program:

A STADT
s CLOSE
T TINISH
G GET

I I¥IT

0 STOP

P PUT

2 READ
i WRITH

All other letters and figures may be used as desired.
The one or two-figure progranm number is given belore the close symbol.
The program itself is designated by the {up to) three initial symbols,
the last of which nust be a letter. Tege I'CALLI is the IFIY call of

nulti-channel progranm IICA No.l.
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SRX
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€
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. €2}
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A

-

Fig. 5
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Sequence
heading
WORK
S:’.Q WORK'
] i
| R
SR, '
] ACT 1
¢
; )4
APNT WORK Activa-
Aui ted
WORK
SR §
H
i SR |
i
4
, l : . <§561
A o L
ﬂ%:}’ , Set
SEM{1) * §
l SEM(2) = ¢

B

T

T,

D

Vi

Fig. 6
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PROGRANANANE = TERANFLY
TTTT
MACRONANE = T4t

12sl AND- INTERCONNECTION

MACRCNE, T1t
1202 EXIT VECTOR TilT
1603 INITIAL STATE BOTH INPUTS CotNEe

-\1 ATA A o
{witw L

2021 SIGNAL M
[MACRONR., 111
1PROGRAM ENDED 4

TOYK?T

T1t
1000 TRUFL e
San3 NI
InN4 TLLIAT
7T

ik

NAME OF LABEL TEXALLT
4722 SAME ADDRESS IN PROGRAM ASRTSLIAT
TTTT

HACROEANI = tit
5?:: P:":G;:;‘l' xun:'.?x:'.':: (%}

NANZ DER WARKE ‘Exﬁlnf
5022 SAME ADDRESS IN PROGRAM , ADRTOYK
EXIT

Fig. 11  Preassembler monitor (same parameters as in fig. 12).
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'ﬂ'"‘"" ,“,.A-.(.-..‘:-—\ N
NEY TR AT S o

EMﬂ'SﬂTG{YES(X{NO:>NO
CORRECT VIA TT > YES

MONITOR OUTPUT > YES
COMMENT LONG > YES
COMMENT VIA TT > YES

EVERY PARAMETER > YES
PARAMETER LIST NAME > PARALI+

PROGRANMNANE =9
_Gﬂﬂi4 4

>ttt

FAECASRANE zZ>%a1

AND~INTERCONNECTION

NN R W NS 51 -t oA
TS SOTTE OV P S NS

JUMP ADDRESS > M1+

INITIAL STATE BOTH INPUTS ACTIVATED >+AN#

YES OR NO PLEASE

ir’-\x\\?

>thne T

SIB 41

>TTN

AACHONANZ =7V Zi0t

‘ .
b ~1
(Y W e

WASRENE > 0

SIGNAL >t PROGRAM ENDED

ST e
cIs 4 1
>T171
MAATDANM AT - T
tA?‘.VEC‘ 1."‘.|lf_ ->T:);j.<?

DYKE CALL
QRPJAI‘J>TIQ

(‘r—' 14\1 "j’A""‘ —.>.)’Jl “T

!"\T'):‘l ﬁ>.._‘ *

LR PIRY

HHHHER.REPJNMEESS >+A1A%

~pm
Jic 4 0t

>t117
VACRGNA Z = R
SOGIAINADYT

‘*x‘ 333 NP N ORG-S By
SAME ADDRESS IN PROGRAM; ADDRESS:
517

slo 4 01

>TTTT

MACRONANI =>7M7t
PROGRAVNARKLZ X

NAVE OER afEI o >TINA[AT
CLIICS AORIZSIZ I PRCGRANN:

=
QID 4

>EXIT

CALL NUMBER: 5

>X

JK=KMNS V4az

S

>+A1B+

>

el

€+

(73]

Fig. 12

[}

(4]

e
v
-y
tJ
<
»

Example of preassembler
dialogue input. All
symbols to the right of
> are supplied by the
user,
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vz
DR ARANE

T UK
[AWAN A

‘ LGWA
LOWERING OF A SEMA VARIABLE

SSR No. ., 2SueF=Ha W xl3Z2%
StnanAFELSEMALS:HLﬁCél
INDIREKTZ2AIND 248804050
ALEA
LOWWHRY O
YES = 400000
NO =290
I1SA+10
i0F
LAW =1
WIFZER LOCOO0Q~-iEElA
TADw 3SZiMd
»END
WIFZER C=X3EDZ
T’ ASENL
otNJC
LAC (4000C0
ISA
ICON
JMP*x LOWANRA
JA5A
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MACRO-LIBRARY STATE 16.7.70
aAdld

MACDEFA

| B B
S{ne

FIN S,SMsSN,SF,ST,M,N,BSs2iL, 2N
I8R5 {SiH=SHK .

veihT S

SF 0

ST 0 ,
CLASCMA
DAC BS
JMPx ST
BS 0
+ENDC
SN 0
CLA
SAD BS
JMP NL
iMs N
JiP AM
Nis,
TUMS M
NM=,
' JMPx SN
«ENDM
oDEFIN BUF,3UFNAM,2BUFAD,LENGTH
BUFNAM 3JFAD
) LENGTH
' .DEC
BUFAD «3LOCK LENGTH; L0CT
«ENDM
+DEFIN SAY
JETC 22%8:5
SAVNR 0
LAC MARK
TAD (PARNR+1
DAC INDICATOR
LAC RUAD
JAC» INDICATOR
LAC MARK
DaC RUAD
CIFP0Z Net
LAC AD21
1SZ INDICATOR
baC* INDICATOR
«ENDC '
fIFPCZ N=2
LAC ADR2
1SZ INDICATOR -
BDAC* INDICATOR
LENDC ’
«IFP0Z N=3
LAC ADR3
1SZ INDICATOR
DAC INDICATOR
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