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The present paper is devoted to the investigation of effects which 
arise from the simultaneous action of beam-induced voltages and of reso
nances of synchrotron oscillations. This problem has not been examined 
in the literature, although many papers are devoted to detailed investi
gation of longitudinal instabilities and resonances of synchrotron oscil
lations. 

The measurements have been carried out on the 70 MeV electron 
storage ring of the Physico-Technical Institute of the Academy of Science, 
Ukrainian SSR1). The complete layout of the measuring apparatus is shown 
in Fig. 1. For the excitation of the instability, a special passive 
resonant cavity has been used, the characteristics of which have been 
carefully measured*). The same cavity has also been used for the regis
tration of coherent synchrotron oscillations during the rise of the 
instability. 

The results of the measurement of instability thresholds in the 
absence of resonance excitation are presented in Fig. 2. In the same 
figure the theoretical threshold values are presented for comparison; 
these were computed by means of the results of Karliner et al.2). It is 
evident from the graph that on the major part of the curves there is a 
good agreement between the theory and the experiments; however, for small 
detunings out of the resonance, a substantial deviation is observed. This 
deviation is particularly well visible in Fig. 3 where the contribution 
of the Landau damping is plotted versus the detuning. Here the experi
mental curve has a clearly expressed maximum which is absent in the 
theoretical curve. Apparently one has to reckon with the theory yielding 
incorrect values of the threshold currents for small detuning. 

As the measurements have shown, during the excitation of resonances 
of synchrotron oscillations one observes a lowering of the longitudinal 
instability. The effective lowering occurs in a narrow frequency-band of 
resonance excitation, which is less than the resonance width. In the 
case of a parametric resonance this band is substantially narrower than 
in the case of a forced resonance. The results of measurements of the 
thresholds of instability as a function of the resonance excitation 

*) It has been shown in a special theoretical investigation that in the 
majority of practical cases the physical processes in the system 
beam-passive cavity and beam-active cavity are identical. 
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force and of the magnitude of the accelerating voltage are presented in 
Figs. 4 and 5 for the case of forced and of parametric resonance, 
respectively. One can see in the graphs that already for small magni
tudes of the force of excitation, one observes an effective suppression 
of the instability (ten times the threshold). While this happens, the 
force of resonance is so small that the resonance oscillations of the 
beam are not seen. 

The maximum value In/In0 in the curves Figs. 4 and 5 is approximately 
equal to 50. Experimentally a suppression of the instability has 

also been observed for high currents. However, for In, with In0 
increasing a hundred times, the instability is not completely suppresseed. 
Meanwhile, one observes beat oscillations, for which no exact interpre
tation of their character has been given. 

Experimentally one observed also a suppression of the longitudinal 
instability to one-tenth, by means of the synchro-betatron resonance 
of vertical betatron oscillations νz = 2/3. 

For the theoretical interpretation of the results obtained, we 
consider the equation of synchrotron oscillations with simultaneous action 
of induced voltages and parametric resonance of synchrotron oscillations. 
We restrict ourselves to the case in which the cavity oscillations are 
substantially attenuated during a period of synchrotron oscillations. 
In this case, as follows from the results quoted elsewhere3), the 
equation of synchrotron oscillations in cubic approximation is: 

(1) 

where g = amplitude, ν = frequency of parametric excitation, ξ = constant 
of antidamping of the instability, ζ = constant of radiation damping, 
Øs = synchronous phase, Ω = frequency of synchrotron oscillations; the 
differentiation is carried out with respect to the dimensionless time 
variable θ = ωst; ωs = revolution frequency of a synchronous particle. 

Substituting 

(2) 
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we obtain, as usual [e.g. Kolomenskij and Lebedev4)], the following 
abbreviated equation: 

(3) 

It follows from formulae (3) that if the inequality 4|ξ-ζ| < gΩ is satis
fied, there exists a stationary solution: 

(4) 

where, in the case of stability, there appears the solution with 
cos ω0 < 0, which has the (+) sign under the square root. 

It follows from formulae (4) that for high instability we have 
[4(ξ-ζ) ≥ gΩ] or, oppositely, for high stability (ξ-ζ < 0; 4|ξ-ζ| ≥ gΩ) 
resonance phenomena do not show up. 

We now examine whether the opposite situation may arise, when 
the resonance suppresses the instability. For this purpose we analyse 
the equation of cubic approximation for small deviations from the 
stationary solution b = a - a0, which is, as is easily shown, 

(5) 

From Eq. (5) it follows that there exists the following dependence 
of the frequency on the amplitude: 

(6) 

If the phase-length of the bunch is 2ΔØ, then the largest amplitude 
bmax = ΔØ. Consequently synchrotron oscillations during resonance con
sist of oscillations of the frequency ν/2 and oscillations of the 
frequencies between ν/2 + ω and ν/2 + ω ± Δω + ΔΩ [where ΔΩ is the spread 
of proper frequencies in the beam, ΔΩ = Ω(ΔØ2/16)]. The full frequency 
spread of synchrotron oscillations, which determines the influence of 
Landau damping on the threshold of instability, is equal to 2Δω + ΔΩ. 
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In the absence of a resonance this spread is simply 2ΔΩ. It is easily 
seen that if the condition 

(7) 

is satisfied there will be 2Δω >> ΔΩ, i.e. during resonance there is a 
frequency spread, and consequently also the contribution of Landau 
damping strongly increases. 

In this way the experimentally observed effect of diminution of the 
longitudinal instability is explained by the increase of the non-linearity 
of synchrotron oscillations during resonances, and, as a consequence of 
this, an increase of the frequency spread of the oscillations in the 
bunch and a growing influence of Landau damping. Since for small a0 the 
derivative da0/d∆ is large (for a0 = 0, da0/d∆ = ∞), an efficient 
suppression of the longitudinal instability must occur within a narrow 
frequency band. This is also observed in experiments. In the case of 
forced resonance, one obtains analogous results, but in so far as 
da0/d∆ has a substantially smaller value, the band of efficient suppression 
must be somewhat larger. 
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Fig. 1 
Apparatus layout as used in the experiment on the 

investigation of the longitudinal instability: 

1 = passive resonant cavity, tuned to second harmonic of revolution 
frequency ~ 104.5 MHz; 

2 = accelerating straight section; 
3 = pick-up electrode for measurement of stored current; 
4 = exit windows for synchrotron radiation; 
5 = superhetero dyne receiver; 
6 = frequency detector; 
7 = selective amplifier; 
8 = oscilloscope; 
9 = electron optical converter; 

10 = dissector tube for measurement of longitudinal distribution of 
the beam; 

11 = RF generator of accelerating voltage (frequency 52.25 MHz); 
12 = modulator for the excitation of resonances of synchrotron-oscillations; 

13 = dissector for the measurement of the transverse distribution of 
the beam; 

14 = TV set-up; 
15 = photoelectric converter to measure stored current. 



Fig. 2 
Dependence of the threshold of 
the instability on the detuning 
from resonance with 100 V accel. 
voltage: 

1 = theoretical curve disregarding 
Landau damping; 
2 = theoretical curve including 
Landau damping; 

3 = experimental curve (dotted). 

Fig. 3 
Contribution of Landau damping 
(ratio of actual threshold 
current to its calculated value 
without Landau damping) versus 
detuning, the accel. voltage 
being 100 V; 

Continuous curve = theoretical results; 
dotted = experimental results. 



Fig. 4 
Threshold of the instability versus force of excitation of forced synchrotron-oscillation resonance with an accel. voltage of 60 V (curve 1), 100 V (curve 2) and 160 V (curve 3). On the abscissa the index of frequency modulation is put down. On the ordinate the ratio of the threshold current In to its value In0 in absence of a resonance. 

Fig. 5 
Threshold of instability versus 
force of excitation of parametric 
resonance of synchrotron oscilla
tions with an accel. voltage of 
60 V (curve 1), 100 V (curve 2), 
160 V (curve 3). On the abscissa 
the degree of amplitude modulation 
of the accelerating voltage is put 
down (which is equal to the force of 
resonance). 


